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ABSTRACT 
The behavior of a liquid jet in an electrostatic field is 

numerically simulated. The simulations performed correspond 
to a transient liquid jet leaving a capillary tube maintained at a 
high electric potential. The surface profile of the deforming jet 
is defined using the VOF scheme and the advection of the 
liquid free surface is performed using Youngs’ algorithm. 
Surface tension force is treated as a body force acting on the 
free surface using continuum surface force (CSF) method. To 
calculate the effect of the electric field on the shape of the free 
surface, the electrostatic potential is solved first. Next, the 
surface density of the electric charge and the electric field 
intensity are computed, and then the electric force is calculated. 
Liquid is assumed to be a perfect conductor, thus the electric 
force only acts on the liquid free surface and is treated similar 
to surface tension using the CSF method. To verify the 
simulation results, a simplified case of electrowetting 
phenomenon is simulated and free surface shape in stable state 
is compared with experimental results. Then the electrostatic 
atomization in spindle mode is simulated and the ability of the 
developed code to simulate this process is demonstrated. 

INTRODUCTION 
Electrostatic atomization, also called Electrospray, is a 

well known phenomenon, in which an electrostatic force 
elongates the liquid meniscus formed at the outlet of a capillary 
nozzle to a jet which next disrupts into small droplets by 
electrical and mechanical forces. 

Electrospray systems have several advantages over 
mechanical atomizers. The size of electrospray drops can range 
from hundreds of micrometers down to several tens of 
nanometers. The size distribution of the droplets can be nearly 
monodisperse. Droplet generation and droplet size can be 
controlled roughly via the control of the flow rate of the liquid 
and the applied voltage at the capillary nozzle. The fact that the 
droplets are electrically charged facilitates the control of their 
motion (including their deflection and focusing) by means of an 
electric field. Charged droplets are self-dispersing in space, 
also resulting in the absence of droplet coagulation. The 
deposition efficiency of a charged spray on an object is higher 
than that of an uncharged spray. This feature can be utilized, for 
example, in surface coating or thin film production. 

Electrospray has opened new routes to nanotechnology. It is 
used for micro- and nano-thin film deposition, micro or nano-
particle production, and micro- or nano-capsule formation. 
Thin films and fine powders are (or potentially could be) used 
in modern material technologies, microelectronics, and medical 
technology [1]. In spite of these advantages, this method of 
atomization has some difficulties to perform. The main 
difficulty is the existence of many different atomization modes 
depending on the settings of the process. Jaworek et al. [2] 
classified ten modes of atomization according to geometrical 
forms of the meniscus and/or jet. Therefore numerical 
simulation is an effective method to understand and control the 
phenomenon. 

Much research is contributed to the understanding of the 
phenomenon by modeling and simulating the involved 
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processes numerically. Hartman et al. [3] developed a 
Lagrangian model to predict the droplet size and velocity and 
compared the results with experiments. They also developed a 
physical model to obtain the shape of the liquid cone and jet; 
the electric field inside and outside the cone; and the surface 
charge density on the liquid surface [4]. In their model, a one-
dimensional momentum equation was used to simulate the flow 
field. They claimed that the space charge due to the charged 
droplets has an influence of about 5 to 7% on the electric field 
at the cone surface. Hartman et al. [5] also used an analytical 
model for jet break-up and found that the jet break-up 
mechanism depends on the ratio of electric normal stress to 
surface tension stress. 

Alfonso et al. [6] modeled electrospray using a hybrid 
experimental-numerical technique. They proved that the surface 
charges are always in equilibrium, being the liquid bulk quasi-
neutral. They presented a consistent general scaling of all EHD 
variables involved, which are verified by experiments. Fang et 
al. [7] used a model similar to Hartman's one but solved the 
axisymmetric flow equations and used an adaptive grid 
generation scheme. Their model didn't consider jet break-up. 
Jun Zeng et al. [8] used a VOF method to simulate Taylor cone 
formation. While previous models could only predict the steady 
shape of the cone-Jet, by utilizing this VOF method, Zeng 
could capture the transition process as well. However, they 
didn't consider jet break-up and droplet formation; they also 
used a semi conductor liquid in their simulations. Orest Lastow 
et al. [9] performed a simulation similar to Zeng, but they 
studied conductive fluid atomization. They also didn't consider 
jet break-up and surface tension. 

According to what mentioned above, most of the previous 
works are focused on the investigation of the cone-jet mode 
and spindle mode is a relatively new matter of interest. Since 
the conditions under which this mode occurs are very close to 
those of cone-jet mode the spindle mode can be assumed the 
transient form of the cone-jet mode. Most of the works 
studying the spindle mode have been experimental and they 
have used simplified quasistatic models. In this work the 
spindle mode is simulated dynamically using the volume of 
fluid method. 

PROBLEM GEOMETRY 
The configuration of the problem is depicted in Figure 1 

and the dimensions of the parts pointed at by alphabetic 
indexes are cited at the last column of "Table 1". 

A conductive liquid jet leaves a capillary nozzle with a 
constant volumetric flow rate and a constant electric voltage is 
applied between nozzle and counter electrode. 

GOVERNING EQUATIONS 

Fluid Flow 
The fluid flow is assumed to be incompressible, 

axisymmetric, Newtonian and laminar. Since the air 
surrounding the liquid is not being forced and its viscosity is 
significantly less than that of liquid, it does not considerably 

affect any liquid motion. Therefore, only the liquid phase is 
considered. The mass and momentum conservation equations 
are as follows: 
.ሬԦߘ ሬܸԦ ൌ 0 (1) 
߲ሬܸԦ
ݐ߲ ൅ .ሬԦߘ ൫ሬܸԦ ሬܸԦ൯ ൌ െ

1
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1
ߩ ߘ
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1
ߩ ൅  Ԧ௕ܨ (2) 

in which, VሬሬԦ, ρ, p and ി߬ represent the velocity vector,  the 
liquid density, the pressure, and the stress tensor respectively. Ԧ݃ 
is the gravitational acceleration and ܨԦ௕ is any body force (per 
unit volume) acting on the fluid. As the fluid is Newtonian the 
stress tensor is: 
ി߬ ൌ ߤ ቂ൫ߘሬԦ ሬܸԦ൯ ൅ ൫ߘሬԦ ሬܸԦ൯

்
ቃ (3) 

 

 
Figure 1: Configuration of the physical model. Electric 
potential is applied between the nozzle and the counter 

electrode. (Figure is not to scale.) 
 

Above equations are solved in order to obtain the flow field. 
In addition, VOF scheme is used to locate the free surface 
position. In this method, a scalar function f , called volume 
fraction, is defined as the fraction of a cell volume which is 
occupied by the liquid.  f is assumed to be unity when a cell is 
fully occupied by the fluid and zero for an empty cell. Cells 
with f values of 0 < f < 1 define the location of the free surface. 
Solving the advection equation for volume fraction as follows, 
߲݂
ݐ߲ ൅ ൫ሬܸԦ. ൯݂ߘ ൌ 0 (4) 
gives the f field in each time step. 

Electrostatic 
Along with the hydrodynamic equations presented above, 

the Laplace equation [10] is solved on the entire domain to 
calculate the electric potential in every grid cell at each time 
step: 
߶ଶߘ ൌ 0 (5) 
In addition, the relation between the electric potential and 
electric field intensity is known to be: 
ሬԦܧ ൌ െߘ߶ ሺ6ሻ 

Nozzle 

Counter Electrode 
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Since the liquid is assumed to be a perfect conductor, the 
electrostatic force only acts on the liquid free surface [11]. The 
electrostatic force per unit area is computed as [12]: 
Ԧ௘ܨ ൌ

1
ܧ௦ߩ2

ሬԦ  ሺ7ሻ 

Where ߩ௦ is the surface density of the electric charge and is 
calculated as: 
௦ߩ ൌ െ߳஺௜௥ܧሬԦ. ො݊ ൌ െ߳஺௜௥ 

డథ
డ௡ሬԦ
  ሺ8ሻ 

Where ො݊ is unit vector normal to the free surface and డ
డ௡ሬԦ

 
represents the gradient along the outward normal to the liquid 
free surface. 

BOUNDARY CONDITIONS 
A Neumann condition is used for the pressure in all 

domain boundaries (డ௣
డ௡ሬԦ
ൌ 0). Also, an outflow boundary 

condition is used for velocity on all boundaries except on walls 
and at the entry of the nozzle where constant velocity is 
employed. A summary of boundary conditions are mentioned in 
"Table 1". In this table Q is the volumetric flow rate of the 
liquid at the nozzle inlet and ߶଴ is the applied electric potential 
to the nozzle. 
 
Table 1: Summary of applied boundary conditions based 

on the schematic shown in Figure 1. 
 Velocity Pressure potential mm 

A ݒ ൌ ொ
஺ൗ ࡼࣔ 

ሬሬԦൗ࢔ࣔ ୀ૙ ߶ ൌ ߶଴ 0.51 

B ࢛ࣔ
ሬሬԦൗ࢔ࣔ ୀ૙  , ࢜ࣔ ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࡼ

ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࣘ
ሬሬԦൗ࢔ࣔ ୀ૙  10.0 

C ݑ ൌ 0 , ݒ ൌ ࡼࣔ 0
ሬሬԦൗ࢔ࣔ ୀ૙ ߶ ൌ ߶଴  5.0 

D ࢛ࣔ
ሬሬԦൗ࢔ࣔ ୀ૙  , ࢜ࣔ ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࡼ

ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࣘ
ሬሬԦൗ࢔ࣔ ୀ૙  15.0 

E ࢛ࣔ
ሬሬԦൗ࢔ࣔ ୀ૙  , ࢜ࣔ ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࡼ

ሬሬԦൗ࢔ࣔ ୀ૙ ࣔࣘ
ሬሬԦൗ࢔ࣔ ୀ૙  6.0 

F ݑ ൌ 0 , ݒ ൌ ࡼࣔ 0
ሬሬԦൗ࢔ࣔ ୀ૙ ߶ ൌ 0  7.25 

 

  
It is important to note that the electric potential of the points 

within the main flow is equal to the applied potential as a result 
of the perfect conductor assumption for the l.  

The fluid used in this work is ' Water-Methanol 50% (V/V)' 
which its physical properties are listed in "Table 2". 
 
Table 2: Physical properties of ( water + 0.005 % NaCl ) 

 

Density࣋  ቀࢍࡷ
 ૜ቁ࢓ Viscosity ࣆሺࢇࡼ. ࡺ൫ ࢽ ሻ࢙ ൗ࢓ ൯ 

Surface tension 

ૡૢ૝ 0.0018 0.036 

NUMERICAL PROCEDURE 
The Youngs algorithm [13] is used for advection of 

function f. This algorithm consists of two steps: an approximate 
construction of the free surface and the advection of the 
interface to a new location. First the interface is reconstructed 
by locating a line within each interfacial cell utilizing the 
volume fraction of the cell, f, and the normal vector to the 
interface; normal vectors are computed using f function 
gradients in two directions. In the second step the reconstructed 

interface and new velocities are used to compute volume fluxes 
across each cell face in one coordinate direction at a time. 
Having calculated the advection of the interface in all 
directions, we can compute the final volume fraction field and 
the new shape of the interface  

Surface tension is modeled as a volume force acting on fluid 
elements near the free surface; the method used is the 
continuum surface force (CSF) model [14] integrated with 
smoothed values of function f in evaluating free surface 
curvature [15]. 

The time discretization of the momentum equation is 
divided into two steps. First, an interim velocity is computed 
explicitly from convective, viscous, gravitational, and body 
forces for a time step ∆ݐ. Then, the pressure is calculated 
implicitly. As momentum cannot be advected more than a grid 
per time step, the Courant number should be less than one. The 
same condition applies for the volume tracking as it can be only 
advected to the neighboring cells. Further details of the solution 
procedure of the hydrodynamic equations using VOF method is 
given elsewhere [15]. 

The solution of the electrostatic equations in order to obtain 
the electrostatic force distribution on the free surface is new in 
this work and will be explained in details here. Some 
difficulties arise from constant electric potential throughout the 
main liquid jet. It means that the free surface of the liquid is a 
Dirichlet condition as the value of the electric potential on the 
free surface is known and set to be that of the nozzle. The 
deforming liquid interface may have any arbitrary shape that 
doesn’t necessarily coincide with the edges of the 
computational cells. To resolve this issue we use 5 neighboring 
nodes in different locations with respect to the reconstructed 
interface to discrete the Laplace equation, Eqn. (5), near the 
free surface. These nodes near the free surface are 
schematically illustrated in Figure 2. 

  By employing a non-uniform Cartesian mesh, Eqn. (5) 
may be discretized as follows:  

 
ଶ
஺
൜ݎோ ൬ థ௅೔శభ,ೕିథ஼

∆௑ோ೔,ೕା∆௑௅೔శభ,ೕ
൰ െ ௅ݎ ൬ థ஼ିథோ೔షభ,ೕ

∆௑ோ೔షభ,ೕା∆௑௅೔,ೕ
൰ൠ ൅

ଶ
஻
൜ݎ஼ ൬ థ஻೔,ೕశభିథ஼

∆௒்೔,ೕା∆௒஻೔,ೕశభ
൰ െ ஼ݎ ൬ థ஼ିథ்೔,ೕషభ

∆௒்೔,ೕషభା∆௒஻೔,ೕ
൰ൠ ൌ 0

(9) 

Where: 
ܣ ൌ ∆ܴܺ௜ିଵ,௝ ൅ ௜,௝ܮܺ∆ ൅ ∆ܴܺ௜,௝ ൅  ௜ାଵ,௝ܮܺ∆
ܤ ൌ ∆ܻ ௜ܶ,௝ିଵ ൅ ௜,௝ܤܻ∆ ൅ ∆ܻ ௜ܶ,௝ ൅  ௜,௝ାଵܤܻ∆

ሺ10ሻ 

And: 
஼ݎ ൌ ௜,௝ݎ

௅ݎ ൌ ஼ݎ െ
∆ܴܺ௜ିଵ,௝ ൅ ௜,௝ܮܺ∆

2
ோݎ ൌ ஼ݎ ൅

∆ܴܺ௜,௝ ൅ ௜ାଵ,௝ܮܺ∆
2

ሺ11ሻ 

 
ܻ∆ ௜,௝ andܤܻ∆ ,௜,௝, ∆ܴܺ௜,௝ܮܺ∆ ௜ܶ,௝ are shown in Figure 2. 

ܻ∆ ௜,௝ andܤܻ∆ ,௜,௝, ∆ܴܺ௜,௝ܮܺ∆ ௜ܶ,௝ are parameters  computed 
for each cell near the interface depending on free surface 
location. As explained before, a boundary condition needs to be 
satisfied on free surface while solving Eqn. (5), therefore, the 
above parameters must be calculated in order to exactly locate 
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the reconstructed free surface profile with respect to the 
computational grid. 

 These parameters take different values, depending on the 
orientation of the interface line in a cell.  Nearly ten different 
arrangements may occur depending on the f value and the free 
surface orientation. One of these arrangements in which the 
interface line intersects both horizontal edges of the cell is 
illustrated in Figure 3 ; for this case, the parameters are: 
߶ܴ௜,௝ ൌ ߶଴   , ௜,௝ܮ߶ ൌ ߶଴  
ԄT୧,୨ ൌ Ԅ୧,୨  , ԄB୧,୨ ൌ Ԅ୧,୨ 
௜,௝ܮܺ∆ ൌ 0  , ∆ܴܺ௜,௝ ൌ ܴ   

௜,௝ܤܻ∆ ൌ
∆ ௜ܻ,௝

2    , ∆ܻ ௜ܶ,௝ ൌ
∆ ௜ܻ,௝

2  

(12) 

 

Figure 2: Nodes (red points) used to discrete the Laplace 
equation in a sample situation. Geometrical parameters 
appeared in Eqn. (9) and Eqn. (10) are also illustrated.

 
 are electric potentials used in ܤ߶ and ܶ߶ ,ܮ߶ ,ܴ߶

discretization of Eqn. (5). If a node selected to discrete the 
equation lies on the free surface, its value is known and equal 
to the applied potential ߶଴, otherwise, it must be calculated. 

 
Figure 3: One orientation for the free surface where the 
interface line intersects both horizontal edges of the cell 

and one of the symmetry lines. 

Electric field intensity 
The electric field intensity on the free surface needs to be 

calculated to obtain the surface density of the electric charge 
and the electric force acting on the free surface. Again, an 
arbitrary position of the free surface on the Cartesian mesh is 
an issue here. As shown in Figure 4 first we find the midpoint 
of the approximated interface line in each cell. Then, three 
directions are considered: the first two being the x and y 
directions and the third is the direction of the line connecting 
the center point of the reconstructed interface line and the 
center of the (i+2,j+2) cell (pointed out by ‘dia’ subscript here 
as shown in Figure 4). Next the derivative of the electric 
potential is computed in these directions ቀడ׎

డ௫
, డ׎
డ௬
, డ׎
డ௡ವ೔ೌ

ቁ. As the 
free surface is a boundary inside the computational domain we 
must use a directional derivative outward from the fluid 
interface. As shown in Figure 4 we select three nodes in each 
direction (nodes specified with red color in Figure 4), and 
compute the derivatives. These nodes, however, do not lie on 
the center of cells thus their values are initially unknown; they 
are calculated by interpolating between the three points. For 
example to find the electric potential at the red point in cell 
(i+2,j) of Figure 4, we use three green points as shown in the 
figure.  

Having obtained the above derivatives, we need to 
calculate the electric field intensity vector by using two of the 
above derivatives depending on the values of f in adjacent cells. 

  

 

 

j+1 

j

j-1 

i+1 ii-1 i+2

j+2

x direction 

y 
di

re
ct

io
n 

Dia. direction

∆ ௜ܻ ௝ 

∆ ௜ܺ ௝  

ܴ

Figure 4: Nodes and directions used for the electric 
field intensity calculation.  First, three green points 

are used to obtain the electric potential value at each 
red point (as shown symbolically for the red point 
within cell (i+2,j)). The red points are then used to 
calculate the potential derivative. (Only the three 

green points used to interpolate the potential value 
on are shown in the figure.) 
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RESULTS AND DISCUSSION 
 Although boundary condition capturing for Laplace 

equation on irregular domains is a conventional method [16] its 
integration with VOF scheme is new and presented here for the 
first time. So to verify the formulation and the implementation 
of the numerical scheme, the results are compared with the 
experimental solutions data.  

Figure 5 shows the generic geometry of an electrowetting 
setup. A drop of a partially wetting conductive liquid is placed 
on a flat electrode, which is covered by a thin insulating layer. 
The liquid is typically an aqueous salt solution. Materials are 
chosen such that the contact angle (Young’s angle) in the 
absence of electric field is rather large, θs > 90◦. When a 
voltage is applied between the liquid and the electrode an 
electrostatic force acting on the free surface near the contact 
line makes the drop spread on the plate. 

 

Figure 6: A conductive drop placed on an electrode covered by 
an insulating layer.  

 
This phenomenon is used to pump fluid in micro scale but 

here we use it only to verify our models. So by assuming 150 
micrometers for the insulating layer, two different voltages 
were applied and results were compared with experiments. In 
Figure 6 and Figure 7 the final drop shapes after the application 
of the electric field are shown, the numerical results are also 
indicated with solid lines in the images and a good agreement 
between the numerical and experimental results is obvious. 

The applied potential differences are 823 volts and 1162 
volts respectively. In this simulation the consequential contact 
angle is 170 degrees which is the same as that reported in [17]. 
The discrepancy on the right side of the drop in Figure 7 is due 
to placement of the electrode on this part instead of placing it in 
the middle of the drop which has spoiled the symmetry of the 
drop.  

The reason to choose this case for verification of the 
numerical model is that there is no oscillating drop shape and 
stable state results of the drop shape are available for 
comparison in this experiment. 

The initial shape of the drop is assumed spherical and the 
number of grids in the radius of the drop is 75.   

 

 

Electrostatic Atomization 
In the spindle mode of the electrostatic atomization, there 

are three different length scales: 
1. The largest length scales is related to the spacing 

between the capillary nozzle and the electrode facing 
it. 

2. The next length scale is that of the cone which forms 
at the outlet of the capillary. 

3. The smallest length scale is associated with the jet 
departing from the vertex of the. 

According to the above the largest length scale is 104 times 
greater than the smallest one and this is an issue while mesh 
generation for the solution domain is performed. In order to 
manage the problem of different length scales in the domain in 
this work the formation of the cone shaped part is focused on 
and the jet part is assumed negligible in simulation due to its  
negligible size in comparison with the size of the cone part. 

 

Figure 7: The final drop shape after the application of 
the electric field. Numerical result is indicated by the  

solid line. The applied voltage is 823 volts. 
Experimental image from [17]. 

 

 
Figure 8: The final drop shape after the application of electric 

field. Numerical result is indicated with solid line. Applied 
voltage is 1162 volts. Experimental image from [17]. 

 
This assumption has no significant effect on the cone part and 
just decreases the accuracy of the solution at the vicinity of the 

 ܵߠ
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cone vertex. Then we divide the solution domain into two 
zones: 

1. The zone in which both hydrodynamic and 
electrostatic equations are solved (this zone is referred 
to as zone 1). 

2. The zone in which just electrostatic equations are 
solved (this zone is referred to as zone 2). 

These two zones are illustrated in Figure 8. The zone defined 
by solid black color at the centre of the domain is the zone 1 
and the rest of the domain is treated as zone 2. Uniform 
structured mesh is used for zone 1 and Non-uniform structured 
mesh is used for zone 2. The grid used for zone 2 is shown in 
Figure 9Error! Reference source not found.. 

In figure 10 stages of a complete oscillation is shown.  
Applied voltage for this case is 3.2 KV, outside diameter of the 
nozzle is 510 µm and flow rate is 5 µl/min. The reference zero-
point for time is the moment in which the spindle shaped part is 
separating from the main flow. A mesh with 60 cells lying in 
the outside radius of the capillary nozzle is used for this 
simulation. 

After the separation of the spindle part at zero time the 
meniscus moves upward so the curvature of the free surface 
and consequently the surface tension force at the middle part 
decreases (t=0.18 ms). As a result liquid flows toward the 
middle point and the shape of the free surface changes to a 
cone again (t=0.82 ms). In this status the electrostatic forces 
dominate the surface tension force at the cone vertex and cause 
the vertex more pointed until a very narrow jet of liquid 
emerges from the vertex. This jet is atomized into very fine 
droplets at a short distance from the cone vertex. As mentioned 
above the jet and fine droplets leaving the cone vertex are not 
considered while mesh generation and assumed neglidible in 
simulation due to their negligible sizes in comparison with the 
size of the cone so they are not visible in the simulation results. 
Instead of this jet there are very small particles of the liquid 
with radiuses up to 3 cells leaving the cone vertex (t=0.98 ms). 
Departure of these particles stretches the vertex of the cone 
down and the stretched part which has a spindle-like shape 
separates the cone (t=1.55 ms). The length scale of this spindle-
like part is greater than that of the jet and is obvious in the 
simulation results. There is a jet at the vertex and this jet is 
atomized into very fine droplets before the spindle forms. 

 
 

Figure 8 : The zone defined by solid black color at the centre 
of the domain is the zone 1 in which the hydrodynamic and 

electrostatic equations are solved and the rest of the domain is 
zone 2 in which just electrostatic equations are solved. 

  

 
Figure 9 : The grid used for numerical calculations. Uniform 

structured mesh is used for the central part which is shown by a 
black square in figure 8 and the non-uniform structured mesh is 

used for the rest of the domain.
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0.98 ms 1.14 ms 1.30 ms 

 
1.40 ms 1.48 ms 1.55 ms 
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Figure 10 : The free surface shape in different stages of an oscillation in spindle mode. Applied voltage is 3.2 KV, outside 
diameter of the nozzle is 510 µm and flow rate is 5 µl/min. 
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CONCLUSIONS 
In this study, the effect of the electric field on the flow of a 

conductive liquid with the free surface is simulated. Simulation 
is performed for transient state and the volume of fluid method 
is used to track and reconstruct the free surface. The electric 
field effect on the flow is due to the electrostatic forces acting 
on the free surface. To calculate this forces we first find the 
electric potential field in the solution domain and then  using 
that calculate the electric field intensity and electric charge 
density and finally the electrostatic forces on the free surface. 
To verify the numerical results a simplified case of 
electrowetting phenomenon is simulated and free surface shape 
in stable state is compared with experimental results. The good 
agreement between the numerical and experimental results can 
demonstrate the accuracy of the model. 

At last the electrostatic atomization in spindle mode is 
simulated using the developed code. By doing this the 
capability of the code to simulate the transient flows is shown. 
Additional results will be presented in future works. 
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