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ABSTRACT 
 In this paper the motion of micro fibers in a microchannel is 
studied numerically. The liquid flow regime is considered to be 
laminar and it is assumed that the fluid and the fibers have a 
one-way interaction meaning the effects of fibers on the flow 
are neglected. An inlet plenum of the microchannel with 15 
channels considered as the physical domain. The fluid flow in 
the model is solved numerically by an Eulerian approach using 
the conventional SIMPLE algorithm. To study the motion of 
the micro fibers in the flow, the fibers are considered to be 
ellipsoids of revolution. A code is developed which uses the 
fluid flow results and solves the equations of ellipsoid motion 
in a Lagrangian reference frame. The equations of ellipsoid 
motion consist of three equations for the translational motion 
and three equations for the rotational motion. The equations are 
integrated numerically to find the trajectory and the orientation 
of the micro fibers in the microchannel.  
 
INTRODUCTION 
The microchannel heat sink introduced by Tukerman and Pease 
[1] in the early of 1980’s, has become a major consideration 
area of the researchers in the past two decades. Small mass and 
volume, large convective heat transfer coefficient, very high 
surface area to volume ratio and small needed coolant volume 
are some specific characteristics of microchannels which make 
them interesting in both research and practical areas. Although, 
the mentioned advantages make the microchannel unique in the 
cooling and heat transfer fields, some phenomena affect the 
main duty of the microchannels as cooling devices. The term 
“fouling” was originally used in the oil industry and was widely 
used in the literature to describe any undesirable deposition 
causing an increase in the thermal resistance of a heat 
exchanger [2]. Benzinger [3], Yiantsios [4] and Niida [5] have 
studied the fouling in a microchannel having channels with 
small hydraulic diameters. Perry and Kandlikar [6] investigated 

the fouling in a silicon microchannel with hydraulic diameter of 
225 micrometers. They investigated fouling of 4 µm silica and 
1.25 µm alumina particles dispersed in water. They observed 
no particle deposition within the channels because of the high 
shear stress in flow at the channels compared to the usual 
channels. It was expressed that there is a secondary effect on 
the particulate fouling when fibrous elements exist. They 
observed the fibrous materials with several hundred microns in 
length caught at the channel entrance. The additional fibers get 
caught in this fiber web. The fiber web causes an increase in the 
pressure drop and particle deposition because it acts as a fiber 
filter. The fibrous material of about 20-microns diameter was 
found to be from the citric acid buffer solutions used for the 
preparation of the microfluids. Recently, Dastan and Abouali 
[7] have studied numerically the effects of fiber web at the 
channel entrance of a microchannel on the pressure drop and 
particles collection. It was shown in that study, the fiber web 
has a considerable effect on the pressure drop in the system and 
it can act as a fiber filter to collect the particles, as well. So, it is 
needed to study more about the fibrous element motion and 
deposition in a microchannel system. 
The concept of the fluid with the suspended fibrous particles 
has many applications in the industry e.g. in composite material 
production, environment and chemical engineering and paper 
production industry. The deposition of the inhaled fibrous 
particles in the respiratory system is important and dangerous 
for health, as well. So, the investigation of the high aspect ratio 
particles motion has received the attention of many researchers. 
Galily and co-workers [8] conducted series of theoretical and 
experimental study on the motion of ellipsoidal particles. Fan 
and Ahmadi [9] have studied the effects of shape, aspect ratio 
and density ratio of particles to fluid on the dispersion of 
ellipsoidal particles in an isotropic pseudo-turbulent flow field. 
In addition, they have investigated the deposition of ellipsoidal 
particles in a turbulent flow [10 and 11]. Chen and Yu [12] and 
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Högberg et al. [13] have studied the motion of fibers in a 
laminar flow, as well.  Lin et al. [14] have studied the effects of 
the aspect ratio on the deposition of cylindrical particles by the 
Lattice-Boltzman method. 
In this paper, the motion of fibrous particles in a laminar flow 
in the inlet plenum of a microchannel is investigated 
numerically. The fibrous elements are considered to be 
ellipsoids of revolution. In contrast with spherical particles, the 
orientation and rotation of particles with high aspect ratio may 
not be neglected. This makes the solution procedure more 
complicated in both mathematics and computation. The 
equations of ellipsoidal particle motion in a given flow field 
will be explained in the following sections. This study is a first 
step for the prediction of a fiber web formation at the entrance 
of the microchannels. 

 
NOMENCLATURE 

 
A rotation matrix 
a fiber semi minor axis (m) 
b fiber semi major axis (m) 
F force (N) 
g gravity acceleration (m/s2) 
I moments of inertia(kg.m2) 
K resistance matrix 
m mass (kg) 
P pressure (Pa) 
T torque (N.m) 
V, u velocity vector (m/s) 
Greek symbols  
β aspect ratio 
μ dynamic viscosity (kg/m.s) 
ρ density (kg/m3) 
ν kinematic viscosity (m2/s) 
φ, θ, ψ Euler angles 
εi , η Euler parameters 
τ relaxation time (s) 
ω angular velocity (rad/s) 
Supercripts  
fib Fiber 
fld Fluid 
h hydrodynamic 
 
 
MODEL DESCRIPTION 
An inlet plenum of a microchannel with a circular inlet and 15 
fluid carrier channels is considered as the physical domain of 
the problem. The plenum inlet which is connected to the top of 
the plenum is a circular duct with the diameter of 1.5 mm. Each 
fluid carrier channels of the system has a cross section with 205 
μm in width and 251 μm in depth. To reduce the size of the 
computational domain the channel part of the system is not 
simulated and the entrance of the channels is considered as the 
outlet of the computational domain. The separating fin between 
each channel is 97 μm wide.  The plenum depth and length are 
300 μm and 2.5 mm, respectively. 
According to the above explained model, the physical domain 
has the dimensions of 2500×4433×300 μm . A schematic view 
of the plenum is shown in figure 1. The origin of the inertial 

coordinate system is located at the center of the circular inlet 
duct at the bottom of the plenum while the Z axis is 
perpendicular to the bottom wall. The left wall of the plenum 
(figure 1) is located at x= -1050 μm and the entrance of the 
channels is located at x= +1450 μm. The inlet plane is located 
at z= +300 μm, as well. All properties of the fluid correspond to 
water at 23̊C and assumed to be constant. The density  and 
dynamic viscosity of the water in this temperature are ρf=997.6 
Kg/m3 and μf=9.3958×10-4 Kg/m.s, respectively. The fiber 
density is ρp=2400 Kg/m3. 

 
Figure 1.  Schematic view of the inlet plenum. 

 
NUMERICAL METHOD 
Some simplifications are assumed before solving the governing 
equations. The steady incompressible flow with constant fluid 
properties was considered. The flow is laminar. The only body 
force is the gravitational force which acts in the direction of the 
plenum depth. Based on these assumptions the fluid governing 
equations are continuity and momentum as the following: 
𝛻𝛻�⃗ .𝑉𝑉�⃗ = 0                                                                                   (1) 
𝑉𝑉�⃗ .𝛻𝛻𝑉𝑉�⃗ = − 1

𝜌𝜌
𝛻𝛻�⃗ 𝑃𝑃 + 𝜈𝜈𝛻𝛻2𝑉𝑉�⃗ + �⃗�𝐹                                                  (2) 

The mass flow rate boundary condition is used at the inlet duct. 
Also, at each channel entrance considered as the outlet of the 
domain, the mass flow rate of the fluid is set to be 1/15 of total 
inlet flow rate. No-slip boundary condition is used for all walls. 
A combination of the structured and unstructured 
computational grid is used for the grid generation process. An 
unstructured grid is generated in the area around the circular 
duct, while a structured grid is used for the other parts of the 
domain. The whole computational domain cell numbers were 
found to be a bit more than 1,000,000 cells. 
The governing equations (1 and 2) and corresponding boundary 
conditions are solved by an Eulerian approach. The solution is 
based on the finite volume method by employing the SIMPLE 
algorithm. The convective terms are discritized by an upwind 
scheme and the viscose terms by the central differencing. 
For the grid study purpose, a solution-adaptive grid refinement 
is performed using the curvature approach [15]. The velocity 
gradient value is calculated for the whole domain and 10% of 
the maximum gradient value is selected as a refinement 
threshold. The cells with gradient values more than the 
threshold are refined. By using a finer grid no noticeable 
change in numerical results (less than 2%) was observed so the 
initial computational grid was selected. 
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Figure 2 shows three coordinate systems used in the motion 
investigation of ellipsoidal particles, where 𝐱𝐱 = [x, y, z] is the 
inertial coordinate system and 𝐱𝐱� = [x�, y�, z�] is the particle 
coordinate system while its origin is on the mass center of the 
particle and the z� axis is along the major axis of the particle. 
The third coordinate system 𝐱𝐱�� = �x��, y��, z��� is co-moving frame 
coordinate system with its origin is located on the origin of 
particle coordinates and its axes being parallel to the axes of 
inertial coordinate system. 
The transformation from a given Cartesian coordinate system to 
another can be carried out by means of three successive 
rotations. The Euler angles (𝜙𝜙,𝜃𝜃,𝜓𝜓) are defined as three 
successive angles of rotations. The Euler angles used here as 
the x-convention of Goldstein [16]. Figure 3 shows the 
definition of the Euler angles. 

 
Figure 2. Three different coordinate systems used for the 

simulation of motion of nonspherical particles.  
 

 
Figure 3. The transformation between two Cartesian 

coordinate systems through three successive rotations. 
Euler angles are the angle of rotation in each step. [16] 

 

The transformation between the co-moving frame coordinates 
and the particle coordinates is given by a linear transformation: 
x� = Ax��                                                                                      (3) 
Where A matrix may be expressed as a function of Euler angles 
[16], i.e.  

𝐴𝐴 = �
𝑐𝑐𝜓𝜓 𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜃𝜃 𝑠𝑠𝜙𝜙 𝑠𝑠𝜓𝜓 𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙 − 𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙 𝑠𝑠𝜓𝜓 𝑠𝑠𝜓𝜓 𝑠𝑠𝜃𝜃
−𝑠𝑠𝜓𝜓 𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜃𝜃 𝑠𝑠𝜙𝜙 𝑐𝑐𝜓𝜓 −𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙 + 𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙 𝑐𝑐𝜓𝜓 𝑐𝑐𝜓𝜓 𝑠𝑠𝜃𝜃

𝑠𝑠𝜃𝜃 𝑠𝑠𝜙𝜙 −𝑠𝑠𝜃𝜃 𝑐𝑐𝜙𝜙 𝑐𝑐𝜃𝜃
�  (4) 

 
Where sφ=sin(φ) and cφ=cos(φ). 
Due to the singularity in the calculation for the time rates of 
changes of Euler angles [11], the transformation matrix of A 
based on the Euler parameters (𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜂𝜂) is used in the 
simulation of particle motion, i.e. 

𝐴𝐴 = �
1 − 2(𝜀𝜀2

2 + 𝜀𝜀3
2) 2(𝜀𝜀1𝜀𝜀2 + 𝜀𝜀3𝜂𝜂) 2(𝜀𝜀1𝜀𝜀3 − 𝜀𝜀2𝜂𝜂)

2(𝜀𝜀2𝜀𝜀1 − 𝜀𝜀3𝜂𝜂) 1 − 2(𝜀𝜀3
2 + 𝜀𝜀1

2) 2(𝜀𝜀2𝜀𝜀3 + 𝜀𝜀1𝜂𝜂)
2(𝜀𝜀3𝜀𝜀1 + 𝜀𝜀2𝜂𝜂) 2(𝜀𝜀3𝜀𝜀2 − 𝜀𝜀1𝜂𝜂) 1 − 2(𝜀𝜀1

2 + 𝜀𝜀2
2)
�    (5) 

 
Where the Euler parameters are related to Euler angles by [16] : 
  
𝜀𝜀1 = cos 𝜙𝜙−𝜓𝜓

2
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃

2
                  𝜀𝜀2 = sin 𝜙𝜙−𝜓𝜓

2
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃

2
        

                                                                                                 (6) 
𝜀𝜀3 = sin 𝜙𝜙+𝜓𝜓

2
𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃

2
                   𝜂𝜂 = cos 𝜙𝜙+𝜓𝜓

2
𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃

2
 

 
The above equations relate a set of four parameters to one of 
three parameters. Therefore, the Euler’s four parameters are 
subjected to a constraint given by: 
𝜀𝜀1

2 + 𝜀𝜀2
2 + 𝜀𝜀3

2 + 𝜂𝜂2 = 1                                                            (7) 
 
The details of derivation of translation and rotation motion 
equations of ellipsoidal particles have been described in the 
references [10] or [11]. Therefore, only a summary of the 
equations is provided here. 
Basic equations of translational and rotational motions of a 
nonspherical particle can be expressed by 

𝑚𝑚𝑓𝑓𝑠𝑠𝑓𝑓 𝑑𝑑𝒗𝒗��⃗
𝑑𝑑𝑑𝑑

= �𝑚𝑚𝑓𝑓𝑠𝑠𝑓𝑓 − 𝑚𝑚𝑓𝑓𝑓𝑓𝑑𝑑 ��⃗�𝑔 + 𝑓𝑓ℎ����⃗                                       (8) 

𝐼𝐼𝑥𝑥�
𝑑𝑑𝜔𝜔𝑥𝑥�
𝑑𝑑𝑑𝑑

− 𝜔𝜔𝑦𝑦�𝜔𝜔�̂�𝑧�𝐼𝐼𝑦𝑦� − 𝐼𝐼�̂�𝑧� = 𝑇𝑇𝑥𝑥�
ℎ                                             (9) 

𝐼𝐼𝑦𝑦�
𝑑𝑑𝜔𝜔𝑦𝑦�

𝑑𝑑𝑑𝑑
− 𝜔𝜔�̂�𝑧𝜔𝜔𝑥𝑥�(𝐼𝐼�̂�𝑧 − 𝐼𝐼𝑥𝑥�) = 𝑇𝑇𝑦𝑦�

ℎ                                           (10) 

𝐼𝐼�̂�𝑧
𝑑𝑑𝜔𝜔𝑧𝑧�
𝑑𝑑𝑑𝑑

− 𝜔𝜔𝑥𝑥�𝜔𝜔𝑦𝑦��𝐼𝐼𝑥𝑥� − 𝐼𝐼𝑦𝑦�� = 𝑇𝑇�̂�𝑧
ℎ                                           (11) 

 
Where the translational motion equation is expressed in the 
inertial coordinate system and the rotational motion equations 
are expressed in the particle coordinate. 
The expression for the hydrodynamic drag force (fh) acting on 
an ellipsoidal particle was derived by Brenner [17] as follows: 
𝑓𝑓ℎ = 𝜇𝜇𝜇𝜇𝜇𝜇𝐾𝐾��. (𝑢𝑢 − 𝑣𝑣)                                                           (12) 
 
Where a is the semi minor axis of the particle and 𝑢𝑢�⃗  is the fluid 
velocity vector at the mass center of particle. The resistance 
tensor k�� is given by  
𝐾𝐾�� = 𝐴𝐴−1𝐾𝐾�𝐴𝐴                                                                            (13) 
 
Where k� is a diagonal matrix where: 
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𝑘𝑘𝑥𝑥�𝑥𝑥� = 𝑘𝑘𝑦𝑦�𝑦𝑦� = 16�𝛽𝛽2−1�

�2𝛽𝛽2−3

�𝛽𝛽2−1
𝑓𝑓𝑠𝑠�𝛽𝛽+�𝛽𝛽2−1�+𝛽𝛽�

                            (14) 

𝑘𝑘�̂�𝑧�̂�𝑧 = 8�𝛽𝛽2−1�

�2𝛽𝛽2−1

�𝛽𝛽2−1
𝑓𝑓𝑠𝑠�𝛽𝛽+�𝛽𝛽2−1�+𝛽𝛽�

                                         (15) 

                                                   
And β is the particle aspect ratio. 
The expression for the hydrodynamic torque (Th) acting on an 
ellipsoid was obtained by Jeffery [18], are given as 

𝑇𝑇𝑥𝑥�ℎ =
16𝜇𝜇𝜇𝜇𝜇𝜇3𝛽𝛽

3(𝛽𝛽𝑐𝑐 + 𝛽𝛽2𝛾𝛾𝑐𝑐) �
(1 − 𝛽𝛽2)𝑑𝑑𝑧𝑧̂𝑦𝑦� + (1 + 𝛽𝛽2)�𝑤𝑤𝑧𝑧̂𝑦𝑦� − 𝜔𝜔𝑥𝑥��� 

                                                                                               (16) 

𝑇𝑇𝑦𝑦�ℎ =
16𝜇𝜇𝜇𝜇𝜇𝜇3𝛽𝛽

3(𝛽𝛽2𝛾𝛾𝑐𝑐 + 𝛼𝛼𝑐𝑐) �
(𝛽𝛽2 − 1)𝑑𝑑𝑥𝑥�𝑧𝑧̂ + (1 + 𝛽𝛽2)�𝑤𝑤𝑥𝑥�𝑧𝑧̂ − 𝜔𝜔𝑦𝑦��� 

                                                                                               (17) 

𝑇𝑇�̂�𝑧
ℎ = 32𝜇𝜇𝜇𝜇 𝜇𝜇3𝛽𝛽

3(𝛼𝛼𝑐𝑐+𝛽𝛽𝑐𝑐) �𝑤𝑤𝑦𝑦�𝑥𝑥� − 𝜔𝜔�̂�𝑧�                                               (18) 
 
Where 𝑑𝑑𝑠𝑠̂𝑗𝑗 ̂  and 𝑤𝑤𝑠𝑠̂𝑗𝑗 ̂ are the elements of the deformation rate and 
spin tensors, respectively. 

𝑑𝑑�̂�𝑠�̂�𝑗 = 1

2
�𝜕𝜕𝑢𝑢𝑠𝑠̂
𝜕𝜕𝑥𝑥�̂�𝑗

+
𝜕𝜕𝑢𝑢�̂�𝑗
𝜕𝜕𝑥𝑥𝑠𝑠̂
� (19) 

𝑤𝑤𝑠𝑠̂𝑗𝑗 ̂ =
1
2
�𝜕𝜕𝑢𝑢𝑠𝑠̂
𝜕𝜕𝑥𝑥𝑗𝑗�

−
𝜕𝜕𝑢𝑢𝑗𝑗�
𝜕𝜕𝑥𝑥𝑠𝑠̂
�                                                                (20) 

It should be noted that the velocity gradient in the above 
equations is in the particle coordinates and it could be obtained 
by using the following transformation 
𝐺𝐺� = 𝐴𝐴 𝐺𝐺�� 𝐴𝐴−1                                                                          (21) 
The dimensionless parameters αo , βo and γo in the equations 16-
18 are as the following: 

𝛼𝛼𝑐𝑐 = 𝛽𝛽𝑐𝑐 = 𝛽𝛽2

𝛽𝛽2−1
+ 𝛽𝛽

2(𝛽𝛽2−1)3
2�
𝑓𝑓𝑠𝑠 �𝛽𝛽−�𝛽𝛽

2−1
𝛽𝛽+�𝛽𝛽2−1

�              (22)                                                                                                                                                                             

𝛾𝛾𝑐𝑐 = − 2
𝛽𝛽2−1

− 𝛽𝛽

2(𝛽𝛽2−1)3
2�
𝑓𝑓𝑠𝑠 �𝛽𝛽−�𝛽𝛽

2−1
𝛽𝛽+�𝛽𝛽2−1

�                     (23)   

                                                                                           
The volume of an ellipsoidal particle is 
𝑉𝑉 = 4

3
𝜇𝜇𝜇𝜇3𝛽𝛽  (24) 

and the principal moments of inertia are given by 

𝐼𝐼𝑥𝑥� = 𝐼𝐼𝑦𝑦� =  �1+𝛽𝛽2�𝜇𝜇2

5
𝑚𝑚𝑓𝑓𝑠𝑠𝑓𝑓                                                    (25) 

𝐼𝐼𝑧𝑧̂ =
2𝜇𝜇2

5
𝑚𝑚𝑓𝑓𝑠𝑠𝑓𝑓  

The time rates of change of Euler parameters are given by 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝜀𝜀1
𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀2
𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀3
𝑑𝑑𝑑𝑑
𝑑𝑑𝜂𝜂
𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= 1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜂𝜂𝜔𝜔𝑥𝑥� − 𝜀𝜀3𝜔𝜔𝑦𝑦� + 𝜀𝜀3𝜔𝜔�̂�𝑧

𝜀𝜀3𝜔𝜔𝑥𝑥� + 𝜂𝜂𝜔𝜔𝑦𝑦� − 𝜀𝜀1𝜔𝜔�̂�𝑧

−𝜀𝜀2𝜔𝜔𝑥𝑥� + 𝜀𝜀1𝜔𝜔𝑦𝑦� + 𝜂𝜂𝜔𝜔�̂�𝑧

−𝜀𝜀1𝜔𝜔𝑥𝑥�−𝜀𝜀2𝜔𝜔𝑦𝑦� + 𝜀𝜀3𝜔𝜔�̂�𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                               (26) 

And the particle position can be easily obtained from 
𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒗𝒗                                                                                  (27) 

A computer code was developed to solve the above mentioned 
equations of ellipsoidal particle motion in a general flow field. 
For the numerical integration of the equations 8-11 a mixed 
procedure is used as the one used by Fan and Ahmadi [11]. The 
time derivations on the left-hand sides are discretized by 
forward differencing. In each equation, the particle translational 
or angular velocities on the right hand side corresponding to the 
dependent variable in the time derivative term is evaluated at 
the next time step, and all the other terms are evaluated at the 
current time step. Equations 26 and 27 are discretized by the 
simple explicit Euler scheme. The integration time step is 
chosen to be about one order smaller than the ellipsoid particle 
relaxation time given by: 

𝜏𝜏 = 2𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓 𝑔𝑔𝜇𝜇2𝛽𝛽
9𝜇𝜇𝜇𝜇

                                                                     (28) 

The developed code algorithms follow the next steps: 
1- The initial location, orientation, translation and angular 
velocity of the particle are inputted to the code. The initial 
orientation of the particle is expressed based on Euler angles, 
and then they will be transformed to Euler parameters through 
equation 6. 
2- Using equation 5 to calculate matrix A. 
3- The fluid velocity and the fluid velocity gradient are 
estimated at the mass center of the particle due to a Shepard 
interpolation procedure [19] by choosing data values from the 
nodes of cell that includes the particle. 
4- Equations 8-11, 26 and 27 are solved to find the new particle 
location and orientation. 
5- The solution process returns to step 2 until the particle 
attaches to the wall or leave the domain (the desired time period 
of the solution is chosen enough long to ensure that the particle 
reaches to a boundary). 
One of the problems occurred in the particle tracking is to find 
the computational cell which includes the particle. This process 
may take many computational and time efforts. The concept of 
neighbor cells is used to solve this problem. In the beginning of 
the solution procedure two kinds of neighbors of a cell are 
determined for each cell by using an auxiliary structured mesh 
(ASM). The first degree neighbors have a common face with 
the cell and the second degree neighbors have a common node 
with it. If the integration time step is chosen properly, the 
particle leaving the cell has to enter one of the neighbor cells. 
This concept makes the particle tracking process easy and 
reduces the computational time. 
Because of non-iterative nature of the solution, the 
computational error grows in time and causes the Euler 
parameters not to satisfy the equation 7 exactly. To prevent the 
increase of error, at the end of each time step, the calculated 
Euler parameters are normalized to ensure us the equation 7 is 
satisfied. 
In the first step of simulation, it is assumed that the particle 
attaches to the wall when its surface touches the wall. This 
condition can be achieved for the spherical particles when the 
center of particle distance to the wall would be smaller than the 
particle radius. But the situation is more complicated for the 
ellipsoidal particles. Based on the idea introduced by Fan and 
Ahmadi [11], a general approach was developed to find the 
touch point of the ellipsoid to an arbitrary given wall. 
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When an ellipsoid touches a wall, the touch point is located on 
the symmetric plane of the ellipsoid perpendicular to the wall. 
So, in the deposition of an ellipsoid the problem is transformed 
from a 3-D domain to a 2-D one.  This means, it is enough to 
find the touch point of an ellipse -the intersection of the 
ellipsoid and the perpendicular plane of the wall- to the wall. 
Two coordinate systems 𝜉𝜉𝜉𝜉 and 𝜉𝜉𝜉𝜉 are considered at the centre 
of the ellipse, as shown in figure 4. The 𝜉𝜉 axis of 𝜉𝜉𝜉𝜉 system is 
normal to the wall and 𝜉𝜉 axis of 𝜉𝜉𝜉𝜉 system is aligned in the 
direction of particle major axis. The angle between two 
mentioned coordinate systems, α, can be found using the 
properties of inner and cross products and the rotation matrix 
A. By using equation 3, the 𝜉𝜉 vector with respect to inertial 
coordinate system is expressed as 𝜉𝜉 = [𝜇𝜇31, 𝜇𝜇32 , 𝜇𝜇33] where 𝜇𝜇𝑠𝑠𝑗𝑗  
are the elements of rotation matrix of A. A cross product of 𝜉𝜉 
and the normal vector of the wall leads to the normal vector of 
the ellipse plane and another cross product of this vector and 
normal vector of the wall leads to the 𝜉𝜉 axis which is parallel to 
the wall. Using the concept of the inner product of vectors 𝜉𝜉 
and 𝜉𝜉, the α angle can be found. 
According to the detailed discussion carried out in reference 
[11], the location of touch point in the 𝜉𝜉𝜉𝜉 coordinate system is 
given by 

ξ∗ = �
(b2−a2)2��cos α

a �
2

+�sin α
b �

2
� sin 2 α cos 2 α

�1+a2b2� 1
a2−

1
b 2� sin 2 α cos 2 α�

                      (29)                  

ζ∗ = 

 
−ξ∗ � 1

a2 −
1

b2� sinα cosα − ��cosα
a �

2
+ �sinα

b �
2
− (ξ∗/ab)2

�cosα
a �

2
+ �sinα

b �
2  

                                                                                               (30) 
With the equations 29 and 30 and the coordinate of mass center 
of the particle, the touch point of the ellipsoid to the wall can be 
determined easily. 
 
RESULTS AND DISCUSSION 
The flow field is solved for three different total inlet flow rates 
of 20.2, 29.4 and 38.6 mL/min. These values are chosen in a 
way that the average velocity in the channels will be 0.44, 0.64 
and 0.84 m/s respectively. Figure 5 shows the velocity contour 
for the total flow rate of 29.4 mL/min in a horizontal plane 
located at the middle of channel depth (z = 175.5 μm). The 
maximum velocity in the plane happens at the channel entrance 
region. The fluid velocity almost vanishes at both left corners 
of the plenum. To prevent the collection of particles in these 
two recirculation zones, the microchannels should be designed 
with round plenum corners. 
Figure 6 shows the velocity contour for the total flow rates of 
29.4 mL/min at the central vertical plane of the plenums. The 
inlet fluid is divided into two parts. One flows into the right 
side and the other flows into left side, making a circulation 
zone. The stagnation point at the channel plenum bottom wall 
can be seen easily. 
In this paper, it is assumed that the particles have a one-way 
interaction with the fluids, meaning the effects of the particles 
on the flow are neglected. The particle motion study is done by 
a Lagrangian approach. 

 
Figure 4.  Two coordinate systems are used to find the 

touch point of an ellipsoid. 
 

 
Figure 5.  The velocity contours in a horizontal plane at 

z=175.5 μm in the total flow rate of 29.4 mL/min 
 
 
To validate the developed code for solving the particle motion 
equations, a fully developed laminar flow in a pipe is 
considered. The xz plane of the inertial coordinate system is 
located at the cross section of the pipe while the y axis is along 
the pipe length. The average velocity of the fluid is 0.12 m/s 
while the pipe diameter is 2 mm and the fluid density and 
dynamic viscosity are assumed to be ρf=1 Kg/m3 and μf=1×10-5 
Kg/m.s, respectively. An ellipsoidal particle with semi minor 
axis of a = 5 μm, aspect ratio of β=20 and density of ρp=1000 
Kg/m3 is injected in the flow. The initial location of the particle 
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Figure 6.  The velocity contours in a vertical plane at y=0 
in the total flow rate of 29.4 mL/min (the color values are 
the same as those of figure 5) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  The trajectory of a fiber in a fully developed 
pipe flow in three different planes. 

 

 

 

 

 

 

 

 

Figure 8.  The trajectories of the similar fibers which 
injected in different locations at the central plane of the 
plenum.  
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is set as xo=0.75 R (R is the pipe radius) and zo=0. The initial 
Euler angles are φo=45º, θ o= -45º and ψ o=0º. The particle 
relaxation time based on the equation 28 is τ = 0.905. Figure 7 
shows the location and orientation of the fiber in three different 
planes. The results are in a very good agreement with those 
offered by Chen and Yu [12] and Högberg [13]. In the pipe 
flow, the fiber rotates because of the hydrodynamic torque and 
tends to align with the flow while moving in the streamwise 
direction. The small drift motion is also observed in the x-
direction. 
Figure 8 shows the trajectories of the injected ellipsoids in the 
total flow rates of 20.2 mL/min in the studied microchannel 
plenum. The semi minor axis of the ellipsoid and the aspect 
ratio are 10 μm and 10, respectively. The particles injected at 
the central plane of the plenum at the duct inlet having different 
x-coordinate locations (y= 0, z= 300 μm). The particle 
orientation is in a way that the fiber major axis aligns in the z 
direction, so three initial Euler angles is set to be zero. The 
particle does not tend to move in the y-direction, because the 
velocity gradient vanishes at the central plane of the plenum. 
So, the motion of the particle in the y-direction is not shown. 
The major axis of the injected particles is assumed to be in the 
direction of inlet fluid. Therefore the initial Euler angles vanish. 
The results show that the mass center of the fiber almost 
follows the flow path line passes through the injection point of 
the fiber as the spherical particles [7]. The orientation of the 
fiber in the flow is a direct function of the velocity gradient. 
The rotation direction of the fiber follows a simple qualitative 
rule. Considering the direction of the translational motion of the 
fiber, it rotates in a way that the fiber passes from high velocity 
region to the lower velocity one in a direction consistent with 
the streamwise. For instance, as shown in the figure, both 
particles injected from x=200 μm and x=700 μm move in the 
right hand side direction. According to figure 6, the high 
velocity region is between the paths of these two particles. For 
the lower particle (injected at x= 200 μm), the high velocity 
region is at the above of the particle location and therefore the 
particle rotates clock wise. On the other hand, for the upper one 
(injected at x=700 μm), the particle rotates counter clock wise. 
In summary, the rotation of the fiber in a given flow field is a 
complicated phenomenon which is a function of the velocity 
gradient (rate of shear) and the particle motion direction. 
Furthermore, the complicated behavior of the flow field in the 
microchannel geometry makes the prediction of the fiber 
orientation difficult. 
The trajectories of three similar fibers injected at x= 400 μm in 
three different flow rates are shown in figure 9. As shown in the 
figure, the trends of motion of the fibers in all three cases are 
similar but only the z-coordinate of the fibers is different. It 
may be because of the increase of the z-direction velocity of the 
fluid which causes the particle to be transferred to the lower z-
coordinate before it changes its motion direction to the outlet 
boundary. 
To study the effects of the aspect ratio of the fibers on their 
motion, 5 different fibers with the same volume and different 
aspect ratio are considered. They were injected to the flow with 
the flow rate of 38.6 mL/min from the same location. The 
trajectories of the particles are shown in figure 10. The particles 
with smaller aspect ratio tend to move in the lower location in z 

direction, near the bottom wall of the plenum, where the shear 
rate is high relatively. The higher velocity gradient which the 
fiber experiences in the near wall motion makes the behavior of 
the particle different. Two fibers with lower aspect ratios (β= 3 
and β= 5) rotate counter clock wise and touch the wall before 
they can leave the domain as the other particles. 
 

 
Figure 9. The trajectories of three similar fibers at 
different total flow rates of the fluid. 
 

 
Figure 10. The trajectories of the fibers with the same 
volume ant different aspect ratio for the flow rate of 38.6 
mL/min  
 
CONCLUSION 
In this paper the flow field in a plenum of a microchannel with 
15 channels and one circular inlet duct was solved numerically 
in three different flow rates. A general code which solves the 
equations of an ellipsoid in a general 3-D flow field was 
developed. The fiber motion simulation was done by a 
Lagrangian approach, while the flow filed equations were 
solved by an Eulerian one. The trajectory of a fiber simulated 
by the code was validated by the results of earlier researchers. 
It was found that the fiber mass centers follow the path lines 
which pass through the injection point of the fibers. The 
orientation of the fibers in the flow is a complicated 
phenomenon which may not predict without solving the 
equation of motion. The velocity gradient, aspect ratio and the 
flow direction are the affecting factors which may change the 
orientation of the fibers in the flow. 
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