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ABSTRACT 
Chaotic fluid mixing is generally considered to enhance fluid-

wall heat transfer and thermal homogenisation in laminar flows.  

However, this essentially concerns the transient stage towards a 

fully-developed (thermally-homogeneous) asymptotic state and 

then specifically for high Péclet numbers numbers Pe 

(convective heat transfer dominates). The role of chaos at lower 

Pe under both transient and asymptotic conditions, relevant to 

continuous thermal processes as e.g. micro-electronics cooling, 

remains largely unexplored to date. The present study seeks to 

gain first insight into this matter by the analysis of a 

representative model problem: heat transfer in the 2D time-

periodic lid-driven cavity flow induced via non-adiabatic walls. 

Transient and asymptotic states are investigated in terms of both 

the temperature field and the thermal transport routes. This 

combined Eulerian-Lagrangian approach enables fundamental 

investigation of the connection between heat transfer and 

chaotic mixing and its ramifications for temperature 

distributions and heat-transfer rates. The analysis exposes a 

very different role of chaos in that its effectiveness for thermal 

homogenisation and heat-transfer enhancement is in low-Pe 

transient and asymptotic states marginal at best. Here chaos may 

in fact locally amplify temperature fluctuations and thus hamper 

instead of promote thermal homogeneity. These findings reveal 

that optimal thermal conditions are at lower Pe not automatic 

with chaotic mixing and may depend on a delicate interplay 

between flow and heat-transfer mechanisms.  

 

1. INTRODUCTION 

  
       Laminar heat transfer is key to a wide variety of industrial 

processes of size extending from microns to meters. Examples 

range from the traditional mixing and thermal processing of 

viscous fluids [1-4] via compact processing equipment [5,6] 

down to emerging micro-fluidics applications [7-9]. Typical 

objectives are efficient fluid-wall heat transfer and rapid 

thermal homogenisation. The general consensus is that chaotic 

mixing is conducive to both ends. However, its exact role in 

thermal transport remains ill-understood to date, particularly in 

the essentially advective-diffusive regime at low Péclet numbers 

(Pe) that characterises emerging technologies as process 

intensification and micro-fluidics applications.
1
 This motivates 

the present study, which seeks to further explore the role of 

chaos in thermal transport. 

       Studies on chaotic mixing in heat transfer concern primarily 

the transient stage towards a fully-developed (thermally-

homogeneous) asymptotic state and then typically for higher Pe, 

where convection dominates (typically from Pe=1000 

onwards). Here chaos indeed increases heat-transfer rates and 

thermal-homogenisation capacities by essentially reducing the 

duration or spatial extent of the transient stage [1,2,10-12]. 

However, analyses on the role of chaos in the asymptotic state -

and then in particular for low Pe - are rare, despite its relevance 

to continuous thermal processes as e.g. micro-electronics 

cooling and compact fluids-engineering equipment. The present 

study aims at shedding first light on this matter by way of a 

comparative heat-transfer analysis in both transient and 

asymptotic states for low Pe (i.e. around Pe~100). 

       The well-known two-dimensional (2D) lid-driven cavity 

flow serves as case study for the present analysis. The flow is 

driven by steady or time-periodic motion of adiabatic side 

                                                           
1
 Some terminology: advection is transport by fluid motion; diffusion is 

transport by molecular motion. For heat transfer problems, advection and 

diffusion are usually denoted “convection” and “conduction,” respectively. 

Generic laminar transport involves both transport mechanisms; mixing is 

transport by advection only. 
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walls; thermal transport is induced by a temperature differential 

between bottom (hot) and top (cold) walls. The system may thus 

accommodate steady and time-periodic asymptotic states. Fluid 

motion and heat transfer are governed by the full conservation 

laws including viscous and inertial effects (i.e. non-zero 

Reynolds number Re). Past studies have shown that this 

configuration admits chaotic advection in the Stokes limit  

Re=0 [13]. Thus the case study constitutes a simplified yet 

realistic representation of practical heat-transfer problems. 

       Heat transfer is investigated from both an Eulerian and a 

Lagrangian perspective. The former leans on eigenmode 

decomposition of the evolution of the temperature field 

[2,10,12]; the latter on representation of thermal transport as the 

“motion” of a “fluid.” This fluid-motion analogy admits heat-

transfer analyses by well-established Lagrangian methods from 

laminar-mixing studies and enables fundamental investigation 

of the connection between heat transfer and chaotic mixing 

[14,15]. The study concentrates on the role of chaos in heat-

transfer enhancement and thermal homogenisation in the 

transient and asymptotic states.  

       The exposition is organised as follows. Section 2 

introduces the model problem and Eulerian and Lagrangian 

approaches towards thermal analyses. Mixing is examined in 

Section 3. The heat-transfer analysis is discussed in Section 4. 

Conclusions are in Section 5. 

 

2. MODEL PROBLEM AND METHODOLOGY 
 

2.1 Fluid motion and heat transfer 
 
Considered is the fluid flow and heat transfer inside a 2D non-

dimensional rectangular cavity (unit width and height D). The 

flow is driven by translating adiabatic side walls with velocities 

0)/(cos2 ≥= τπtvl (left) and 0)/(sin 2 ≤−= τπtvr  

(right) for steady (τ=0) and time-periodic (τ>0) conditions. Heat 

transfer is set up by maintaining the top and bottom sides of the 

finite-thickness (∆D) horizontal cavity walls at temperatures T=0 

and T=1, respectively. Fluid motion is, omitting buoyancy, 

governed by 
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t

u 2Re ∇+−∇=











∇⋅+

∂

∂
,        (1) 

and heat transfer inside flow region and solid walls is governed by 

     T
Pe

Tu
t

T 21
∇=∇⋅+

∂

∂
,         T

Pet

T

s

21
∇=

∂

∂
,          (2) 

respectively, completed by boundary conditions as described 

above and initial condition 0)0,( =xT
r

. The corresponding 

non-dimensional parameters read D=H/L, ∆D=∆ H/L, Re=UL/ν, 

Pe=UL/α, τ= UTf/L, Λ= λs/ λ α and Pes=UL/αs. with (L,H) width 

and height of the physical cavity, ∆H thickness of the non-

adiabatic walls, U the forcing velocity and Tf the corresponding 

period time, ν the kinematic viscosity and (λ ,α) the thermal 

conductivity and thermal diffusivity (subscript “s” indicates non-

adiabatic wall). Figure 1 gives a schematic of the non-dimensional 

configuration. Here only heat transfer in the flow domain is 

considered as a function of the non-dimensional period time τ; the 

remaining parameters are fixed at D=1, ∆D =0.2, Re=1, Pe=100, 

Pes=1 and Λ=1. The flow and temperature fields are simulated by 

the commercial CFD package Fluent.  

 

 
 

Figure 1.  Non-dimensional problem definition. 

 

 

2.2 Methods for heat-transfer analysis 
 

Eulerian approach The spatio-temporal evolution of the 

temperature field in the flow region, governed by (2), is dictated 

by the eigenmodes of the advection-diffusion operator [2,10,12]. 

The eigenmode decomposition of the temperature field reads 

     ∑
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with ),( txhm
 the eigenmodes. The temporal and spatial  

properties of these eigenmode are determined by the  

corresponding (complex) eigenvalues 
mµ  and eigenfunctions 

)(xm

v
ψ , respectively. Finite Pe restricts the eigenvalues to 

0)Re( ≤mµ  for all m [10]. This has two important implications. 

First, the temperature field always evolves towards an asymptotic 

state ∑=≡ ∞→∞ ),(),(lim),( 0
txhCtxTtxT mmt

, with ),(0 txhm  the 

eigenmodes 
mh   for which 0)Re( =mµ . Second, this evolution, 

after a short-lived initial stage, is dominated by the slowest-

decaying eigenmodes, that is, modes ),( txh
d

m
 associated with 

eigenvalues d

mµ  having identical 
d

d

m µµ =)Re( , with 

0)]max[Re( <= md µµ . This implies that the temperature field 

rapidly collapses on the form 
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with ),( tx
r

Ψ  the transient mode and 
dµτ /1−= its  corresponding 

decay time. 
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Lagrangian approach Key to the Lagrangian concept by [14,15] 

is that heat transfer happens along paths (“thermal trajectories”) 

delineated by the total heat flux. These thermal trajectories Tx are 

in the flow region described by  

                ,v
dt

xd T
=         ( ) 0=⋅∇+

∂

∂
vT

t

T
,                       (5) 

with )(ln1
TPeuv ∇−= −r

, and are the thermal analogy to the 

Lagrangian fluid trajectories, governed by 
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This exposes T, v and Tx  as the thermal analogies to the fluid 

density ρ, fluid velocity u  and fluid trajectories x  and thus 

enables representation of heat transfer entirely in terms of the 

“motion” of a “fluid” subject to continuity. This admits heat-

transfer analyses by well-established Lagrangian methods from 

laminar-mixing studies [16,17]. These methods lean on the 

property that continuity “organises” fluid trajectories x  into sets 

of coherent structures (“flow topology”) that geometrically deter-

mine the fluid transport. The thermal trajectories Tx , by virtue of 

the fluid-motion analogy, form a thermal topology of essentially 

equivalent composition. Topological analysis of this thermal topo-

logy offers promising new thermal-analysis capabilities. The flow 

and thermal topologies are determined by numerical post-process-

ing of the simulated flow and temperature fields by dedicated 

software implemented in the high-level programming language 

Matlab and based on methodologies described in [15]. 

 

3. MIXING CHARACTERISTICS 

 

The present study concentrates specifically on the role of chaotic 

advection in thermal transport. Chaos can in 2D systems be 

accomplished only by unsteady effects, here introduced by time-

periodic forcing by the vertical sidewalls. For the present low-

Reynolds flow (Re=1) this external periodicity is imparted on the 

internal flow: ),(),( τ+= txutxu .  Furthermore, simulations 

reveal that the flow field, in comparison to the temperature field 

(Section 4.2), reaches its asymptotic time-periodic state almost 

instantly on grounds of the negligible fluid inertia and the absence 

of coupling by buoyancy and temperature-dependent fluid 

properties. Hence, for mixing characteristics only the asymptotic 

flow state is relevant. 

       The steady flow topology (τ=0) coincides with the streamline 

portrait shown in Figure 2(a) and consists entirely of closed 

streamlines defining recirculation zones (“islands”), signifying 

absence of any mixing. The time-periodic flow topology can be 

visualised by Poincaré-sections (subsequent positions of passive 

tracers at time levels t=[0,τ,2τ,...]) [16]. The Poincaré-sections of 

passive tracers released at “strategic” locations visualise the flow 

topology similar to the streamline portraits in steady flows. 

                 
               (a) Steady flow (τ=0)             τ=0)             τ=0)             τ=0)                 

                     

               (               (               (               (b) Time-periodic flow (τ=3)τ=3)τ=3)τ=3) 

                 
                (c) Time-periodic flow (τ=5)   τ=5)   τ=5)   τ=5)       
    

Figure 2.  Flow topology versus period time ττττ. Steady flow: 

streamlines; time-periodic flow: Poincaré-sections of passive 

tracers released on the line y=0.5. Red/blue curves indicate 

manifolds in the chaotic sea; crosses indicate their origin. 

 

       Figures 2(b)-(c) show the Poincaré-sections (black dots) of 

passive tracers released on the line y=0.5 in time-periodic flows 

(τ>0), disclosing two kinds of coherent structures: (i) chaotic sea; 

(ii) islands embedded in the chaotic sea. The chaotic sea is an 

essentially unsteady phenomenon that ensues from disintegration 

of (parts of) islands; the remaining islands are remnants of their 

(partially-disintegrated) steady-state counterparts [16]. The red 

and blue curves within the sea delineate the principal transport 



 4 Copyright © 2010 by ASME 

directions upon progression and regression in time, respectively, 

and are its underlying coherent structures. These curves (termed 

“manifolds”) effectuate chaotic advection and are key to the 

accomplishment of “efficient mixing” [16,17].
2
 (Filled circles and 

crosses indicate centres of islands and origins of manifolds, 

respectively.) Visualisation of the flow topology thus directly 

exposes the poor and good mixing zones. Stronger time-

periodicity (increasing τ ) improves mixing, though (localised) 

non-mixing zones persist. This is consistent with the findings on 

the Stokes limit Re=0 [13]. 

 

4. HEAT-TRANSFER ANALYSIS 
 

4.1 Introduction 
 
Figure 3 gives the evolution of the temperature field towards its 

time-independent asymptotic state )(xT∞
 in case of steady 

forcing. Clearly visible is the penetration of the higher-

temperature zone from the hot bottom wall into the interior 

of the domain until the final state in panel (d) is attained. Shown 

evolution demonstrates that the temperature field, in contrast to 

the fluid motion (Section 3), undergoes a significant transient 

phase before reaching its asymptotic state. The evolutions  

corresponding with time-periodic flow forcings for 3=τ  and 

5=τ  are similar to that of the steady case in that temperature 

distributions and significance of the transient are comparable. 

Time-periodicity in fact manifests itself in weak fluctuations of 

the temperature field around a mean state that is nearly 

indistinguishable from the steady-forcing case. Moreover, effects 

of flow forcing seem to be restricted predominantly to the interior 

of the flow domain. These issues are investigated further 

hereafter. 

 

4.2 Eulerian analysis 
 
The transient behaviour is demonstrated in Figure 4 in terms of 

the spatially-averaged departure of the temperature field from its 

asymptotic state: dxdytxTtxTtT ∫∫ ∞−=∆ )],(),([)(
rr

. The 

evolutions clearly exhibit an exponential decay in time, implying 

that the temperature field indeed obeys the form (4). Moreover, 

the evolutions virtually coincide, meaning that decay rates are 

practically insensitive to variations in flow forcing and degree of 

chaos. The corresponding decay times amount to 1.17=dτ  for 

steady forcing and 5.16=dτ  and 0.17=dτ  for time-periodic 

forcing at 3=τ  and 5=τ , respectively. Comparison with the 

diffusion-only decay time 86.19)/( 2

* == πτα HPe , with 

DDH ∆+= 2*
, reveals that advection in itself, notwithstanding 

the apparent irrelevance of degree of chaos, accelerates the 

transient. These findings are consistent with studies in  [10,12],  

which established that chaos becomes effective for transient 

                                                           
2 Manifolds densely fill the chaotic seas; here only part is shown. 

acceleration only for sufficiently high Pe. Lower Pe diminishes if 

not completely negates the effect of chaos. Estimates based on 

said studies, supported by results in [2], put forth Pe~O(100-

1000) as range in which chaos can be expected to become a 

significant accelerant for the transient. The current system is at the 

lower end of this regime.       
 

  
(a) t=3                                      (b) t=9 

  
(c) t=15                                    (d) Asymptotic state 

 
Figure 3.  Temperature evolution for steady flow forcing. 

 

 
Figure 4.  Decay of the mean departure )(tT∆ . 

 
        Numerical simulations reveal that the transient ( Ψ ) and 

asymptotic (
∞T ) modes are time-independent and time-periodic in 

case of steady and time-periodic forcing, respectively. Thus the 

temperature evolutions rapidly lock in with the nature of the flow 

forcing. Figure 5 gives the transient modes for steady forcing at 

any time t in comparison to that of the time-periodic cases at the 
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time levels τkt = , exposing a strong similarity. Similarly, the 

time-periodic asymptotic states at τkt =  are in good agreement 

with that of the steady case shown in Figure 3(d). 

 

                      
             (a) Steady forcing for all t 

                      
             (b) Time-periodic forcing at τkt =  ( 3=τ ) 

                      
             (c) Time-periodic forcing at τkt =  ( 5=τ ) 

 

Figure 5.  Transient mode Ψ . 

 

       Primary difference between steady and time-periodic forcings 

are weak time-periodic fluctuations of the transient and 

asymptotic modes in the latter case. This implies eigenmode 

decompositions according to the Fourier expansions 

 

   ∑≡∞
τπ /2)(

~
),( imt

m exTtxT ,    ∑Ψ≡Ψ τπ /2)(
~
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m extx ,       (7) 

with 
mT

~
 and 

mΨ
~

 the associated Fourier spectra [18].
3
 Figure 6 

gives the corresponding Fourier spectra in terms of the 

spatial averages dxdyxTtT mm ∫∫= |)(
~

|)(
r

  and 

dxdyxt mm ∫∫ Ψ=Ψ |)(
~

|)(
r

. Shown Fourier spectra exhibit a rapid 

decay with growing wave number m (or frequency fm=m/τ), 

meaning that only low-frequency contributions are relevant to the 

evolution of the temperature fields. Decay rates are such that 

)10(/
2

01
−≈ OTT  and )10(/

2
0

−< OTT m for m>1 and 

likewise for mΨ , meaning that modes m=0,1 dominate the 

evolution of both the transient and asymptotic modes. Hence, the 

temperature field throughout its entire evolution to good 

approximation is described by 

           }])(
~

Re{2)(
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[),( /2
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/ τπτ itt
exxetxT d
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comprising only the steady (m=0) and first oscillatory mode 

(m=1) of the Fourier expansions (7). This tremendously reduces 

the complexity of the eigenmode decomposition (3) yet without 

compromising its physical validity. 

      Fourier modes 
0

~
T  and 

0

~
Ψ  differ only marginally for 3=τ  and 

5=τ  and closely resemble the associated asymptotic and 

transient modes, respectively. This implies that time-periodicity 

(and chaos) manifests itself predominantly in the emergence of 

Fourier modes m=1 against a basically invariable background  

state. The evolution of these modes through property  

)/2sin(]
~

Im[)/2cos(]
~

Re[])(
~

Re[ /2 τπτπτπ mtfmtfexf mm

imt

m −=  

smoothly alternates between the respective real and imaginary 

parts. Figures 7 and show the real and imaginary contributions  of 

the asymptotic and transient modes, respectively, for 3=τ  and 

5=τ , exposing a string of peaks and valleys arranged around the 

centre of the domain that in essence set up a clockwise rotation of 

temperature waves. The asymptotic and transient modes correlate 

well in that regions accommodating peaks and valleys largely 

overlap. However, these features not necessarily coincide, 

meaning that, by virtue of constructive and destructive 

interference, interaction of asymptotic and transient modes results 

in both local damping and amplification of temperature 

fluctuations during the transient. This grows weaker as time 

progresses on account of the exponential decay of the transient 

mode, meaning that fluctuations diminish during evolution to the 

asymptotic state. 

      The above findings have important ramifications for fluid-wall 

heat-transfer enhancement and thermal homogenisation. Net 

fluid-wall heat transfer is proportional to the mean temperature 

                                                           
3
 Note that real temperature fields imply real modes 

0

~
T  and 

0

~
Ψ  and complex 

conjugate pairs 
*~~
mm TT −=  and 

*~~
mm −Ψ=Ψ  for modes |m|>0. 
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gradient at the non-adiabatic walls during each forcing cycle, 

which, due to the time periodicity of the temperature evolution 

(8), depends only on Fourier modes  
0

~
T  and 

0

~
Ψ . The fact that 

these modes are virtually insensitive to time-periodicity and 

variation of τ  implies that temperature gradients depend 

primarily on the relative strength of advection (set by Pe) yet not 

on its nature. Hence, time-periodicity (and chaos) is in both 

transient and asymptotic states virtually ineffective as a means of 

fluid-wall heat-transfer enhancement. 

 

           
   (a) Transient mode Ψ  

           

   (b) Asymptotic mode ∞T  

 

Figure 6.  Fourier spectra of transient and asymptotic modes. 

 

      The dominance of Fourier modes m=0 means that thermal 

homogenisation leans mainly on their spatial distribution and 

relative magnitude. The transient mode 
0

~
Ψ  (similar to Figure 5) 

is strongly heterogeneous in the entire domain, whereas the 

asymptotic mode 
0

~
T  (similar to Figure 3 (d)) has a sizeable 

internal region with approximately uniform state. Heterogeneity 

due to 
0

~
Ψ  decays exponentially during the transient, however. 

Furthermore, the above revealed that temperature fluctuations due 

to Fourier modes m=1 also diminish during the transient. These 

properties imply that, overall, the temperature field becomes more 

homogeneous during the transient. Time-periodicity (and chaos), 

on the other hand, amplifies  temperature fluctuations and thus 

promotes heterogeneity. Hence, thermal homogenisation is most 

pronounced in the asymptotic state and, remarkably, for steady 

flow forcing. 

 

 
(a) 3=τ  

 
(b) 5=τ  

 

Figure 7.  Fourier mode m=1 for the asymptotic modes. 

 

4.3 Lagrangian analysis 

 

Heat transfer can be made visible in several ways:  

(instantaneous) thermal streamlines and thermal Poincaré-

sections. Thermal streamlines and thermal Poincaré-sections 

visualise the transport routes of heat (“thermal topology”) 

governed by (5) for steady and time-periodic conditions, 

respectively, in the same way as their fluid-motion analogies. 

Instantaneous thermal streamlines (ITSs) for unsteady conditions, 

on the other hand, delineate momentary heat fluxes and, strictly, 

do not coincide with the thermal topology. ITSs are nonetheless 

intimately related to the thermal topology and afford insight into 

its formation and composition. 

             Figure 9 gives the progression of the ITSs (panels (a)-(c)) 

during the transient and the associated asymptotic thermal 

streamline portrait (panel (d)) in case of steady flow forcing. 

The asymptotic thermal topology comprises two distinct regions: 

(i) the thermal path (black), facilitating heat transfer from bottom 

to top wall; (ii) the thermal island (blue), entrapping thermal 

energy. (This thermal path in fact always exists in the presence of 

non-adiabatic walls [14,15].) The ITSs visualise the formation of 

this asymptotic state and its constituent coherent structures. The 

black curves delineate the uni-directional heat flux between the 

non-adiabatic walls; the red curves delineate the internal 

circulatory heat flux. Former and latter underly formation of the 

thermal path and thermal island, respectively, of the asymptotic 
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state. Furthermore, instantaneous thermal islands, as highlighted 

in blue in Figure 9 (a), may sometimes emerge during the 

transient. 

 

 
(a) 3=τ  

 
(b) 5=τ  

 

Figure 8. Fourier  mode m=1 for the transient modes. 

 

       Figure 10 gives the progression of the ITSs during the 

transient in case of time-periodic flow forcing with 3=τ . Left  

and right columns correspond with time levels ττ )2/1( −= k  

and ττ k= , respectively, where k=1,2,…; panels (d) and (h) 

give the ITSs of the associated asymptotic states. The basic 

make-up is the same as for the steady case in that a similar 

arrangement of regions with uni-directional (black) and 

circulatory (red) heat flux occurs. Furthermore, instantaneous 

thermal islands emerge sporadically during the transient and 

persist in the asymptotic state (again highlighted in blue). 

Essential  differences with the steady case are, first, absence of a 

fixed asymptotic thermal streamline portrait and, second, 

non-monotonic evolution of the ITSs. These are evident 

consequences of the time-periodicity. 

      The ITSs in the circulation zone are shaped by instantaneous 

stagnation points (i.e. points with 0
vv

=v ) and, if present, by 

separatrices that bound instantaneous thermal islands. ITSs are 

either attracted ( 0
vv

<⋅∇ v ) or repelled ( 0
vv

>⋅∇ v ) by such entities, 

in which cases the latter act as momentary heat sinks or heat 

sources, respectively. Attraction thus causes net heat flux into the 

area surrounding the instantaneous stagnation point and, by virtue 

of (5), rising local temperature 0/
vv

>⋅∇−= vTdtdT , where d/dt 

represents the material derivative relative to v
v

. Repulsion, 

conversely, causes a local temperature drop: 0/
vv

<⋅∇−= vTdtdT . 

 

 
(a) t=3                                               (b) t=6  

 
(c) t=9                                               (d) Asymptotic state 

 

Figure 9. Instantaneous thermal streamlines (steady forcing). 

 

              The transient for steady forcing initially accommodates 

an attracting separatrix, bounding the instantaneous thermal island 

centred on a repelling instantaneous stagnation, which rapidly 

gives way to attracting instantaneous stagnation points (Figures 9 

(a)-(c)). These attracting entities set up the circulatory heat influx 

(and associated temperature rise) in the flow interior that leads to 

the formation of the thermal island in the asymptotic state (Figure 

9 (d)). The separatrices and instantaneous stagnation points 

emerging during the transient for the time-periodic forcing 

(Figure 10) lead to the asymptotic state in the same way as for the 

steady-forcing case. However, the separatrix/instantaneous 

stagnation point associated with the instantaneous thermal island 

of the asymptotic state exhibit essentially different behaviour by 

periodically alternating between attractor/repellor (Figure 10 (d)) 

and repellor/attractor (Figure 10 (h)). The former and latter 

situations correspond with periodic heat take-up from the hot 

bottom wall and heat rejection via the cold top wall, respectively. 

      Figure 11 visualises the asymptotic thermal topology for 3=τ  

and 5=τ  by thermal Poincaré-sections. Two distinct regions can 

be distinguished. First, the thermal path (represented in time-

averaged form by the gray curves) that sets up directional fluid-
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wall heat exchange. Second, thermal manifolds in the flow 

interior (red/blue curves) that accomplish chaotic heat transfer (or 

“thermal mixing”) in essentially the same way as the manifolds in 

 

 
(a) t=1.5                                      (b) t=3 

 
(c) t=4.5                                      (d) t=6 

 
(e) t=7.5                                      (f) t=9 

 
(g) ττ )2/1( −= k                      (h) ττ k=  

 

Figure 10. Instantaneous thermal streamlines for 3=τ . 

 

 Figure 2 accomplish chaotic advection (or fluid mixing). The 

expansion of the thermal manifolds with increasing τ  nicely 

demonstrates the chaotisation of the interior heat transfer induced 

by stronger fluid mixing. The thermal path - and thus the fluid-

wall heat exchange - remains essentially unaffected and contains 

the chaotic heat-transfer zone, though. This explains the 

ineffectiveness of fluid mixing for fluid-wall heat-transfer 

enhancement (Section 4.2). 

       The ITSs of both steady and time-periodic cases -- and then 

in particular large sections of the thermal path - rapidly assume a 

state closely resembling their corresponding asymptotic states, 

after which they slowly evolve towards the latter in an 

approximately self-similar manner. (Compare to this end the time 

instances in Figures 9 and 10  with the duration of the entire 

transient in Figure 4}.) This implies that the system quickly settles 

for a quasi-asymptotic state in which the thermal path has already 

largely been established and transient effects predominantly ensue 

from the relatively slow formation of the (instantaneous) thermal 

island of the asymptotic state. This formation thus determines the 

duration of the transient and said quasi-asymptotic state coincides 

well with the exponential and self-similar temperature decay 

described by the transient mode Ψ  (Figure 4). 

 

 
(a) 3=τ                                           (b)  5=τ  

 

Figure 11.  Thermal topology versus τ . Gray indicates time-

averaged thermal path; red/blue indicates manifolds in the 

chaotic sea; crosses indicate their origin. 

 

       The thermal Poincaré-sections expose two families of 

manifolds (best visible in panel (a)): (i) outer  manifolds 

originating from the right wall and enveloping the chaotic core; 

(ii) inner manifolds occupying the chaotic core. Both families 

become increasingly intertwined (and indistinguishable) with 

growing τ  (panel (b)). The outer manifolds demarcate the 

roughly annular transition region between thermal path and 

chaotic zone and set up a clockwise heat circulation around the 

core of said zone by basically “dredging” through this area within 

the course of each period. This “dredging” happens with 

intermittent intensity, fluctuating stronger with increasing τ , thus 

amplifying temperature oscillations – and promoting 

heterogeneity - in the transition region. This explains  the 

clockwise rotation of temperature waves around the domain 

centre. The inner manifolds accomplish strong chaotic heat 

transfer in the core region, thus maintaining relative thermal 

homogeneity there, and at the same time amplifying temperature 



 9 Copyright © 2010 by ASME 

fluctuations in the transition region. Hence, these manifolds play a 

dual role by promoting both thermal homogeneity and 

heterogeneity. This explains the clockwise rotation of temperature 

waves around the domain centre with intensity that grows stronger 

with increasing chaos, as observed in the Eulerian analysis. 

 

5. CONCLUSIONS 
 

The study investigates the role of chaotic advection in laminar 

heat transfer for low Péclet numbers Pe for two issues of great 

practical relevance: (i) heat-transfer enhancement; (ii) thermal 

homogenisation. To this end heat transfer in the well-known 2D 

lid-driven cavity is examined for both steady and time-periodic 

flow forcing under transient and asymptotic conditions. The 

system is investigated via both an Eulerian approach, based on 

evolution of the temperature field, and a Lagrangian approach, 

based on topological analysis of the thermal transport routes. 

       The Eulerian analysis reveals that the temperature evolution, 

after a short-lived initial phase, is dictated by an exponentially 

decaying transient mode superimposed upon an asymptotic mode, 

where the decay time varies only marginally with the flow 

forcing. The transient and asymptotic modes exhibit time-periodic 

evolution in case of time-periodic flow forcing that, following 

Fourier analysis, is dominated by a steady mode and one 

oscillatory mode. The fluid-wall heat transfer in both transient and 

asymptotic states depends basically only on the steady mode that, 

in turn, depends primarily on the relative strength of advection yet 

not on its nature. These findings imply that, in the present system, 

chaos is virtually ineffective for acceleration of the transient or 

fluid-wall heat-transfer enhancement. Moreover, they expose a 

counter-intuitive role in that chaos promotes heterogeneity instead 

of homogeneity. 

       The Lagrangian analysis reveals that chaotic heat transfer is 

spatially confined to the interior of the flow domain. Thermal 

transport near the (non-adiabatic) walls - and fluid-wall heat 

transfer - is for both steady and time-periodic conditions as well 

as in transient and asymptotic states determined by a thermal path 

connecting bottom and top walls. This path depends mainly on 

the relative strength of advection yet not on its nature, explaining 

the ineffectiveness of chaos for heat-transfer enhancement. The 

Lagrangian analysis furthermore reveals that temperature 

fluctuations emerge from the transition region between thermal 

path and chaotic zone. Thermal homogenisation happens via 

efficient “thermal mixing” by chaotic thermal  trajectories in the 

core of said zone in essentially the same way as efficient fluid 

mixing. This explains why chaos promotes thermal heterogeneity 

near the bounding walls and thermal homogeneity in the domain 

interior. 

       The present study reveals that optimal thermal conditions are 

at lower Pe numbers not automatic with chaos and depend on a 

delicate (and highly non-trivial) interplay between flow and heat-

transfer mechanisms. Further investigations on this matter are in 

progress.  
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