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ABSTRACT
We investigate whether a power-law form of probability dis-

tribution function better describes the free paths of dilute gas
molecules in a confined system. An effective molecular mean free
path model is derived, which allows the mean free path to vary
close to bounding surfaces. Our model is compared with molec-
ular dynamics simulation data, and also other classical mean
free path models. As gas transport properties can be related
to the mean free path through kinetic theory, the Navier-Stokes
constitutive relations are then modified and applied to various
benchmark test cases. Results for isothermal pressure-driven
Poiseuille flows in micro-channels are reported, and we com-
pare our results with conventional hydrodynamic models, solu-
tions of the Boltzmann equation, and experimental data. Our new
approach provides good results for mean free path and cross-
sectional flow velocity profiles up to Knudsen numbers around 1,
and for integral flow parameters such as flow rate and friction
factor up to Knudsen number of 10. We discuss some limitations
of our power-law model, and point to the way forward for further
development.

INTRODUCTION
In microscale gas flows the small system dimensions mean

that the non-dimensional Knudsen number, Kn, defined as the
ratio of the molecular mean free path (MFP) of the gas, λ , to a

∗Address all correspondence to this author.

characteristic flow field dimension, indicates the flows are often
rarefied. As Kn increases, the behaviour of a gas flow near a solid
bounding surface is dominated by the effect of gas molecule-
surface interactions. This leads to the formation of a Knudsen
layer (KL): a local thermodynamically non-equilibrium region
extending ∼ O(λ ) from the surface. Figure 1 is a schematic of
the gas velocity profile in the KL in a shear-driven flow. Al-
though the Navier-Stokes-Fourier (NS) equations with classical
velocity-slip and temperature-jump boundary conditions [1] can
often adequately predict the flow field outside the KL, they fail
to capture the non-linear form of the KL [2].

In the KL, gas molecule-surface collisions are more frequent
than gas molecule-molecule collisions, i.e. the gas MFP will ef-
fectively be reduced in the KL. It is well-known from the kinetic
theory of gases that viscosity and thermal conductivity can be
interpreted in terms of the collisions of gas molecules, and of
the free paths of the molecules between collisions [3]. Linear
constitutive relations for shear stress and heat flux, with constant
thermophysical transport coefficients such as viscosity and ther-
mal conductivity, are not necessarily valid in the KL.

Lockerby et al. [4] and O’Hare et al. [5] developed wall-
distance scaling models for the constitutive relationship for shear
stress in planar flows. The applicability of these models is limited
to relatively low-Kn flows. Several other scaling functions for
rarefied gas flows have been proposed recently: Kn-dependent
functions [6], and power-law scaling of constitutive relations [7,
8]. Both of these latter predict an infinite shear-rate at the wall,
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FIGURE 1. Schematic of the momentum Knudsen layer (KL) close
to a planar wall, showing the microscopic slip u1(x,0); the macroscopic
slip u(x,0) is required when using the classical Navier-Stokes equations
with a slip boundary condition.

and therefore a zero effective viscosity, which makes numerical
results dependent on grid spatial resolution.

Stops [9] derived an effective MFP, λeff(S), which is
geometry-dependent. He investigated the classical probability
distribution function, ψ(r) = λ −1 exp (−r/λ ), for which the
probability that a given gas molecule will travel a distance in the
range r to r+dr between two successive collisions is ψ(r)dr. If
the gas is not bounded, the MFP of the gas molecule ensemble
is simply

∫
0

∞Nrψ(r)dr/N = λ , where N is the total number of
molecules. If a solid bounding surface is included in the system,
however, some molecules will hit the surface and their free flight
paths will be terminated. The MFP of all the gas molecules in
the system will therefore be smaller than λ , due to this boundary
limiting effect. Recently, Arlemark et al. [10] developed a proba-
bility function-based effective MFP expression λ eff(A), also using
the classical exponential form of the distribution function. Guo
et al. [11] implemented the effective MFP expression derived by
Stops [9] in conjunction with a second-order slip boundary con-
dition and obtained good results for pressure-driven rarefied gas
flows.

However, comparison of both of these effective MFP pro-
files with molecular dynamics (MD) simulation data [12] shows
that both models are accurate only up to Knudsen numbers of
about 0.2. The MD data [12] highlights the limitations of the
exponential form of probability distribution function for gases
in the transition regime, as it can only provide an accurate de-

scription of a gas under thermodynamic equilibrium [9]. Anoma-
lous diffusive transport is often better described using Lévy and
power-law (PL) probability distributions [13, 14]. Anomalous
transport can be characterised by incorporating a spatial de-
pendence in the diffusion coefficient, D; for example, D(x) ∝
| x |−n [13]. For ideal gases, D = (1/3)vλ and ρD = μ , with v
being the molecular mean velocity, μ the dynamic viscosity of
the gas and ρ the density of the gas [15]. In anomalous gas trans-
port, the MFP would be spatially dependent and may take a PL
form. This kind of diffusion coefficient has been applied to sev-
eral physical situations, such as fast electrons in a hot plasma in
the presence of a DC electric field, turbulent two-particle diffu-
sion in configuration space [16] and mean first passage time for
anomalous diffusive systems [13].

This paper investigates the hypothesis that the anomalous
transport behaviour of non-equilibriumgases is better understood
by using PL type of distribution functions. We derive an effective
MFP based on a PL probability distribution of free paths for a
gas close to a planar wall, and show that this captures some of
the trends associated with the complex non-equilibrium physics
of transition regime gas flows. Our PL-based effective MFP is
validated against MD simulation data [12] up to Kn = 2 and also
compared with the theoretical models of Stops [9] and Arlemark
et al. [10].

AN EFFECTIVE MOLECULAR MEAN FREE PATH
Equilibrium mean free path

The individual free path-lengths of gas molecules between
intermolecular collisions in a dilute gas vary widely. However,
if we follow a molecule until it has traversed a great many free
paths, the average of these path-lengths will have a definite value,
which is called the mean free path (MFP). In a time t that is long
compared to the time of molecular collisions we can write:

λ =
v

θ̇v
, (1)

where θ̇v denotes the collision rate for a molecule of a group
moving at speed v among molecules composing the gas. The
collision rate is the chance per second that a particular molecule
collides; it might appropriately also be called the collision prob-
ability per unit time, Pv.

The distribution of the lengths of the individual molecular
paths is also of interest. Let us consider a group of similar
molecules that are moving with velocity v through a region in
which there is gas. The number originally in the group at time
t = 0 is N0, and by time t let N of them still be travelling without
having had a collision. During the following interval dt, N θ̇vdt
molecules will collide and drop out of the group; N is thereby
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changed by the amount:

dN =−Nθ̇vdt. (2)

We can easily integrate this equation under thermodynamic equi-
librium conditions. By thermodynamic equilibrium we mean that
the probability of a certain microscopic state averaged over the
details of the interactions, does not change in time or space [18].
So, with θ̇v constant, dN/N = −θ̇vdt, thus lnN =−θ̇vt + const.
Choosing the constant of integration so as to make N = N0 at t =
0, we find

N = N0 exp
(−θ̇vt

)
= N0 exp

(
− θ̇v|r|

v

)
, (3)

where |r| is the length vt of free path that has been travelled at
time t by each molecule. Let ϕ(r) be the fraction of the original
N0 molecules that have travelled a distance r without collision,
and ψ(r)dr be the fraction of all the free paths that have a length
between r and r+dr. Then ϕ(r) = N/N0 and ψ(r)dr = dN/N0,
hence from Eq. (1)

ϕ(r) = exp

(
−|r|

λ

)
, ψ(r) =

1
λ

exp

(
−|r|

λ

)
. (4)

So ψ(r), the probability distribution of free paths, is only expo-
nential in form under thermodynamic equilibrium conditions and
when the gas is unbounded. If the MFP, calculated for a molecule
in an extensive material, is comparable with a linear dimension
of the finite system confining the gas, the boundaries of the sys-
tem may limit the effective free-path values. However, Stops [9]
and Arlemark et al. [10] used the exponential form of the dis-
tribution function, Eq. (4), to derive effective MFP models as a
function of distance from a bounding surface.

A model for non-equilibrium mean free path
In a rarefied gas system, in which gas molecules may not

suffer sufficiently frequent collisions with other gas molecules
to attain equilibrium conditions, deviations from thermodynamic
equilibrium may have substantial effects. Although it is certainly
difficult to evaluate the probability distribution function ψ(r),
introducing non-equilibrium into Eq. (2) by means of physical
arguments could allow us to propose a distribution function that
may be more appropriate for non-equilibrium conditions than the
exponential one [18].

Montroll & Scher [14] pointed out that a finite moment of
the probability distribution function implies an exponential char-
acter of the randomness. So results obtained using exponen-
tial forms of the distribution functions are essentially the same

as those for homogeneous media at equilibrium. A distribution
function with diverging higher-order moments, such as the stan-
dard deviation, is essential to anomalous transport. In transient
photoconductivity experiments, concentration distributions may
have a long tail such that the standard deviation is diverging. This
long-tail problem is common to various flows in non-uniform
media, in many fields such as chemical engineering and environ-
mental sciences [19].

We hypothesize a PL form for the probability distribution
function for non-equilibrium MFP, with diverging higher-order
moments, instead of the classical exponential form of distribution
function. Here we propose for investigation the following form
of molecular free path distribution function:

ψ(r) =C(a+ r)−n, (5)

where a and C are constants with positive values determined
through the zero and first moments. The range of values for the
exponent n can be obtained by making one of the higher-order
moments divergent. Zero and first moments are given as follows:

1 =
∫

0

∞
C(a+ r)−ndr, (6)

λ =

∫
0

∞
Cr(a+ r)−ndr. (7)

Equation (6) requires the probability to range only from zero
to one. Equation (7) defines the unconfined, conventional MFP
value, λ . It then follows that

C = (n−1)an−1, (8)

a = λ (n−2). (9)

If n > 2, a > 0, otherwise the distribution function is negative.
The standard deviation (second moment) of the distribution func-
tion given by Eq. (5) diverges only for n≤ 3; so 2< n≤ 3. If one
wishes to make the ith moment diverging, then max(n) = i+ 1.
As n → ∞, the distribution function will have finite moments,
which is the condition required of an equilibrium distribution
function. For a finite n, the distribution function describes a sys-
tem deviating from equilibrium. Thus, n acts as a decisive pa-
rameter to define the extent of deviation from equilibrium. Here,
we test n = 3, unless otherwise explicitly stated.
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FIGURE 2. A molecule confined between two planar walls a distance
H apart. The molecule has an equal probability to travel in any zenith
angle θ− or θ+ or to travel in either the positive or negative y-direction.
The molecule under consideration is assumed to have just experienced
an intermolecular collision at its current position H/2+y above the left-
hand surface.

We follow the approach of Arlemark et al. [10], based on an
integrated form of the probability distribution function, i.e.

p(r) =
∫

r

∞
ψ(r)dr =

[
1−

(
1+

r
a

)1−n
]
, (10)

which describes the probability a molecule travels a distance r
without experiencing a collision.

Our model is derived for the two-planar-wall configuration
shown in Fig. 2. We use the notation r− if a test molecule is
travelling in the negative y-direction, and r+ if the molecule is
travelling in the positive y-direction. We also use the notations
θ− and θ+ for the equally probable zenith angle travelling di-
rection of the molecule. These quantities are related through
r− = (H/2+ y)/cosθ− and r+ = (H/2− y)/cosθ+, where H
is the distance between the two parallel plates.

The MFP based on the PL form of distribution function,
λeff(PL), is expressed by weighting the unconfined MFP, λ , with
p(r) as follows:

λeff(PL) =
λ
2

[
p(r−)+ p(r+)

]
= λ

{
1− 1

2

[(
1+

r−

a

)1−n

+

(
1+

r+

a

)1−n
]}

. (11)

A 3-dimensional MFP depending on the gas molecule’s distance
to a surface is then obtained by averaging the free path with re-
spect to θ− and θ+ in the range [0,π/2] using the mean integral
theorem,

< λeff(PL)(θ )>=
2
π

∫
0

π/2
λeff(PL)(θ )dθ , (12)

FIGURE 3. A molecule at a distance H/2+y from a planar wall; pos-
sible trajectories for travelling in the negative y-direction in cylindrical
coordinates [H/2+y,(H/2+y) tan θ ].

where the integration domain is illustrated in Fig. 3 for a gas
molecule travelling in the negative y-direction. Averaging over
the free path in Eq. (12), using Simpson’s numerical integration
involving 16 subintervals, results in λeff(PL) = λ βPL, where

βPL = 1− 1
94

[(
1+

H/2− y
a

)1−n

+

(
1+

H/2+ y
a

)1−n

+4
8

∑
i=1

(
1+

H/2− y
acos[(2i−1)π/32]

)1−n

+4
8

∑
i=1

(
1+

H/2+ y
acos[(2i−1)π/32]

)1−n

+2
7

∑
i=1

(
1+

H/2− y
acos[iπ/16]

)1−n

+2
7

∑
i=1

(
1+

H/2+ y
acos[iπ/16]

)1−n
]
, (13)

which is the normalized effective MFP based on the power-law
distribution function, and is evaluated using the rarefaction pa-
rameter Kn (as a is dependent on mean free path). From Eq. (13),
it is easy to see that our PL model satisfies the physically intuitive
requirements for Kn → 0, i.e.

βPL |wall≈ 1/2, and βPL |bulk≈ 1. (14)

Comparison with Molecular Dynamics simulations
The β -function of Eq. (13) is now compared with MD simu-

lation results [12] and the classical exponential probability func-
tion models of Stops [9] and Arlemark et al. [10], for both single-
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FIGURE 4. Variation of normalized mean free path, β , with normal-
ized distance from a surface; (a) single-wall case and (b) parallel-wall
case. Comparison of power-law (PL) model with molecular dynamics
(MD) simulation data [12], and Arlemark et al. [10] and Stops [9] expo-
nential models, for various Knudsen numbers.

and parallel-wall cases. Single-wall results are deduced by as-
suming that the second wall is located an infinite distance from
the first. In the case of parallel walls, KL overlap becomes ap-
parent as Kn increases. Arlemark & Reese [12] performed MD
simulations using 20520 Lennard-Jones molecules, yielding re-
sults that are estimated to be within 1% accuracy. All simulations
were carried out assuming a planar smooth bounding surface.

Figure 4a shows the variation of normalized effective MFP
profiles (i.e. β ) with normalized wall distance y/λ . Our PL
model predictions are in close agreement with MD simulations,
although minor overpredictions are noticed in the bulk region.
The PL model has a sharp gradient close to the wall, while both

of the previous exponential-based models have shallower gradi-
ents and underpredict the MFP values in the wall vicinity. All
three theoretical models converge to a similar value in the bulk
region as expected.

Results for the normalized MFP between two parallel sur-
faces are presented in Fig. 4b. MD simulation results for planar
smooth surfaces are compared with both PL and exponential dis-
tribution function-based models for various Kn in the transition
regime. At Kn = 0.2, which is just beyond the slip-flow regime,
the PL model is in fair agreement with the MD data in the near-
wall region but deviates slightly in the bulk region. The two ex-
ponential based models underpredict in the KL, but Arlemark et
al. [10] achieve good agreement with the MD data in the bulk
region. As the value of Kn increases, and the flow becomes in-
creasingly transition-continuum, the classical models fail to pre-
dict the effective MFP in the wall region, as well as in the bulk.
Both classical models underpredict the effective MFP values, al-
though the Arlemark et al. [10] results are slightly above Stops’.
Effective MFP values predicted by the PL model compare very
well to the MD data for both Kn= 0.5 and 1, although it overpre-
dicts for Kn = 1 in the bulk. By Kn = 2, when both the Knudsen
layers completely overlap each other, the PL model shows sig-
nificant deviations from the simulation data and overpredicts in
the near-wall region, although there is fair agreement in the bulk
region. The MD data shows a relatively sharp gradient of ef-
fective MFP in the near-wall region, compared to the theoretical
predictions.

ISOTHERMAL PRESSURE-DRIVEN RAREFIED GAS
FLOWS
Problem description and governing equations

To further test the merits of our PL-based MFP scaling, we
consider isothermal pressure-driven gas flow along a planar-wall
channel with walls a distance H apart, as depicted in Fig. 2.
The flow is assumed to be fully hydrodynamically developed
and two-dimensional, isothermal, laminar and steady, with a low
Reynolds number (Re) so that inertial effects may be neglected.
With these assumptions, the governing equation is:

0 =−∂P
∂x

− ∂τ
∂y

, (15)

where x is the streamwise coordinate, y the wall-normal coordi-
nate, P the pressure and τ the stress, which is given as:

τ =−μ
[
∇U+(∇U)tr

]
+

(
2
3

μ −κ
)
(∇.U)I, (16)

where μ is the fluid dynamic viscosity, κ the bulk viscosity, I the
identity tensor and tr the transpose operator.
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In Eq. (16) we can neglect volume dilation effects for rar-
efied gases [15]. The collision time, or equivalently the free
flight path between two successive collisions of a gas molecule,
is closely related to the momentum exchange. The unconfined
MFP is related to the shear viscosity [20]:

μ = ρ
λ√

π/2RT
, (17)

where R is the specific gas constant and T the gas temperature.
Equation (17) is assumed to be valid only for flows that are

quasi-equilibrium. As discussed above, within the KL the flight
paths of gas molecules are affected by the presence of a solid
wall. If we wish to use Eq. (17), we need to take into account the
MFP affected by gas molecular collisions with surfaces. If the
unconfined expression for the MFP, λ , is replaced by our effec-
tive and geometry-dependent mean free path, λ eff(PL), we obtain
a non-constant, geometry-dependent, effective viscosity, μ eff(PL),
that can then be used to postulate a non-linear stress/strain-rate
relation:

τ =− μβPL︸ ︷︷ ︸
μeff(PL)

∂Ux

∂y
, (18)

where Ux is the fluid velocity in the axial direction.
Using Eq. (18) in Eq. (15) results in the modified governing

equation:

μ
∂
∂y

(
βPL

∂Ux

∂y

)
=

∂P
∂x

. (19)

This needs to be solved in conjunction with an appropriate slip
boundary condition to capture the non-equilibrium phenomena
in the slip and transition flow regimes.

Slip boundary condition
Experimental investigations, e.g. [21], have confirmed that

the NS equations with the no-slip boundary condition under-
predict mass flow rates. Several authors have addressed this
problem by employing the Maxwell slip boundary condition [1],
which, for a stationary planar wall and an isothermal flow is:

Uslip =−2−σ
σ

λ
(

∂Ux

∂y

)
w
, (20)

where Uslip is the slip velocity at the fluid-surface interface, σ is
the tangential momentum accommodation coefficient (TMAC),

i.e. the proportion of incident molecules reflected diffusely from
the surface, and subscript w are quantities evaluated at the sur-
face.

The first-order slip boundary condition (20) fails to pre-
dict the Knudsen-minimum in the mass flow rate [22], and re-
searchers subsequently proposed higher-order slip models for a
wide range of Knudsen numbers. A review of a number of these
higher-order slip models can be found in Reese & Zhang [23].
Deissler [24] derived a second-order slip boundary condition
based on the concept of MFP for momentum and energy transfer,
which can be expressed in its generalized form as:

Uslip =−C1λ
(

∂Ux

∂y

)
w
−C2λ 2

(
∂ 2Ux

∂y2

)
w
. (21)

While there is no general consensus on the slip coefficients C1

and C2, C1 is set to ∼ 1 by many authors and C2 has a wide range
from −0.5 to 5π/12. Cercignani [25] proposed C2 to be 0.9756
from kinetic theory considerations, and Hadjiconstantinou [26]
corrected C2 to 0.31.

It is important to note that Maxwell [1] and Deissler [24] de-
rived first- and second-order slip boundary conditions assuming
that the MFP is constant in the wall-adjacent gas layer. Guo et
al. [11] proposed the following heuristic slip boundary condition
to take into account the KL correction:

Uslip =−C1

(
λeff

∂Ux

∂y

)
w
−C2

[
λeff

∂
∂y

(
λeff

∂Ux

∂y

)]
w
. (22)

This simply reduces to the conventional second-order slip bound-
ary condition (21) if there is no KL, i.e. if λ eff = const. In the
present analysis, we implement this second-order slip boundary
condition, and use λeff(PL) given through Eq. (13). Values of C1

and C2 are chosen as 1 and 0.31 [26] respectively for the results
presented here.

Solution procedure
We require results for the flow velocity profiles across the

channel and some integral flow parameters, through solution of
the governing equation with the slip boundary condition dis-
cussed above. Besides the governing Eq. (19) and slip bound-
ary condition (22), the ideal gas law, P = ρRT , and the Knudsen
number definition Kn = λ/H, will be used in the analysis.

The wall-normal coordinate y is normalized by H, and
the axial velocity Ux by the free-molecular velocity U0 =
−2H(∂P/∂x)/(ρ

√
2RT ) [27]. Using Eqs. (17) and (13),

Eq. (19) in normalized form (indicated by “∗”) is then

∂
∂y∗

(
βPL

∂U∗

∂y∗

)
=−

√
π

2Kn
, (23)

6 Copyright c© 2010 by ASME



0.25

0.75

1.25

1.75

0 0.1 0.2 0.3 0.4 0.5

U
*

y*

Boltzmann Eq.

NS, PL, 2nd order slip BCs

R26

NS, 2nd order slip BCs

NS, 1st order slip BCs

Kn = 0.113

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5

U
*

y*

Kn = 0.677

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5

U
*

y*

Kn = 2

FIGURE 5. Normalized half-channel velocity profiles for various
Knudsen numbers. Comparison of power-law (PL) model results with
the solution of the Boltzmann equation [27], R26 moment equations [28]
and conventional NS equations with first- and second-order slip.

and Eq. (22) in normalized form as

(U∗)slip =−C1Kn

(
βPL

∂U∗

∂y∗

)
w

−C2Kn2
[

βPL
∂

∂y∗

(
βPL

∂U∗

∂y∗

)]
w
. (24)

Equation (23) is numerically solved for the normalized axial ve-
locity profiles U ∗ by applying the slip boundary condition (24) at
the upper wall, y∗ = 0.5, and a symmetry condition at the centre
of the channel, y∗ = 0.

The normalized mass flow rate G, an integral flow parame-
ter, is

G =
2
∫
0

H/2ρUxdy
ρUoH

= 2
∫

0

0.5
U∗dy∗. (25)

RESULTS
In what follows, we refer to the PL model as the modified

governing equation (23), with the use of effective MFP (Eq. 13)
and the second-order slip boundary condition (24).

The cross-sectional velocity profiles of pressure-driven
Poiseuille flow at a range of Knudsen numbers are presented in
Fig. 5. Our PL model is validated with a Boltzmann solution [27]
and compared with three hydrodynamic models: conventional
first- and second-order slip models, and the R26 equations [28].
At Kn = 0.113, which is just beyond the slip-flow regime, the
four hydrodynamic models predict similar values of slip veloc-
ity at the wall and all are close to the solution obtained from the
Boltzmann equation. The conventional NS equations with both
first- and second-order slip boundary conditions significantly un-
derpredict the velocity in the bulk region. The PL model and
R26 equations are in fair agreement with the Boltzmann solu-
tion, although the PL model slightly underpredicts, and the R26
equations overpredict, the maximum velocity.

At higher Kn, the flow enters the transition regime and the
non-equilibrium regions from both parallel walls start to over-
lap each other. At Kn = 0.677, the PL model and R26 equations
compare reasonably well with the Boltzmann solutions, although
the R26 equations overpredict the slip velocity. At Kn = 2, devi-
ations from the Boltzmann predictions are relatively less for our
PL model than for the R26 equations.

Predictions of normalized slip velocity, (U ∗)slip, are pre-
sented as a function of Kn in Fig. 6, and compared to Boltzmann
simulation data [27]. First-order slip is a constant, and higher
than the Boltzmann result for Kn < 1 and lower for Kn > 1. The
second-order NS slip is too high, particularly at large Knudsen
numbers. Our PL model and the R26 equations agree well with
the Boltzmann solution up to Kn	 0.5. Both models overpredict
the wall-slip velocity for Kn > 0.5, although the deviations are
relatively less with the PL model.

It is evident from Figs. 4 and 5 that in the transition regime,
non-equilibrium effects are no longer limited to the wall-adjacent
layer, but prevail in the bulk flow due to the overlap of Knud-
sen layers. Hence, simply using a higher-order slip model with
modified TMAC’s may result in good wall-slip velocity results
but will not improve the overall predictive capabilities of the NS
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equations in the transition regime. In addition, the accurate pre-
diction of integral flow parameters in micro-conduits is important
in engineering MEMS devices. To predict the integral flow pa-
rameters correctly, it is essential that field variables such as MFP
and cross-sectional velocities are correct. Conversely, however,
the accurate prediction of integral flow parameters does not nec-
essarily guarantee that all the field variables have each been pre-
dicted accurately.

Figure 7 shows the variation of normalized flow rate G with
inverse Knudsen number, δm =

√
π/(2Kn). In Fig. 7a, the PL

model results are compared with experimental data for differ-
ent pressure ratios [21], BGK simulation data [29] and the NS
equations with Stops’ MFP model and second-order slip condi-
tion (24). In the slip flow regime, both the PL model and Stops’
MFP based slip model agree reasonably well with the experimen-
tal data and BGK simulation results. However, around δm ∼ 1,
Stops’ MFP based slip model starts to significantly underpredict
the flow rate, whilst the PL model follows the BGK simulation
data reasonably well until Kn reaches about 10. PL model results
with an exponent n value of 5 are also shown in Fig. 7a to illus-
trate the effects of n on the flow rate in different flow regimes.
The PL model with n = 5 follows the PL model with n = 3 until
around δm ∼ 1, but then it starts to underpredict the flow rate,
although reasonable agreement with the experimental data is still
obtained in the free-molecular regime.

Flow rate results of our PL model with n = 3 are shown
in Fig. 7b to compare with the exact Boltzmann solution [27],
DSMC data [30], R26 results [28], NS equations with first- and
second-order slip and the PL model with first-order slip. Here

1

2

3

0.01 0.1 1 10

G

δm

NS, PL, 2nd order slip BCs (n=3)

NS, PL, 2nd order slip BCs (n=5)

NS, Stops, 2nd order slip BCs

BGK

Exp. data (Pr = 5)

Exp. data (Pr = 4)

Exp. Data (Pr =3)

1

2

3

0.01 0.1 1 10

G

δm

NS, PL, 2nd order slip BCs

NS, PL, 1st order slip BCs

NS, 2nd order slip BCs

NS, 1st order slip BCs

Boltzmann Eq.

DSMC

R26

FIGURE 7. Normalized volume flow rate (G) variation with inverse
Knudsen number (δm). Comparison of power-law (PL) model results
with: (a) experimental data [21] and BGK simulation results [29] (where
Pr is the ratio of inlet to outlet pressure in the experiments); (b) DSMC
data [30], the solution of the Boltzmann equation [27] and the conven-
tional NS equations with first- and second-order slip.

the first-order slip for the PL based MFP NS equations results are
obtained simply by setting C2 = 0. For Kn > 0.1, which is just
beyond the slip flow regime, the NS equations with first-order
slip underpredict the flow rate, although the other hydrodynamic
models are in good agreement with the Boltzmann and DSMC
data up to Kn ∼ 0.2. The NS results with second-order slip are
good up to Kn ∼ 0.5, but significantly overpredict beyond that.
The R26 equations show good agreement until Kn ∼ 2, and our
PL model with second-order slip follows the Boltzmann results
up to Kn ∼ 10. Both PL and NS models with first-order slip
fail to predict the Knudsen minimum. The other three hydro-

8 Copyright c© 2010 by ASME



dynamic models show a Knudsen minimum, however, the NS
equations with second-order slip predict the minimum at a value
of Kn smaller than that predicted by the Boltzmann equation.

DISCUSSION AND CONCLUSIONS
The key physics of the rarefied gas flow in the Knudsen layer

has been outlined, and we have proposed an analysis based on a
power-law (PL) probability distribution function for free-paths
of molecules in a confined gas. The PL model is validated with
molecular dynamics simulation data. A constitutive scaling ap-
proach to model the Knudsen layer within a continuum fluid
dynamics framework has also been described. This has been
tested for the case of isothermal pressure-driven gas flow through
a microchannel. Our approach provides good results for both
mean-free-path (MFP) and cross-sectional velocity profiles up to
Kn ∼ 1, and for integral flow parameters such as flow rate up to
Kn ∼ 10. Previous exponential probability distribution function
MFP models, that assume thermodynamic equilibrium, provide
accurate results only up to Kn ∼ 0.2, and normalized flow rate
results are reasonable only up to Kn ∼ 1.

While the Navier-Stokes (NS) equations with higher-order
slip boundary conditions can correctly capture the wall-slip by
tuning the slip coefficients, they may not provide accurate veloc-
ity profiles in both the Knudsen layer and the bulk flow regions.
The NS equations with an exponential-based MFP can provide
good velocity profiles in the Knudsen layer up to the early tran-
sition regime. However, with our PL model we could influence
the velocity profile at a specified Knudsen number through the
exponent n.

An advantage of the PL MFP constitutive scaling technique
is that it is based on simple physical arguments, which can suc-
cessfully be implemented in conventional CFD codes, and is still
able to capture some of the essential trends associated with the
complex non-equilibrium physics of the Knudsen layer.

While it is important not to draw strong conclusions based
on these simple test cases alone, the present results may motivate
future work into understanding the origin of non-equilibrium
physics in rarefied gases, incluing:

1. validation of the power-law probability distribution function
for a range of flow systems geometries through molecular
dynamics simulations;

2. non-equilibrium distribution functions are also a feature of
rarefied gas shock waves. Power-law based diffusion coef-
ficients [13] could also be modeled as a function of length
scales defined in terms of local density and temperature gra-
dients [3];

3. conventional higher-order velocity slip and temperature
jump boundary conditions are derived under the assumption
of constant MFP in Knudsen layers — derivations of these
boundary conditions should be revisited based on geometry-

dependent effective MFP models.
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