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ABSTRACT 
The development of efficient solar thermal receivers has 

received significant interest for thermal energy to electrical 

power conversion and heating applications. Volumetric 

receivers, where the incoming solar radiation is absorbed in a 

fluid volume, have advantages over state-of-the-art surface 

absorbers owing to the reduced heat losses at the surface. To 

efficiently distribute and store the thermal energy in the 

volume, nanoparticles can be suspended in the liquid medium 

to scatter and absorb the incoming radiation. In such systems, 

however, compact models are needed to design and optimize 

the performance. In this paper, we present an analytical model 

that can be used to perform parametric studies to investigate the 

effect of heat loss, particle distribution, and flow rate on 

receiver efficiency. The analytical model was formulated by 

modeling the suspended nanoparticles as embedded heat 

sources. The heat equation was solved with the surface heat 

losses modeled using convective losses based on �ewton’s law 

of cooling. The analytical solution provides a convenient tool to 

predict two-dimensional temperature profiles for a variety of 

heat loss and inlet fluid temperature conditions. The efficiency 

of the receiver is defined as the ratio of the amount of thermal 

energy transported by the fluid to the total incident solar energy. 

For very large lengths the thermal energy carried by the fluid 

reaches a maximum steady value as the amount of heat loss 

equals the incident solar energy. The model can be used to 

estimate the approximate receiver lengths required to achieve 

near peak bulk fluid temperature. The results from this study 

will help guide experimental design, as well as practical flow 

receivers for solar thermal systems. Predictions made on a 

channel of 1mm depth with a solar concentration of 1 show that 

there exists a maximum system efficiency of 0.3373 for a 

dimensionless receiver length of 1.66. 

 
INTRODUCTION 

Most solar thermal technologies today, ranging from hot 

water heating to concentrated solar power, use absorbing 

surfaces to convert energy from its radiative form into thermal 

energy. Black surfaces and selective surfaces are very efficient 

at performing this type of conversion, but they are not very well 

suited for transferring heat to a carrier fluid. Direct absorption 

of solar radiation inside the fluid medium promises to be a 

more efficient heat transfer mechanism. 

In the case of conversion of thermal to electrical power, 

solar thermal power plants aim to operate at higher 

temperatures. As the temperature of the receiver surface 

increases, the corresponding losses to the environment begin to 

contribute significantly to the loss in the overall conversion 

efficiency of solar energy. 

Small, absorbing  particles suspended inside a heat transfer 

fluid have been proposed by Abdelrahman [1] and Hunt [2] in 

order to minimize the temperature difference between the 

absorber and the carrier fluid. The temperature difference 

between the absorbing particles and the fluid is negligible 

owing to the particles’ large surface to volume ratio [2, 3].  To 

model the coupled radiative and convective heat transfer inside 
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the particle-based receivers, researchers have developed 

numerical models capable of predicting the response of these 

systems at high temperatures. Kumar and Tien [4] investigated 

a flowing molten salt receiver seeded with small particles, 

while Miller has modeled solar absorption inside a rectangular 

receiver and oxidation of carbon particles using a three-

dimensional model [3, 5]. Experimental work by Drotning 

determined the optical properties of such molten salt 

suspensions [6]. More recently, Phelan et al. have made recent 

contributions in numerical modeling of nanoparticles [7], and 

measurement of optical properties of candidate transparent 

fluids for this application [8].  

Despite the previous modeling efforts, an analytical model 

describing volumetric receivers does not exist.  Even for 

relatively simple geometries of volumetric receivers, numerous 

parameters can be varied and it becomes difficult to predict the 

outcome of the coupled radiative and heat transfer equations. 

Consequently, current models require implementing relatively 

complicated and slow numerical schemes. An analytical model 

gives a solar thermal engineer a quick tool to predict the 

outcome of varying parameters such as particle loading and 

concentration, in order to assess the viability of a volumetric 

receiver design for the application. Volumetric absorbers 

promise to be more efficient than surface absorbers, but 

predicting this increased efficiency can be complicated. The 

objective of this study is to present an analytical method to 

describe volumetric solar thermal receivers for temperatures 

below (800 K) which can be used as a starting point for more 

complicated models and designs. 

 

NOMENCLATURE 
C Solar concentration factor [-] 

Cp Heat capacity [J/kg-K] 

fv Particle volume fraction [-] 

G Green’s functions 

Gs Incident solar radiation [W/m
2
] 

H Receiver height [m] 

I Radiative intensity [W/m
2
-µm] 

L Length of Receiver [m] 

c Speed of light [m/s] 

h Planck’s Constant [J-s] 

k Thermal conductivity [W/m-K] 

m Complex refractive index [-] 

n Index of refraction [-] 

q heat release [W/m
3
] 

T Temperature [K] 

U Plug-flow velocity [m/s] 

x, y Coordinates [m] 

Greek Symbols 

β Extinction coefficient [1/m] 

η Efficiency [-] 

θ Dimensionless temperature change [-] 

κ Absorptive index [-] 

λ  Wavelength [m] 

ρ Density [kg/m
3
] 

σ Stefan-Boltzmann constant [W/m-K
4
] 

Superscript 

¯ Dimensionless quantity 

˙ Time derivative 

ʺʹ Per unit volume [m
-3

] 

Subscripts 

abs Absorbed 

f Fluid medium 

in Receiver inlet 

λ Spectral 

p Particle 

rec Receiver 

s Solar 

 

MODEL FORMULATION 
 

 
Figure 1 shows the schematic of the volumetric solar 

receiver. The solar receiver is a parallel plate channel of height 

H. The fluid with the suspended nanoparticles enters from the 

left and the channel is exposed to solar radiation from the top. 

The energy equation for the receiver shown in Fig. 1 

accounting for the volumetric heat release (owing to the 

presence of the suspended nanoparticles) can be written as 
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Figure 1. Schematic of the volumetric solar flow receiver 

with suspended nanoparticles. 
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Equation 2a arises from the assumption of an adiabatic bottom 

surface, while Eq. 2b is due to heat loss at the top surface 

modeled by �ewton’s law of cooling with a heat loss coefficient 

(hE). Eq. 2c is set by the fluid entering the receiver with a 

uniform inlet temperature (Tin).  The energy equation and the 

boundary conditions are cast in a non-dimensional form using 

the following dimensionless parameters 

H

x
x

H

y
y == ;   (3) 

  
( )

HGC

TTk

s

in−
=θ   (4) 

sGC

Hyq
yq

)(
)(

&
&

′′′
=′′′   (5) 

Equation 2 gives the dimensionless spatial coordinates; non-

dimensionalized using the channel height (H). θ is the 

dimensionless temperature; non-dimensionalized using the fluid 

thermal conductivity (k), incident solar flux (Gs = 1000 W/m
3
) 

and concentration (C) 
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The corresponding boundary conditions are  
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The non-dimensional Peclet and heat loss �usselt numbers 

are defined below 
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The difference between the fluid inlet temperature and the 

ambient temperature is captured by θamb defined as 
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ANALYTICAL SOLUTION 
Equation 6 can be solved by a combined homogeneous and 

particular integral solution for a known volumetric heat release 

profile (see Appendix A for details). The solution can be 

expressed as 
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The volumetric heat release function (in the dimensional form) 

is determined by an energy balance assuming that change in the 

spectrally integrated radiation intensity (I), due to attenuation 

by the medium, is dissipated as a local heat release. Thus, the 

heat release profile is 

 ( )∫
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Planck’s expression (Eq. 13) for black body radiation at an 

estimated Sun’s temperature (Tsun = 5800 K) is 
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This is weighted by a constant (SC) that accounts for the 

distance of the earth’s surface from the sun 
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sunPlanck

s
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and supplied as the concentrated (C), incident solar intensity 

(I0,λ) entering the flow receiver at the top surface  

( )sunPlanckC TISCI ,,0 λλ =   (15) 

For wavelengths of incident solar radiation, the spectral 

radiative transfer equation (RTE) for attenuation of light in the 

y-direction (Fig. 1) is 
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 λλλ
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dI
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where, βf and βp are the extinction coefficients of the fluid and 

particles respectively. In general, the spectral absorption 

coefficient for pure fluids is related to the index of absorption 

(κf) by the equation [9] 
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Similarly, in the limit of low volume fraction (fv << 0.01), and 

small particle size diameter, the particle extinction coefficient is 

given by the expression [9, 10] 
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Where, k1 is defined as in Eq. 19 and m is the ratio of 

complex refractive index of the particles divided by the real 

part of the refractive index of the medium [9, 11] 
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Equation 16 can be solved to give I as a function of y 
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Assuming that the optical properties (m) of the fluid and 

particles are spectrally independent, the spectral power density 

at a given depth (y) can be obtained by integrating Eq. 21 over 

all wavelengths as given below 
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where, φn(x) is the PolyGamma function of order n. Equation 

21 is used in Eq. 12 to finally obtain the heat release profile as 
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Equation 22 is a complex expression involving the optical 

properties of the fluid and particles. However, once the material 

choices are made for the fluid and the particle, the only 

unknown is the volume fraction. Eq. 22 is substituted in Eq. 5 

to obtain the non-dimensional heat release profile as 
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Equation 23 shows that the non-dimensional heat release 

profile depends on fv and H. 

MODEL RESULTS 
The analytical model is used to predict the influence of the 

various control parameters on the performance of the 

volumetric solar receiver. From the problem formulation and 

resulting solution it is clear, that for a given type of fluid and 

particle, the parameters that influence the solution are: C,  fv, H, 
Pe, �uE. In the following subsections the influence of these 

different parameters is explored. 

 

Heat release profiles: 

 It was shown in Eq. 23 that the non-dimensional heat release 

profile depends on fv and H. It can be noted from Eq. 18 that for 

the light intensity to be zero at the bottom surface of the 

receiver, the particle extinction coefficient and hence fv would 

have to be infinite. In practical receivers, it would be required 

that the bulk of the incident radiative flux is been absorbed and 

released as heat. In order to perform meaningful calculations 

using the analytical solution, it becomes necessary to specify 

what portion of the incident light is absorbed before it reaches 

the bottom surface. This fraction is defined as 

 ( )
( )0

1
P

HP
abs −=η    (24) 

Once ηabs is chosen and H is fixed, Eqs. 21 and 24 can be used 

to calculate the fv required. Figure 2 shows a log-log plot of fv 

 
Figure 2. Particle volume fraction as a function of 

channel height for different ηηηηabs. 
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as a function of H for different ηabs. The figure shows that as 

the channel height decreases the particle volume fraction 

required to guarantee a certain absorption fraction increases. In 

this paper we study a mini channel (H = 1mm with solar 

concentration = 1) assuming an attenuation value of ηabs = 0.99. 

The choice of these two parameters fixes fv required as 

0.006344, for Therminol-VP1 (nf  = 1.63, κf =  3.86 e-8 at λpeak 

= 0.5 µm) with suspended carbon nanoparticles (np = 2.72, κp = 

0.2 at λpeak = 0.5 µm) [8, 12, 13]. The value of fv is in the range 

of validity (fv << 0.01) for the assumption made for the 

particle’s extinction coefficient. After calculating fv, Eq. 23 can 

be used to estimate the heat release function. The resulting 

profile is shown in Figure 3. 

 

 
 

Temperature Profiles: 

Figure 4 shows the 2-D non-dimensional temperature profile in 

the channel for �uE = 1, Pe = 5, θθθθamb = 0. It can be seen that θ 

increases as x/H increases and approaches a constant value for 

large x/H. Figure 5 shows the transverse temperature profiles 

for the same operating conditions as in Fig. 4 for different axial 

locations. Close to the inlet the top surface temperature is 

higher than the bottom surface, but this trend reverses far away 

from the inlet. Figure 6 shows the axial temperature profiles at 

the top and bottom surface along with the average temperature 

profile. The top surface temperature drops (owing to heat loss) 

at large x/H, demonstrating that the volumetric receiver 

performs as expected, i.e. keeping the surface temperature 

lower than the bulk temperature. The reason for the average 

temperature to be greater than the top and bottom temperatures 

at large x/H is because the temperature peak occurs in between 

the top and bottom surface (as seen in Fig. 5) 

 
 

 
 

 
Performance and Design: 

The temperature profiles shown in Figs. 4-6 enhance the 

qualitative understanding of the performance of the volumetric 

receiver and confirm the physically intuitive trends that are 

expected. For large values of x/H the non-dimensional 

 
Figure 6. Axial non-dimensional top surface, bottom 

surface and average temperature profiles (�uE = 1, Pe 

= 5). 
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Figure 5. Transverse non-dimensional temperature 

profiles at different axial locations (�uE = 1, Pe = 5). 
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Figure 4. Generalized volumetric receiver model with 

plug-flow and heat generation (�uE = 1, Pe = 5). 
 

 
Figure 3. Volumetric heat release function (H = 1mm, 

ηηηηabs = 0.99). 
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temperature reaches a steady value. This is because the surface 

temperature reaches a high enough value and therefore the heat 

losses through the surface equal the incoming solar power. This 

can be expressed as 

sxambyE
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Eq. 26 shows that for large x/H the non-dimensional 

surface temperature only depends on the heat loss �usselt 
number. Corresponding to this condition the bulk fluid also 

reaches a maximum steady temperature given by 

ydy∫ ∞=∞=
1

0
max ),()( θθθ   (27) 

In theory an infinitely long receiver is required to realize 

this maximum temperature. However, in practical devices we 

would want to limit the length of the receiver. Using the model 

we can calculate the length required to reach a certain fraction 

(η∆T) of the maximum temperature given by 

max

max, θ
θ

θ =f    (28) 

Figure 7 shows the non-dimensional length of the receiver 

(L*
Rec = LRec/H) required to reach the average fluid temperature 

specified by fθ,max for two different Pe numbers. The figure 

shows that for a smaller Pe number this length is shorter. When 

the fluid and particle type is fixed, the Pe is a measure of the 

flow rate. When the height of the channel is also fixed, the Pe is 

a direct measure of the flow speed. For lower Pe, the flow 

speed is lesser and hence the residence time of the fluid 

medium in the channel is more and therefore it reaches the 

same temperature over a shorter length as compared to a higher 

Pe case. The efficiency of the receiver (ηRec) can be defined as 
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Figure 8 shows the variation of ηRec with fθ,max for two 

different Pe numbers. As expected, the overall efficiency does 

not depend on the Pe. 

 
The overall efficiency decreases as the temperature fraction 

increases and becomes zero for a temperature fraction value of 

1 owing to the infinite receiver length required to realize this 

value. More importantly, the figure shows that fairly realistic 

temperature fractions (~0.8) can be realized with an overall 

efficiency around 0.4. Therefore, as the length of the receiver is 

shortened the ∆T that can be realized is smaller; however, 

overall receiver efficiency will be higher.  

 
Figure 8.  Receiver efficiency vs. fraction of maximum 

non-dimensional bulk temperature for two Pe numbers 

(�uE = 1). 
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Figure 7. Length of the receiver as a function of 

fraction of maximum non-dimensional temperature. 
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In power generation applications where the volumetric solar 

receiver will be coupled to a power generation cycle, the total 

efficiency for the system will be a product of the efficiency of 

the receiver multiplied by the efficiency of the power 

generation system. For the present study, we can describe an 

effective total efficiency that accounts for the net effect of the 

receiver efficiency and the total ∆T produced as  

max,θfηη Rectot =   (30)  

Figure 9 plots the ηtot as a function of the ratio of the non-

dimensional receiver length to the Pe number. Remarkably, the 

curves for two different Pe number collapse on top of each 

other proving that the total efficiency is independent of the Pe 

number when the channel height is fixed. In other words, the 

maximum total efficiency is independent of the velocity of the 

flow. Further, it can be calculated using the analytical mode that 

the total efficiency has a peak of 0.3373 at L*
Rec/Pe = 1.6618. 

CONCLUSIONS 
Volumetric flow receivers with dispersed nanoparticles 

were studied for solar-thermal applications. An analytical 

model was developed in order to study their performance and 

explore the effect of the different governing parameters and 

thereby aid in design. Channels of 1mm depth were studied by 

imposing 99% absorption of solar radiation in one pass (from 

top surface to bottom). Temperature profiles showed that the 

top surface temperature is greater than the bottom wall 

temperature close to the inlet but this trend reverses at locations 

far away from the inlet showing that the bulk of the fluid (with 

the embedded nanoparticles) was absorbing the radiation as 

heat. The model also showed that the maximum ∆T that can be 

obtained in the receiver depends only on the surface heat loss 

�usselt number and did not depend on the Peclet number. 

Increasing the Pe number increased the distance over which the 

specified ∆T is reached indicating that it would be better to 

design volumetric receivers of shorter length with lower flow 

rates. The model was used to demonstrate that there is a trade-

off between the receiver’s overall efficiency and the maximum 

∆T achieved. Finally, for power generation cycles using a 

volumetric solar receivers it was shown that there exists a 

maximum system efficiency of 0.3373 for a dimensionless 

receiver length of 1.66. 
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APPENDIX A 

DERIVATION OF THE ANALYTICAL SOLUTION 
 

The methodology adopted is to split the solution into two parts 

1) A homogeneous part (without the source term) and 2) A 

particular integral which accounts for the source term  

 

( ) ( ) ( )yyxyx PIθθθ += ,, hom
  (A-1) 

Homogenous part: 

The homogenous part of the solution satisfies the following 

equation and boundary conditions 
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Notice that the homogeneous part of the solution has no source 

terms and has only linear boundary conditions. The solution to 

Eq. A-2 is sought using separation of variables in the two 

dimensions. This yields a solution as 
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Where the eigenfunctions (Yn) are given by,  
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n

n
n

PeSin
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The λn’s are the eigenvalues for this problem obtained when we 

attempt to satisfy (after separation of variables) the boundary 

condition at the top surface of the receiver (Eq. A-3b). The 

equation for this is as given below  
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The method to get an analytical expression for the coefficients 

in Eq. A-4 (An’s) will be described later. 

 

Particular Integral: 

We seek a particular integral that satisfies  
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The particular integral is constructed using Green’s functions 

(G). This involves viewing the contribution of an elemental 

source and obtaining the temperature field due to the elemental 

source and then integrating over the entire space to get the 

contributions due to the distributed source (i.e., using the 

principle of superposition). Let the source be located at ξ=y , 

then the Green’s function is required to satisfy the following 

equation and boundary conditions 
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The unknown constant Z will be determined from the boundary 

condition (eq. 6b) to be satisfied for θ at 0=y . The 

construction of the Green’s function is done as follows. First we 

recognize from the governing equation for the Green’s function 

(eq. 14) that the following jump conditions hold true. These are 

obtained by requiring continuity of G and by integrating Eq. A-

8 across a small control volume near ξ=y . 
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And because of the definition of δ function at ξ≠y  we have 
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Solving Eq. A-11 in the two regions where ξ≠y  leads to a 

solution of the Green’s function as 
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C, D, E and F can be solved for by subjecting Eq. A-12 to the 

boundary conditions (Eq. A-9) and the jump conditions (Eq. A-

10).  This finally gives the Green’s function as 
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Using Green’s function the particular integral solution is written 

as 
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Therefore, the final solution can then be written out as  
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Requiring θ satisfy the boundary condition at the top surface 

(Eq. 7b) gives 
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Evaluation of Coefficients: 

The only remaining unknowns in Eq. A-15 are the An’s. To 

compute the An’s we require Eq. A-15 to satisfy Eq. 7c (inlet 

boundary condition). This gives 
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Yn’s form an orthogonal basis as the ODE for Y fits the Sturm-

Liouville set of equations. Therefore, performing 
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Using Eq. A-18 to express An’s in Eq. A-15 gives the final 

solution. 

 

 


