
                                                                                                                                            Copyright © 2010 by ASME 

 

1 

Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International 
Conference on Microchannels and Minichannels 

FEDSM2010-ICNMM2010 
August 2-4, 2010, Montreal, Canada  

FEDSM-ICNMM2010-30857 

 

VALIDATED REDUCED ORDER MODELS FOR SIMULATING TRAJECTORIES OF BIO-INSPIRED 
ARTIFICIAL MICRO-SWIMMERS 

 

Ahmet Fatih Tabak
*,1

 Serhat Yesilyurt
*,2

 
*
Sabanci University, Istanbul, Turkey 

1
tabak@sabanciuniv.edu, 

2
syesilyurt@sabanciuniv.edu 
 

 
ABSTRACT 
Autonomous micro-swimming robots can be utilized 

to perform specialized procedures such as in vitro or 

in vivo medical tasks as well as chemical surveillance 

or micro manipulation.  Maneuverability of the robot 

is one of the requirements that ensure successful 

completion of its task. In micro fluidic environments, 

dynamic trajectories of active micro-swimming ro-

bots must be predicted reliably and the response of 

control inputs must be well-understood. In this work, 

a reduced-order model, which is based on the resis-

tive force theory, is used to predict the transient, 

coupled rigid body dynamics and hydrodynamic 

behavior of bio-inspired artificial micro-swimmers. 

Conceptual design of the micro-swimmer is biologi-

cally inspired: it is composed of a body that carries a 

payload, control and actuation mechanisms, and a 

long flagellum either such as an inextensible whip 

like tail-actuator that deforms and propagates sinu-

soidal planar waves similar to spermatozoa, or of a 

rotating rigid helix similar to many bacteria, such as 

E. Coli. In the reduced-order model of the micro-

swimmer, fluid’s resistance to the motion of the body 

and the tail are computed from resistive force theory, 

which breaks up the resistance coefficients to local 

normal and tangential components. Using rotational 

transformations between a fixed world frame, body 

frame and the local Frenet-Serret coordinates on the 

helical tail we obtain the full 6 degrees-of-freedom 

relationship between the resistive forces and torques 

and the linear and rotational motions of the swimmer. 

In the model, only the tail’s frequency (angular ve-

locity for helical tail) is used as a control input in the 

dynamic equations of the micro-swimming robot. 

The reduced-order model is validated by means of 

direct observations of natural micro swimmers pre-

sented earlier in the literature and against; results 

show very good agreement. Three-dimensional, tran-

sient CFD simulations of a single degree of freedom 

swimmer is used to predict resistive force coefficients 

of a micro-swimmer with a spherical body and flexi-

ble tail actuator that uses traveling plane wave de-

formations for propulsion. Modified coefficients 

show a very good agreement between the predicted 

and actual time-dependent swimming speeds, as well 

as forces and torques along all axes.  

 

INTRODUCTION 
Propulsion mechanisms of biological microor-

ganisms may offer a practical solution to the propul-

sion of autonomous micro swimming robots [1], 

which can be used for medical and micro-

manipulation tasks. Detailed discussion on propulsion 

methods and structures of natural micro swimmers, 

i.e. with both helical and planar wave propagating 

tails can be found elsewhere [2].   

A simple mathematical model of the swimming 

of spermatozoa with travelling-plane-wave (TPW) 

deformations is obtained by Gray and Hancock [3]; in 

the model, one-dimensional forward velocity of the 

swimmer can be determined from the resistive force 

theory (RFT).  The principle assumption in the RFT 

is that the local hydrodynamic force on the micro-

swimmer is proportional to the local velocity. As 

pointed out by Sir Lighthill [4], RFT ignores the long 

range interactions between the body and the flagel-

lum, and between the parts of the flagellum; inclusion 

of the long-range interactions results in the slender 

body theory (SBT). Johnson and Brokaw presents an 

analysis and comparison between the RFT and SBT 

[5]: in effect, SBT modifies the resistive force coeffi-

cients, obtained purely from the geometry of the 

object with the consideration of long-range interac-
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tions, which can only be accounted for only partially 

as demonstrated by Chattopadhay and Wu [6].  

Three-dimensional trajectories of micro swim-

mers are modeled by Keller and Rubinow [7] using 

the original RFT, where X and Y-velocities and Z-

rotation (3-dof in total) of micro swimming organ-

isms are considered for TPW actuation, and complete 

6-dof-swimming is considered for micro-organisms 

with rigid helical tails using Euler angles and small 

angle assumption for rotations perpendicular to the 

direction of the helical rotation. Lauga et al. modified 

the model presented by Keller and Rubinow to in-

clude interactions between the swimmer and nearby 

solid boundaries during the motion of the swimmer 

[8]. 

An elasto-hydrodynamic model of the force bal-

ance between the internal stress distribution of the 

solid tail and the resistive force of the fluid is re-

ported in [9].  Takano and Goto introduced a similar 

resistance coefficient matrix along with internal 

structural stresses to get fluid forces and studied the 

effect of helical wave deformation on swimming 

behavior combined with the forces due to structural 

deformation of the tail [10].  

More powerful numerical tools solving govern-

ing differential equations are also employed.  Fauci 

built a finite element framework to conduct numeri-

cal experiments on single and multiple planar wave 

propagating swimmers equipped with different tail 

morphologies moving inside a confined liquid me-

dium governed by full Navier-Stokes equations [11]. 

Ramia et al. used boundary element method to ex-

tract the force coefficients of the drag matrix rather 

than going through the analytical procedure [12].  

Goto et al. employed boundary element analysis on 

velocity, force and torques exerted on a swimmer in 

micro realm and compared results with statistical data 

extracted from observations [13].  

In this work a mathematical model to obtain the 

trajectory of a micro swimmer robot is presented. All 

fluid forces are computed by drag coefficients as 

resistive force theory suggests. Pure propulsion force 

and torques from tail deformation are computed re-

gardless of the rigid body motion. Rigid body rota-

tions are handled by Frenet–Serret frames and qua-

ternion computations. Three-dimensional trajectories 

of micro swimmers are obtained in the lab frame as 

well as swimmers’ own frame. Model is based on an 

inertia free approach for both fluid dynamics and 

rigid body dynamics, and proved to be useful on 

observing the trajectories of the micro swimming 

robots and organisms.  

METHODOLOGY 
Swimmer is modeled as fully submerged in a flu-

idic environment at rest, i.e. with no upstream veloci-

ties. Motion of the slender tail is limited to the q and 

r-axes by inextensibility assumption as shown in Fig. 

1. Both q-axis motion and r-axis motion of the tail 

are given by sinusoidal wave-form as a function of 

time, t, position on the tail, s, excitation frequency, 

2πf, wave number, k=2πL/λ where L is apparent tail 

length and λ is the wave pitch. Amplitudes Bq and Br 

depend on the position, s: 

( ) ( )

( ) ( )

, ( ) cos ω

, ( ) sin ω

q s t B s t ksq

r s t B s t ksr

= −

= −
 (1) 

In Eq. (1), Bq and Br employ a limiting function 

to define the extent of the deformations as a function 

of tail position: 

 

 

                       
Figure 1: a) Demonstration for an arbitrary swimmer body with helical wave and their respective coordinate frames; 

b) Demonstration for an arbitrary swimmer body with planar wave and their respective coordinate frames.  
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( )

( )

max (1 )

max (1 )

cs
B s B eq q

cs
B s B er r

−

−

= −

= −
 (2)  

where, c, is the envelope constant. Position of a point 

on tail is denoted by a position vector  p = [s q r]′ in 

the body frame. Velocity on tail surface is obtained 

from the kinematic condition as follows: 

    

( )

( )

/ 0

( ) / ( )ωsin ω

/ ( )ωcos ω

ds dt
d

s dq dt B s t ksq
dt

dr dt B s t ksr

  
  

= = = − −  
   −    

p
v (3) 

Forces and torques on tail surface are calculated 

by a 6-by-6 mobility matrix, C, and it is derived 

mainly by imposing rotations on drag coefficients in 

the sqr-frame. Rotation matrix is derived from the 

local Frenet–Serret coordinates at the tail’s surface 

[14]: 

( ) ( )
( ) ( )

2 2

2 2
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/

/ /
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/ /

( ) ( ) ( )

s
s

s

s s
s

s s

s s s

∂ ∂
=

∂ ∂

∂ ∂ × ∂ ∂
=

∂ ∂ × ∂ ∂

= ×

p
t

p

p p
b

p p

n b t

 (4) 

The rotation matrix from the local Frenet-Serret 

coordinates to sqr-coordinates of the body is given 

by: 

[ ]( ) ( ) ( )
sqr

s s s
bnt

=R b n t  (5) 

The force and torque vector can be written as a 

linear function of velocities in sqr-frame and drag 

matrix as follows: 

sqr sqrF F
tail U tail
sqr sqrT T

Utail tail

ω

ω

    
    =
    
       

F UC C

T ωC C

 (6) 

where each C is a 3-by-3 matrix, superscript F de-

notes the contribution to force vector, superscript T 

denotes the contribution to torque vector. Similarly, 

subscript U denotes the contribution from linear ve-

locities and subscript ω denotes the contribution from 

angular velocities. Components of the tail’s mobility 

matrix are obtained as follows:  

F dsU RR= ∫C C  (7) 

T dsU RR= ×∫C p C  (8) 

F dsRRω = ∫C C S  (9) 

( )T dsRRω = ×∫C p C S  (10) 

In (7)-(10),  RRC  is the point-wise contribution of 

the local resistive force coefficients on the body 

frame and S is the local rotation matrix; RRC  and S 

are given as follows: 

( )
0 0

0 0

0 0

n
t

n

t

C
sqr sqr

CRR bnt bnt
C

− 
 

= − 
 − 

C R R  (11) 

 

0 ( , ) ( , )

( , ) 0

( , ) 0

r s t q s t

r s t s

q s t s

− 
 

× = = − − 
 − 

ω p Sω ω (12) 

In (11), Cn and Ct are normal and tangential force 

coefficients of tail.  

Assuming that the center of mass of the swimmer 

close enough to the body center of mass, the force 

(and torque)-velocity (and angular velocity) relation-

ship for the body is given by: 

0

0

sqr sqr
F

body bodyU
sqr sqrT
body bodyω

    
    =    
       

F UD

T ωD

 (13) 

In (13), D is a 3-by3  matrix and the contributions 

from linear and angular velocities are obtained from 

that of a spherical body: 

26 0 0

20 6 0

20 0 6

r

F rU

r

πµ

πµ

πµ

 −
 
 = −
 
 −
 

D
 (14) 

38 0 0

30 8 0

30 0 8

r

T
r

r

πµ

πµω

πµ

 −
 
 = −
 
 −
 

D
 (15) 

where, µ is dynamic viscosity of the surrounding 

fluid and, r is the spherical body radius. In case of 

non-spherical objects Eq. (14)-(15) can be deter-

mined numerically [15].  

The velocity vectors are written as follows: 

/

sqr qs r
u u usw sw swbody

sqr qs r
u u u d dtsw sw swtail

′ =
 

′ = +
 

U

U p

 (16) 

sqr qs r
sw swtailtail

sqr qs r
sw swbodybody

ω ω ω

ω ω ω

′ =
 

′ =   

ω

ω

 (17) 

and subscript sw denotes the swimmer.  

For an untethered free swimmer, the sum of 

force and torque vectors should give zero net force 

and torque for the micro swimmer in the reference 
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world frame. This leads up to the 6-dof equation of 

motion of the microswimmer: 

 
0

tail body
+ =F F  (18) 

Up-to-date orientation with respect to the origi-

nal position in sqr-frame due to complex rotations is 

handled by quaternion [16] integration as follows: 

 

11 12 13

21 22 23

31 32 33

0 1 2 3
XYZ
sqr s v v v

XYZ
sqr

q q q q

R R R

R R R

R R R

 =  

 
 =  
  

q

R

 (19) 

where q is the quaternion structure with one scalar 

value denoted by the subscript s0 and three vector 

components denoted by subscripts v1, v2 and v3. 

Corresponding instantaneous rotation matrix can be 

derived as follows: 

 

( ) ( )

( ) ( )

( ) ( )

2 2

11 2 3
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2 2
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1 2 2
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2 2
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v v v s

v v

v v v s
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v v

R q q

R q q q q

R q q q q

R q q q q

R q q

R q q q q

R q q q q

R q q q q

R q q

−

+

+

−

−
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= − −

=

=

=

= − −

=

=

=

= − −

 (20) 

      The time derivative of quaternion is computed as 

 

0 1 2 3
XYZ
sqr s v v v

q q q q =  qɺ ɺ ɺ ɺ ɺ  (21) 

with an individual formulation for both parts: 
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/ 2
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sw swv v
q q
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q q q q

q q

q q q

q q

ω ω ω

ω ω

ω ω

ω ω

+ += −

      
      

= + ×      
      

      

ɺ

ɺ

ɺ

ɺ

 

(22)

 

which will be integrated over time to obtain current 

quaternion at each time for extend of simulation. 

RESULTS 
The validity of the model is verified with CFD 

simulations for a spherical body with a tail carrying 

out planar wave propagation. CFD simulations are 

governed by full Navier-Stokes Equations on a mov-

ing deforming mesh according to the Arbitrary La-

grangian Eulerian formulation that follows the mo-

tion of the swimmer [17]. Commercial software 

package COMSOL is used in simulations [18]. Each 

CFD simulation requires about 35K total number of 

degrees of freedom, and takes at least 10 minutes on 

a 16 GB Xeon system working on Linux. Reduced-

order-model simulations based on RFT take less than 

two seconds using 50 segments per wavelength on 

the tail. Parameters used in the simulations are listed 

in Table 1 and results are depicted in Fig. (2)-(5).   

Name of Property Value 

Fluid density, ρ 1 [1]  

Dynamic Viscosity, µ 1.12 [1] 

Driving Frequency, f 1 [Hz] 

Tail length, L 0.35 [1] 

Wave Length, λ 0.175 [1] 

Envelope constant, c 6 [1] 

Wave amplitude, B 5x10
-3

 [1] 

Body radius, r 5x10
-2

 [1] 

Tail radius, d 1x10
-3

 [1] 

Length Scale, Ŷ 1x10
-3

 [m] 

Channel width, w 1.6 [1] 

Channel height, h 1.6 [1] 

Table 1: Geometry and material information for CFD 

based 1-dof time dependent behavior presented in 

Figs. (2)-(5). 

Two sets of RFT coefficients are employed: one 

set is based on asymptotic approximations reported in 

the literature, and the other is obtained from CFD 

simulations. Sir Lighthill obtained following coeffi-

cients based on an asymptotic solution of the flow 

around a flagellum with traveling-plane wave defor-

mations [4]:  

 

( )

( )

2
0.577/ /

2
0.577/ /

4 1 log

8 1 log

d
t

d
n

C e

C e

π

π

πµ λ

πµ λ

−

−

  
= − +  

  

  
= +  

   .     

(22) 

Alternatively, Johnson and Brokaw obtained follow-

ing coefficients under the based on the slender body 

theory, in which interactions between the body and 

the tail are considered [5]: 

 

( )( )( )
( )( )( )

2

2

4 1/ 2 log 2 / 1.7

4 1/ 2 log 2 /

t

n

C d

C d

πµ λ

πµ λ

= +

= +

       

(23) 

In (22) and (23), d is the radius of the tail.  

In Fig. 2, comparisons of the time-dependent X-

velocity of the swimmer are shown. In the CFD code, 

total fluid forces and torques acting on the swimmer 

are calculated by integrating the total stress tensor 

components in all directions. The velocity of the 

swimmer moving in the X-direction is calculated by 
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the constraint equation that the total force on the 

swimmer in the X-direction must be zero by using 

global equations (constraints) in COMSOL [18]. 

Working backwards from the results, the RFT coeffi-

cients that satisfy the balance in that direction are 

calculated from the CFD simulation results, and used 

in the RFT-based reduced-order model. Comparisons 

of the reduced-order model results with the 

Lighthill’s coefficients, coefficients obtained from 

the CFD simulation and the CFD simulation are 

shown in Fig. 2. According to the results, RFT coef-

ficients obtained from the CFD simulations compare 

very well with the CFD simulation results. 

 Furthermore, for an anchored swimmer, total 

forces along X and Y-directions and the torque along 

the Z-direction calculated from CFD simulations are 

compared with the forces obtained from the reduced-

order model simulations, which, in effect, are the 

propulsion force components since RFT does not 

account for flow interactions between the tail and the 

body. In Fig. 3, X-direction force, which is calculated 

from the simple model with coefficients obtained 

from the CFD simulations of the moving swimmer, 

agrees very well with the forces obtained from the 

CFD simulations of the stationary swimmer; in com-

parison forces obtained from the simple model using 

resistive-force coefficients given in (22).  

 

Figure 2: Time dependent dimensionless forward 

velocities for micro swimmer; CFD vs. RFT.  

In Fig. 4 and Fig. 5, forces along the Y-direction 

and torque along the Z-direction are shown. Resis-

tive-force coefficients obtained from CFD simula-

tions perform considerably better than the ones given 

in (22) in both cases.    

 

Figure 3: Time dependent dimensionless X-force for 

anchored swimmer; CFD vs. RFT.  

 

Figure 4: Time dependent dimensionless Y-force for 

anchored swimmer; CFD vs. RFT.  

 

Figure 5: Time dependent dimensionless Z-torque 

for anchored swimmer; CFD vs. RFT 

Moreover, since CFD simulations require bound-

ary conditions away from swimmer body, there exists 

an interaction between the flow field created by the 

wave propagation along the deforming tail and chan-

nel boundaries. This interaction of flow field may 

contribute to the small deviation in time dependent 

forces, torque and the velocity as shown in Figs. (2)-

(5).  In effect, anchored tail creates a flow in the 

channel, which introduces additional XY-forces and 

the Z  torque on the swimmer somewhat different 

than the ones acting on the stationary swimmer 

placed in a fluid at rest.  

The brief transient behavior detected in CFD 

simulations is due to the developing effect of the 

steady periodic flow surrounding the micro swimmer 

due to tail deformation as shown in Fig. 6. 

Due to the lack of information on 6-dof motion 

behavior in literature, only time averaged forward 

velocities are compared in the lab frame, i.e. XYZ-

frame, for particular swimmers presented by Brennen 

and Winet [2] and Chattopadhyay [6].  

Furthermore, observations for natural swimmers 

presented in literature are used for the validation of 

the RFT model for the helical swimmer. Three spe-

cies listed in Table 2 are reported to employ helical 

wave propagation and a revolute joint resides in be-

tween their body and tail [6]. In comparison, four 
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species listed in Table 3 are reported containing bio-

physical actuators resulting in plane wave deforma-

tions [2].  

RFT results obtained from coefficients suggested 

by Johnson and Brokaw [5] are found to be more 

agreeable with the reported forward velocities [2], 

[6]. Only exemption is the V.Alginolyticus [6] which 

is found to agree better with the coefficients sug-

gested by Sir Lighthill [4]. 

 

Name of the 

Species 

Observed   

Forward 

Velocity 

[m/s] 

Computed 

Forward  

Velocity 

 [m/s] 

 

V.Alginolyticus 

 

34x10
-6

  

 

39x10
-6 

[4] 

 

C.Crescentus 

 

30x10
-6

 

 

34x10
-6

 [5] 

 

E.Coli 

 

14x10
-6

 

 

11x10
-6

 [5] 

Table 2: Validation results for observation data on 

bacteria employing helical wave propagation as pro-

pulsion method in literature [6].  

 

 

Name of the 

Species 

Reported  

(Literature) 

Forward 

Velocity  

Computed 

(RFT) 

Forward  

Velocity 

Tenebrio 

Spermatozoa  

 

67x10
-5 

[m/s] 

 

54x10
-5 

[m/s] 

Lytechinus 

Spermatozoa 

 

99x10
-5 

[m/s] 

 

60x10
-5 

[m/s] 

Ciona 

Spermatozoa 

 

10x10
-6 

[m/s] 

 

72x10
-5 

[m/s] 

Chaetopterus 

Spermatozoa 

 

65x10
-5 

[m/s] 

 

50x10
-5 

[m/s] 

Table 3: Validation results for observation data on 

spermatozoa employing planar wave propagation as 

propulsion method in literature [2]. 

 

Figure 6: Close up view on the overall meshing and the instantaneous flow field around the deforming tail; com-

puted in CFD simulations. 

CONCLUSION 
The reduced-order model based on RFT, which 

is used to model the motion of micro swimming ro-

bots, predicts swimming speed of natural swimmers 

and forces produced by the motion of the tail, which 

are calculated by CFD simulations. The model can be 

used to obtain trajectories of micro swimmers that 

use rotation of rigid helical tails or TPW propagation 

of deformation on their tails for propulsion. Based on 

the RFT coefficients suggested in literature, model 

compares well, within 30%, with the observed aver-

age swimming velocities of natural micro swimmers.  

Moreover, RFT coefficients obtained from sim-

ple CFD simulations can be used to obtain accurate 

results for arbitrary viscous swimmers. The swim-

ming trajectories obtained from the reduced-order 

model can be used in design optimization studies, and 

navigation and control of micro swimming robots 

which can be utilized in micro manipulation and 

medical tasks. 
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