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ABSTRACT 
The entropy generation rate has become a useful tool for 

evaluating the intrinsic irreversibilities associated with a given 

process or device. This work presents an analytical solution for 

entropy generation in hydrodynamically fully developed 

thermally developing laminar flow in a microtube. The 

rarefaction effects as well as viscous heating effects are taken 

into consideration, but axial conduction is neglected. Using 

fully developed velocity profile, the energy equation is solved 

by means of integral transform. The solution is validated by 

comparing the local Nusselt numbers against existing literature 

data. From the results it is realized that the entropy generation 

decreases as Knudsen number increases, while the effect of 

increasing values of Brinkman number and the ratio of 

Brinkman number to dimensionless temperature difference is to 

increase entropy generation. The average entropy generation 

number over the cross section of channel increases with 

increasing values of axial coordinate, until it reaches a constant 

value at fully developed conditions.  

Keywords: Microtube; Graetz problem; Slip flow; Viscous 

dissipation; Knudsen number; Entropy generation; Bejan  

1  INTRODUCTION 
Transport phenomena at the microscale reveal many features 

that are not observed in the macroscale devices. Consequently, 

fundamental issues related to fluid flow and heat transfer in 

microchannels need to be resolved for efficient design of 

microfluidic devices. From a great deal of research, it is clear 

that continuum analyses are unable to predict gas flow 

properties in micronsize devices. An experimental investigation 

of gas flow in channels of 100 �m wide and ranging in depth 

from 0.5 to 20 �m has been performed by Harley et al. [1] 

using nitrogen, helium and argon gases. They found that 

correlations based on classical assumptions cannot predict flow 

characteristics in microchannels. An experimental investigation 

was carried out by Araki et al. [2] to study frictional 

characteristics of nitrogen and helium flows in microchannels 

with hydraulic diameter range of 3-10 �m. They concluded that 

the frictional resistance of gas flow in microchannels is smaller 

than that in the conventional-sized channels.  

In rarefied gas flow, the failure of the continuum description 

is quantified by the Knudsen number, defined as the ratio of the 

mean free path of gas molecules � to the channel hydraulic 

diameter ��. Based on a definition given by Beskok and 

Karniadakis [3], gas flow can be classified as one of four 

regimes according to its Knudsen number. In the slip flow 

regime which corresponds to ���� 	 
� 	 ��� , deviations 

from the state of continuum are relatively small and the Navier-

Stokes equations are still valid. The rarefaction effect can be 

modeled through the partial slip at the wall using slip boundary 

conditions which can be determined using kinetic theory of 

gases. The measured friction factors obtained by Harley et al. 

[1] and Araki et al. [2] matched well with the theoretical 

predictions assuming fully developed first order slip flow.  

The analytical study of internal slip flow has been confined 

to simple geometries. Kennard [4] studied slip flow in the 

circular tube and parallel plate channel. Ebert and Sparrow [5] 

performed an analysis to determine the velocity and pressure 

drop characteristics of slip flow in rectangular and annular 

ducts. More recently Duan and Muzychka [6] have performed 

an analytical analysis to describe fully developed laminar flow 

in elliptical microchannels. All the results in [4-6] show that 
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rarefaction effect decreases pressure drop in microchannels 

with respect to conventional channels for a given mass flow 

rate.  

Also several research works have been undertaken to study 

heat transfer characteristics of rarefied gas flow in 

microchannels. Zhu et al. [7] performed a theoretical analysis 

of heat transfer between two unsymmetrically heated parallel 

plates with microspacing in the slip flow regime. The 

influences of the Knudsen number and the accommodation 

coefficients on the temperature profile and the heat transfer 

characteristics were determined. Aydin and Avci [8,9] 

theoretically investigated the steady, laminar, fully developed 

forced convection in a microtube and microduct between two 

parallel plates for both boundary conditions of constant wall 

temperature and constant wall heat flux. Duan and Muzychka 

[10] have studied heat transfer characteristics of 

hydrodynamically and thermally fully developed laminar 

rarefied gas flow in annular microducts with constant wall heat 

fluxes. Both hydrodynamically and thermally fully developed 

laminar slip flow forced convection in a rectangular 

microchannel under H1 boundary condition was studied by 

Ghodoossi and Egrican [11], using integral transform method. 

The problem of hydrodynamically fully developed and 

thermally developing flow in a channel, with the assumptions 

of steady and incompressible flow, constant fluid properties and 

negligible energy dissipation and streamwise conduction effects 

is known as the Graetz problem, the one which originally 

solved this problem for a circular tube [12]. The Graetz 

problem for a microchannel has gained interest because of its 

fundamental importance in microfluidic problems such as the 

analysis and design of micro heat exchangers. Barron et al. [13] 

and Ameel et al. [14] have extended the Graetz problem to slip 

flow through a microtube with uniform temperature and 

uniform heat flux boundary conditions, respectively. Thermally 

developing laminar slip flow forced convection in rectangular 

microchannels has been studied by Yu and Ameel [15] by 

applying a modified generalized integral transform technique to 

solve the energy equation, assuming hydrodynamically fully 

developed flow. 

Another parameter at microscale which should be taken into 

consideration is the viscous dissipation effects. Viscous 

dissipation features as a source term in the fluid flow due to the 

conversion of kinetic motion of the fluid to thermal energy and 

causes the variation in the temperature distribution. The effects 

of viscous dissipation on the temperature field and ultimately 

on the friction factor have been investigated by Koo and 

Kleinstreuer [16,17], using dimensional analysis and 

experimentally validated computer simulations. It was found 

that ignoring viscous dissipation could affect accurate flow 

simulations and measurements in microconduits. Aydin and 

Avci [8,9] have considered the effects of viscous heating in 

their studies. Viscous dissipation effect on fully developed slip 

flow forced convection in rectangular microchannels with 

constant wall heat flux has been studied by Aynor et al. [18]. 

Extended Graetz problem including viscous dissipation for a 

microtube was studied by Tunc and Bayazitoglu [19] using 

integral transform method. The two boundary conditions of 

constant wall temperature and constant wall heat flux were 

considered in the study. Similar study but for a slit 

microchannel with constant wall temperature was undertaken 

by Chen [20]. 

Entropy generation plays an important role in the design 

and development of thermofluid components. Entropy 

generation in the flow systems is due to fluid friction and heat 

transfer and it is increased by the presence of high gradients in 

velocity and temperature distributions. Such high gradients are 

found in very small scale devices such as microchannels. 

Entropy generation destroys available work of a system. 

Therefore, it makes good engineering sense to focus on 

irreversibility of heat transfer and fluid flow processes and try 

to understand the function of entropy generation mechanism. 

Bejan [21,22] focused on the different reasons behind entropy 

generation in applied thermal engineering. He showed that 

entropy minimization improves system efficiency. Nowadays, 

second law analysis of thermofluid systems has become a 

prominent topic in thermal engineering. 

Although there are numerous works related to second law 

analysis of macroscale devices, unfortunately the open 

literature shows very small number of papers that deal with 

entropy generation in microdevices. It seems that Haddad et al. 

[23] were the first who performed the second law analysis for a 

microchannel. They numerically investigated the entropy 

generation due to developing laminar forced convection 

through parallel plate microchannels. Avci and Aydin [24] 

applied the second law analysis considering constant wall heat 

flux for two different microgeometries, namely, microtube and 

microducts, between two parallel plates. Hydrodynamically and 

thermally fully developed slip flow with constant properties 

was examined using the previously obtained velocity and 

temperature profiles. Hooman [25] presented closed form 

solutions for fully developed temperature distribution and 

entropy generation due to forced convection in the two above 

mentioned cross sections for two different thermal boundary 

conditions, being isothermal and isoflux walls. Recently, 

Sadeghi et al. [26] have performed the second law of 

thermodynamics analysis for steady state hydrodynamically 

and thermally fully developed laminar gas flow in annulus 

microchannels with constant wall heat fluxes.  

The aim of the present study is to analytically investigate 

the entropy generation in extended Graetz problem including 

viscous dissipation in microtubes. The rarefaction effects are 

taken into consideration using first order slip boundary 

conditions. Using fully developed velocity profile, the energy 

equation is solved by means of integral transform. The 

interactive effects of rarefaction, viscous dissipation and the 

ratio of Brinkman number to dimensionless temperature 

difference on entropy generation rate and Bejan number are 

shown in graphical form and also discussed in detail. 

NOMENCLATURE � Bejan number �� ��� ��� � 
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� Brinkman number �� ��� ��� � �� specific heat at constant pressure ���� �!"�!� �� hydraulic diameter of channel [� #�] $ accommodation coefficient % heat transfer coefficient �&'��"�!� ( thermal conductivity �&'�!"�!�  
� Knudsen number �� � ��� � � normalization integral [Eq. (19)] �)) entropy generation number related to 

fluid friction ��� entropy generation number related to 

heat transfer �� entropy generation number, total *� +, +,-.� / ��-01 average entropy generation number �2 Nusselt number �� %�� (� � 3 pressure [Pa] 4� Prandtl number �� 5 6� � � wall heat flux �&'��� �� radial coordinate [m] �� tube radius [m]  �� Reynolds number �� ��� 5� � +, entropy generation rate �&'��"�!� +,-. characteristic entropy generation rate �&'��"�!� 7 temperature [K] 2 axial velocity �'8�!� � mean velocity �'8�!� 9 axial coordinate �'� 
Greek Symbols 6 thermal diffusivity ['�8�!� : eigenvalue ; heat capacity ratio < dimensionless temperature [Eq. (8)] � gas mean free path [m] � dynamic viscosity [kg'�!8�!� 5 kinematic viscosity �'�8�!� = auxiliary variable [Eq. (12)] > transformed form of = [Eq. (20)] ? eigenfunction @ dimensionless temperature difference �� �� (7A� � 
Subscripts B bulk C momentum � reference 

D fluid property at solid surface E thermal F wall 9 local � inlet  G fully developed flow property 

Superscript H dimensionless variable 

2  PROBLEM FORMULATION 

2.1   Slip Velocity and Temperature Jump 
As a result of slip velocity condition, the fluid particles adjacent 

to the solid surface no longer attain the velocity of the solid 

surface. Therefore, the fluid particles have a tangential velocity 

at the surface, which is the slip velocity, and it is expressed as 

[27]: 

2I � J# J $K$K 
��� LM2M�NO (1) 

where 2I is the slip velocity and $K is the tangential 

momentum accommodation coefficient.  

The fluid particles also have a finite temperature difference 

at the solid surface (temperature jump).Temperature jump is 

given by [27] 

7I J 7O � J# J $P$P #;� Q ; 
���4� LM7M�NO (2) 

where 7I is the temperature of the gas at the wall, 7O is the wall 

temperature and $P is the thermal accommodation coefficient. 

The accommodation coefficients depend on various parameters 

that affect surface interaction, such as the magnitude and the 

direction of the velocity. It is shown that these coefficients are 

reasonably constant for a given gas and surface combination 

[28]. For many engineering applications the value of the 

accommodation coefficients are close to unity. For the rest of 

the analysis, $K and $P will be shown by $ and assumed to be 

1[13]. 

2.2 Hydrodynamic Aspects  
Geometry of the physical problem is shown in Fig. 1. Flow is 

considered to be steady, hydrodynamically fully developed and 

having constant properties. Using coordinates shown in Fig. 1, 

the momentum equation in the 9-direction is �� RR� L� R2R�N � �� R3R9 � STU8VWUV (3) 

and relevant boundary conditions are  

2XAY � J
��� LR2R�NXAY � J#
�� LR2R�NXAY (4a) 

LR2R�NXZY � � (4b) 
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Using dimensionless parameters, the dimensionless velocity 

distribution is 

2HX�HY � #[� Q \
� J �H�� Q ]
� ^ (5) 

in which �H � � ��  , 2H � 2 ��  and � is the mean velocity. 

 

 

 

 

 

Fig. 1 Schematic of the physical problem and coordinate 

system. 

2.3 First Law Analysis 
It is assumed that temperature of the fluid entering the channel 

is uniform at 7 � 7Z. Neglecting the axial conduction, the two 

dimensional energy equation in cylindrical coordinates may be 

written as 

2 M7M9 � 6� MM� L� M7M�N Q 5�� LR2R�N
�
 (6) 

and relevant boundary conditions are 

LM7M�NX_-ZY � � (7a) 

( LM7M�NX_-AY � � (7b) 

7XZ-`Y � 7Z (7c) 

In order to generalize the solution, the energy equation and 

relevant boundary conditions are made dimensionless, using the 

following dimensionless parameters, besides those introduced 

in section 2.2 

< � 7 J 7Z��( aaa-aaaa9H � 9��4��� (8) 

The energy equation then is modified into the following 

dimensionless form  

� Q \
� J �H�#X� Q ]
�Y M<M9H � ��H MM�H L�H M<M�HN Q �b�X� Q ]
�Y� �H� (9) 

where the Brinkman number is defined as 

� � �����  (10) 

The Brinkman number is the criterion which shows the relative 

importance of viscous dissipation to the other terms of the 

energy equation. The thermal boundary conditions in the 

dimensionless form are written as  

L M<M�HNX_H-ZY � � (11a) 

L M<M�HNX_H-!Y � � (11b) 

<XZ-`HY � � (11c) 

Since the boundary conditions are non homogenous, therefore, 

we introduce a new variable =, such that  

=X9H- �HY � <X9H- �HY J <cX9H- �HY (12) 

where the fully developed temperature profile is simply derived 

as  

<cX9H- �HY � �!\ d�H� J �e J ���b d�Hf J �e
Q �� g�!] J ��#\h J �f g�!#\ J ��b\h
Q ] i� Q \�X� Q ]
�Y�j 9H 

(13) 

with 

LM<cM�H NX_H-ZY � � (14a) 

LM<cM�H NX_H-!Y � � (14b) 

where 

�! � � Q \
�� Q ]
� i\ Q �b�X� Q ]
�Y�jaaaaaa-aaa��
� \� Q ]
� Q �b�X� Q ]
�Y�
Q �b�X� Q ]
�Y� 

 

�� � #� Q \
�� Q ]
�aaaaaaa-aaaaaaaa�f � #� Q ]
� (15) 

7Z #� 
9 

� � 
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The following equation system, which is obtained after the 

substitution of < � = Q <c into the energy equation, is 

satisfied by = 

� Q \
� J �H�#X� Q ]
�Y M=M9H � ��H MM�H L�H M=M�HN (16a) 

LM=M�HNX_H-ZY � � 
(16b) 

LM=M�HNX_H-!Y � � 
(16c) 

=XZ-`HY � J<cXZ-`HY (16d) 

The finite integral transform method [29], a straightforward and 

very general technique for the solution of Graetz type channel 

flow problems, is applied to solve the present heat transfer 

problem. To begin with, an integral transform pair is developed 

by considering an eigenvalue problem appropriate for the 

present problem. Next, by transformation, the partial derivative 

with respect to �H is removed from Eq. (16a), reducing it to an 

ordinary differential equation. Then the resulting ODE is solved 

subject to the transformed initial condition. Finally, = is 

immediately obtainable from the inversion formula. Based on 

the method of separation of variables, an appropriate 

eigenvalue problem is given by   ��H RR�H L�H R?R�HN Q :K� d� Q \
� J �H�e? � � (17a) 

LR?R�HNXZY � � (17b) 

LR?R�HNX!Y � � (17c) 

where ?X:K- �HY’s and :K’s are the eigenfunctions and 

eigenvalues, respectively. Since the above eigenvalue problem 

constitutes a Sturm-Liouville problem, the eigenfunctions 

satisfy the following orthogonality condition 

k �Hd� Q \
� J �H�e?X:K- �HY?X:l- �HYR�H!
Z � m �aaaaaaaaaaa�X:KYn a aaaoTpaC q �aaaoTpaC � � 

(18) 

where the normalization integral �X:KY is calculated from the 

following formula 

�X:KY � k �Hd� Q \
� J �H�e�?X:K- �HY��R�H!
Z  (19) 

Consequently, the integral transform pair with respect to the �H 
variable is defined as 

Transform: 

>X:K- 9HY � k �Hd� Q \
�!
Z J �H�Y?X:K- �HY=X9H- �HYR�H (20) 

Inversion: 

=X9H- �HY � r ?X:K- �HY�X:KY
c

Ks! >X:K- 9HY (21) 

The next step in the solution is solving the eigenvalue problem 

by the method of Frobenius. Assuming the function ?X:K- �HY 
to be a power series gives  

?X:K- �HY � rtuX:KY�Huc
usZ  (22) 

After substituting the above series into Eq. (17a) we obtain t! � �  

t� � J:K� X� Q \
�Y\ tZ 
 

tu � v aa�aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaTRRaaw x y
aaaaaa:K�w� *tu�f J tu��X� Q \
�Y/aaaz{zUaaw x \ana 

(23) 

tZ will appear as an additive constant at all steps. Hence, 

without loss of generality, we can assume tZ to be 1 as it will 

not affect the shape of the temperature profile and gradients at 

the wall. So, ?X:K- �HY and its derivative with respect to �H can 

be written as 

?X:K- �HY � � Q t��H� Q tf�Hf Q| (24a) 

R?X:K- �HYR�H � #t��H Q \tf�H� Q| 
(24b) 

From Eq. (24b), it is obvious that the first boundary condition 

of eigenvalue problem, Eq. (17b), is satisfied automatically. 

The second boundary condition is used to obtain eigenvalues. 

By substituting Eq. (24b) into Eq. (17c), we come up with 

r wtuc
us�-f-| � � (25) 

Equation (25) may be rewritten by combining the coefficients 

of the terms containing the same power of :K as 

rB}:�}c
}s! � B!:� Q B�:f Q| � � (26) 

By numerically solving Eq. (26), the eigenvalues, :K’s  are 

obtained. After solving the eigenvalue problem, we now take 

the integral transform of Eq. (16a) by the application of the 

transform (20). The transformation process starts with the 
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operation on both terms of Eq. (16a) by the operator ~ �H?X:K- �HY!Z R�H to obtain  

�#X� Q ]
�Yk �Hd� Q \
� J �H�e?X:K- �HY M=M9H R�H!
Z

� k MM�H L�H M=M�HN?X:K- �HYR�H!
Z  

(27) 

The term in the RHS of Eq. (27) is evaluated by integrating it 

by parts twice and utilizing the eigenvalue problem and the 

dimensionless boundary conditions of Eq. (16). Next, using the 

transform formula, we can obtain the following ordinary 

differential equation 

R>KR9H Q #X� Q ]
�Y:K�>K � � (28) 

The solution to Eq. (28) is given by 

>K � �K����_H (29) 

where K � #X� Q ]
�Y:K�  (30) 

and �K which is the integral transformation of the initial 

condition has the following form 

�K � Jk �Hd� Q \
� J �H�e ��!\ d�H� J �e!
Z

J ���b d�Hf J �e Q �� g�!] J ��#\h
J �f g�!#\ J ��b\h�?X:K- �HYR�H 

(31) 

Hence, the transformed temperature profile can be written as  

>K
� J�k �Hd� Q \
� J �H�e ��!\ d�H� J �e!

Z
J ���b d�Hf J �e Q �� g�!] J ��#\h
J �f g�!#\ J ��b\h�?X:K- �HYR�H� ���X!���lY��� _H 

(32) 

By introducing Eq. (32) into the inversion formula, =X9H- �HY 
becomes   

=X9H- �HY
� J r ?X:K- �HY~ �HX� Q \
� J �H�Y�?X:K- �HY��R�H!Z

c
Ks! �k �Hd�!

Z
Q \
� J �H�Y ��!\ d�H� J �e J ���b d�Hf J �e
Q �� g�!] J ��#\h
J �f g�!#\ J ��b\h�?X:K- �HYR�H� ���X!���lY��� _H 

(33) 

Finally, the temperature distribution is obtained by adding <c 

to =. Once the temperature distribution is obtained, the 

quantities of physical interest, including the bulk temperature of 

the fluid and the heat transfer rate can be obtained. The 

dimensionless bulk temperature can be expressed as  

<� � #k 2HX�HY<X9H- �HY�HR�H!
Z  (34) 

The heat transfer rate can be expressed in terms of the local 

Nusselt number as 

�2_ � %_��( � ���(X7O J 7�Y � #
<I J <� Q \;� Q ; 
�4�  

(35) 

2.4 Second Law Analysis 
Flow and heat transfer processes inside the microtube are 

irreversible. The non-equilibrium conditions arise due to the 

exchange of energy and momentum within the fluid and at solid 

boundaries, thus resulting in entropy generation. A part of the 

entropy production is due to the heat transfer in the direction of 

finite temperature gradients and the other part of entropy 

production arises due to the fluid friction. According to Bejan 

[22], the volumetric rate of entropy generation can be derived 

as  

+, � (7A� LM7M�N
� Q �7A LR2R�N

�
 (36) 

where 7A is the absolute reference temperature. Equation (36) 

can be made dimensionless to get entropy generation number ��: 

�� � +,+,-. � LM<M�HN
� Q �@ LR2HR�HN

� � ��� Q�)) (37) 

where the dimensionless temperature difference @ and the 

characteristic entropy generation rate +,-. are as follows 

@ � ��(7A (38a) 
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+,-. � ��(7A� (38b) 

on the RHS of Eq. (37), ��� represents entropy generation due 

to heat transfer and �)) is the fluid friction contribution to 

entropy generation. Using dimensionless velocity and 

temperature distributions, entropy generation number becomes: ��X9H- �HY
� vJ r R?X:K- �HYR�H~ �HX� Q \
� J �H�Y�?X:K- �HY��R�H!Z

c
Ks! �k �Hd�!

Z
Q \
� J �H�Y ��!\ d�H� J �e J ���b d�Hf J �e Q �� g�!] J ��#\h
J �f g�!#\ J ��b\h�?X:K- �HYR�H� ���X!���lY��� _H Q �!# �H
J ��\ �H��

�
Q �b�@X� Q ]
�Y� �H� 

� (39) 

Note that M= M� �H is damped at 9H � G, so, the entropy 

generation number of fully developed flow ��-c will be in the 

following form   

��-cX�HY � g�!# �H J ��\ �H�h� Q �b�@X� Q ]
�Y� �H� (40) 

The average dimensionless entropy generation over the cross 

section of the microchannel can be computed by the following 

integration  

��-01 � ~ ��X9H- �HY�HR�H!Z ~ �HR�H!Z
� #k ��X9H- �HY�HR�H!

Z  (41) 

One of the irreversibility distribution parameters is the Bejan 

number �, defined as the ratio of entropy generation due to 

heat transfer to total entropy generation rate, namely:  

� � �����  (42) 

� � � is the limiting value at which the heat transfer 

irreversibility dominates, while � � � is the opposite limiting 

value where the irreversibility is solely attributable to fluid 

friction. Similar to entropy generation number, the fully 

developed Bejan number �c may be written as  

�cX�HY � g�!# �H J ��\ �H�h�
g�!# �H J ��\ �H�h� Q �b�@X� Q ]
�Y� �H�

 
(43) 

3  RESULTS AND DISCUSSION 
Thermally developing slip flow through a micropipe is 

considered. Here, the interactive effects of Knudsen number, 

Brinkman number and the ratio of Brinkman number to 

dimensionless temperature difference on radial distribution of 

velocity and temperature and finally on entropy generation are 

analyzed. The results are presented for 
� ranging from 0.0 to 

0.1, 4� � ��� and ; � ��\. The procedure outlined in the 

previous section will be validated by comparing local Nusselt 

numbers with existing literature data. 

 

Fig. 2 Radial distribution of dimensionless velocity at different 

values of Knudsen number. 

 

Fig. 3 Comparison between local Nusselt numbers obtained in 

present study against those given by Cetin et al. [30]. 

Figure 2 depicts radial distribution of dimensionless 

velocity at different values of Knudsen number. As a result of 

slip conditions, slip velocity occurs at the wall. An increase in 
� results in an increase in the slip velocity at the wall, while 

according to mass conservation, the maximum velocity 
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decreases. Note that as Knudsen number increases the velocity 

gradient becomes smaller, especially at the wall at which the 

maximum decrease occurs. Figure 3 shows the comparison 

between local Nusselt numbers obtained in the present study 

against those given by Cetin et al. [30] for 
� � ���\ at 

different values of Brinkman number. It should be noted that 

they numerically have solved energy equation using the finite 

difference scheme. As seen, there is an excellent agreement 

between the results. 

 

Fig. 4 Radial distribution of dimensionless temperature at 

different Knudsen numbers in the absence of viscous heating. 

 
Fig. 5 Radial distribution of dimensionless temperature at 

different axial positions in the absence of viscous heating. 

 Radial distribution of dimensionless temperature of fully 

developed flow at different Knudsen numbers in the absence of 

viscous heating is illustrated in Fig. 4. As Knudsen number 

increases the dimensionless temperature decreases, with an 

exception of a small region adjacent to the centerline which it 

increases a little. In other words, slip conditions tend to unify 

the temperature distribution. Note that although the 

dimensionless temperature decreases over much of the duct 

cross section, the dimensionless bulk temperature remains 

unchanged. This is because the viscous heating is absent and 

the total energy delivered to the flow by the wall is not 

dependent on Knudsen number. Radial distribution of 

dimensionless temperature at different axial positions in the 

absence of viscous heating for no slip condition is presented in 

Fig. 5. As 9H increases the dimensionless temperature increases, 

which is an expected behavior. The existence of core flow 

which has not yet felt the presence of wall is seen for 9H ������ and also at smaller regions for 9H � ���� and 9H ������. 

In Fig. 6 radial distribution of dimensionless temperature of 

fully developed flow at different values of Brinkman number is 

shown. Both positive and negative values of the wall heat flux 

are considered. Positive values of Brinkman number 

correspond to the wall cooling case at which heat is transferred 

from the wall to the fluid, while the opposite is true for negative 

values of Brinkman number. In the absence of viscous 

dissipation, the solution is independent of whether the wall is 

hot or cold. From the Figure, one can see that increasing values 

of Brinkman number lead to greater values of dimensionless 

temperature. This is due to the fact that as Brinkman number 

increases the energy generation due to viscous heating increases 

which this, consequently, increases the fluid temperature. 

 

Fig. 6 Radial distribution of dimensionless temperature at 

different values of Brinkman number. 

The main theme of the present work is to study entropy 

generation rate. Radial distribution of �� for � � ��#, 
� � ���� and � �� � ��#� at different axial positions is 

depicted in Fig. 7. The distribution of �� at 9H � G has been 

obtained using Eq. (40). Entropy generation number attains its 

maximum value at the wall due to the presence of high velocity 

and temperature gradients. At centerline, at which velocity and 

temperature gradients are zero, the entropy generation number 

attains its minimum magnitude which is zero. As an expected 

behavior, the entropy generation number increases with 

increasing 9H. At the entrance the temperature distribution is 
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uniform, except at the wall. So, the entropy generation is 

mainly due to fluid friction. As 9H is increased the extent of the 

core flow will shrink which this consequently leads to greater 

values of ��. The corresponding Bejan number distribution for 

the above mentioned case is presented in Fig. 8. The Bejan 

number is greater for greater values of dimensionless axial 

coordinate. The Bejan number for 9H � ����� is zero in the 

vicinity of the centerline. This is the core flow which has not 

yet felt the presence of wall and the temperature is still uniform 

at 7Z. For smaller values of 9H such as 9H � ����� and 9H � ���#, the Bejan number attains its maximum value at a 

point close to the wall and reaches a local minimum at 

centerline, while for greater values of 9H the maximum and 

minimum values of Bejan number occur at centerline and the 

wall, respectively. 

  

Fig. 7 Radial distribution of �� at different axial positions. 

 

Fig. 8 Radial distribution of Bejan number at different axial 

positions. 

Figure 9 illustrates radial distribution of ��-c for � � ��# 

and � �� � ��#� at different Knudsen numbers. Unless for 
� � �, the maximum value of ��-c occurs at the wall. As 
� 

increases, the entropy generation is decreased due to decreasing 

the velocity and temperature gradients. The maximum 

decrement takes place at the wall at which the maximum 

decrement of velocity slope occurs. The corresponding Bejan 

number distribution for the above mentioned case is illustrated 

in Fig. 10. Increasing Knudsen number from � to ���� leads to 

greater values of Bejan number in the zone close to the wall 

which implies that the effect of Knudsen number on velocity 

distribution is greater than temperature distribution, while for 

the inner points it is vice versa. Greater Bejan numbers are 

achieved by increasing 
� from 0.05 to 0.1. 

 

Fig. 9 Radial distribution of ��-c at different Knudsen 

numbers. 

 

Fig. 10 Radial distribution of fully developed Bejan number at 

different Knudsen numbers. 

Figure 11 shows radial distribution of ��-c for � � ��# 

and 
� � ���� at different values of � �� . As expected, 

increasing values of � ��  lead to greater values of ��-c due to 

increasing viscous effects. The maximum value of ��-c occurs 
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at the wall, except for � �� � �. In the absence of the fluid 

friction contribution to entropy generation, the point of 

maximum entropy generation number coincides with the point 

of maximum temperature gradient which for � � ��# and 
� � ���� does not occurs at the wall. Radial distribution of 

fully developed Bejan number at different values of � ��  for � � ��# and 
� � ���� is depicted in Fig. 12. For � �� � �, 

the fluid friction contribution to entropy generation is zero. 

Bejan number is independent of radial coordinate and equal to 

its maximum value which is unity. For other values of � �� , 

the maximum and minimum values of Bejan number occur at 

centerline and the wall, respectively. A greater � ��  leads to a 

smaller value of Bejan number due to increasing fluid friction 

effects. 

 

Fig. 11 Radial distribution of ��-c at different values of � �� . 

 

Fig. 12 Radial distribution of fully developed Bejan number at 

different values of � �� . 

 

Fig. 13 Downstream variation of average entropy generation 

number at different Knudsen numbers. 

 

Fig. 14 Variation of average entropy generation number in the 

entrance region at different Brinkman numbers. 

 

Fig. 15 Effects of � ��  on average entropy generation number 

in the entrance region. 
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Downstream variation of average entropy generation 

number at different Knudsen numbers for � � ��# and � �� � ��#� is presented in Fig. 13. It can be seen that to 

increase Knudsen is to decrease average entropy generation 

number due to decreasing temperature and velocity slopes. Also ��-01 increases with increasing values of 9H, until it reaches a 

constant value at fully developed conditions. The reason is that 

as flow is thermally being developed the region affected by the 

wall heat flux will grow and consequently attain greater 

temperature gradients. Figure 14 shows variation of average 

entropy generation number in the entrance region at different 

Brinkman numbers for 
� � ���� and � �� � ��#�. A greater 

Brinkman number is accompanied by greater magnitudes of 

average entropy generation number, except at the entrance. At 

the entrance, entropy generation is mainly due to fluid friction 

effects and since viscous heating only affects temperature 

distribution, its effect on entropy generation is negligible. 

Effects of � ��  on average entropy generation number in the 

entrance region is illustrated in Fig. 15. Increasing � ��  results 

in greater magnitudes of ��-01. The increment of average 

entropy generation number due to increasing values of � ��  is 

constant for each axial position. This is because of linear 

dependency of entropy generation to � �� . 

4  CONCLUSIONS  
The second law of thermodynamics analysis has been carried 

out for extended Graetz problem in a microtube. The 

rarefaction effects as well as viscous heating effects were taken 

into consideration, but axial conduction was ignored. Using 

fully developed velocity profile, the energy equation was 

solved by means of integral transform. An expression for 

entropy generation number in the form of an infinite series was 

obtained. For fully developed conditions, closed form solutions 

were presented for entropy generation number and Bejan 

number. Some typical results of this study can be expressed as 

follows: 

• The entropy generation decreases as Knudsen number 

increases. This is due to the fact that slip conditions 

tend to unify the velocity and temperature profiles. 

• The effect of increasing values of Brinkman number 

and the ratio of Brinkman number to dimensionless 

temperature difference is to increase entropy 

generation. 

• The average entropy generation number over the cross 

section of channel increases with increasing values of 

axial coordinate, until it reaches a constant value at 

fully developed conditions. 
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