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ABSTRACT 
     This paper presents a numerical investigation based on the 

Lattice Boltzmann method for gaseous flow in a microchannel 

with rectangular grooves on the walls. Firstly, the prepared 

computer code is validated with comparison the obtained 

results with analytic solution for fully developed rarefied gas 

flow in a simple micro channel. The effects of the rectangular 

grooves on the flow characteristics and heat transfer behavior 

are discussed and the results are compared with a simple 

mircochannel. For this purpose, a two-dimensional constant 

wall temperature microchannel with air as the coolant is 

investigated. The results show that the heat removal increases 
for the grooved channel more than 50% compared with a 

simple microchannel. But the pressure drop is also increases 

due to the effects of grooves. The increase in friction factor is 

more than twice for some Knudsen numbers. 

 
 
NOMENCLATURE 

Kn   Knudsen number 

Pr 

Nu 

  Prandtl number 

  Nusselt number 

 
L   Length of channel 
H   height of channel 

h   height of groove 
w   Length of groove 

s   distance between grooves 

ρ   Density 

u
r

   velocity vector 
R   gas constant 
U0 
T 
T0 

 average velocity 
 temperature 
 wall temperature  

Tm   Bulk temperature 

q   heat flux 
ρε   Internal energy 

Dh   Hydraulic diameter 

∆Ρ   Pressure drop 

f   Friction factor 
  
c   Lattice speed 
δt   Time step 

δx   Lattice space 

fi   Hydrodynamic distribution function 
fi

eq   Hydrodynamic equilibrium distribution function  

gi   Thermal distribution function 
gi

eq   Thermal equilibrium distribution function 
τf   Momentum relaxation time 
τg   Thermal relaxation time 

ν   Kinematic viscosity 
cs   Speed of sound 
 
x 

   
  Coordinate in x direction 

y   Coordinate in y direction 

 

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30652 
 



 2 Copyright © 2010 by ASME 

 

INTRODUCTION 
Recently due to the rapid development of the micro-electro-

mechanical systems (MEMS), study of fluid flow and heat 

transfer in micro-devices have become an important area of 

researches. Small dimensions of micro-sized systems cause a 
distinct character in fluid flows. This physical phenomenon is 

related to the characteristic length scale, which is defined as Kn 

number. In MEMS, molecular mean free path is comparable 

with the characteristic length scale so Kn number is not small 

and continuum hypothesis breaks down. For 0.001 ≤ Kn ≤ 0.1, 

which is referred to slip-flow regime, the no-slip boundary 

condition is not valid and the gas flow has slip motion and 

temperature jump at the solid surfaces. Fortunately, Navier-

Stokes equations are valid in the slip flow regime so gas flow in 

this regime can be simulated using the slip boundary conditions 

[1,2]. Nowadays particle-based methods such as Lattice 

Boltzmann method is the best choice for modeling high Kn 
number flows. The Lattice Boltzmann method is an attractive 

and effective method to simulate gas flow in microchannels 

because of its intrinsic kinetic [1,3].   

As the development of electronic devices has been increased, 

the heat transfer in these devices has become an attractive topic 

and many researchers have focused on this field. Alamyane et 

al. [4] used Lattice Boltzmann method to simulate a channel 

with extended surfaces for laminar flow regime. They 

investigated the effect of different parameters on heat transfer 

enhancement such as Reynolds number, extended surfaces 

height and spacing. They found that heat transfer was enhanced 
by increasing Re number and decreasing the objects spacing. 

Also formation of vortices both in front and behind the objects 

can enhance heat transfer rate.  

Moussaoui et al. [5] studied two-dimensional flow and heat 

transfer enhancement in a horizontal channel with an inclined 

square cylinder for different Re numbers. They found that 

Lattice Boltzmann method can capture physical phenomenon 

even with a coarse mesh. Also they obtained that heat transfer 

and Nu number increase strongly as a function of Re number.  

Abouali and Baghernezhad [6] used arc and rectangular 

grooves in the floor and sidewalls for heat transfer 

enhancement in a microchannel. They found that grooved 
microchannel can remove more heat compared with simple 

microchannel and arc grooves have better effect on heat 

transfer removal compared with rectangular grooves. Also an 

optimum size and spacing for the grooves was presented.  

Yan et al. [7] experimentally investigated the effects of surface-

mounted short obstacle on heat transfer enhancement in a plate. 

Three cross-sectional shapes of obstacles, different Reynolds 

numbers, various numbers of obstacles and obstacle spacing 

was tested. The results show that heat transfer is enhanced well, 

when the height of obstacles are half of the channel height.  

In an experimental study, Chandra et al. [8] investigated fully 
developed turbulent flow in a square channel with ribbed walls. 

Different numbers of ribs and various Reynolds number were 

tested. They found that as the number of ribs increases, the heat 

transfer coefficient and friction factor increase too.  

Eiamsa-ard and Promvonge [9] numerically investigated two-

dimensional turbulent flow in a channel with grooves on the 

lower channel wall. Varying Reynolds numbers and groove-

width was investigated. The results reveal that channel with 

grooved-walls can increase heat transfer at about 158% over the 

simple channel.  

So fabricating grooves for enhancing the heat transfer is a 

verified approach in mirochannels and usual channel sizes. This 

idea was not tested before for gas flow in microchannel with 
rarefied gas condition. 

In this paper, we use Lattice Boltzmann method to simulate gas 

flow and heat transfer in a two-dimensional microchannel with 

rectangular grooves on top and bottom walls. The effect of 

grooves on heat transfer enhancement and friction factor will be 

discussed. 

 

 
PROBLEM DEFINITION 
Figure 1 shows the geometry of the problem. Rectangular 

grooves are located at the top and bottom walls of the 

microchannel, which are kept at constant temperature. Cold air 

stream flows through the channel. The Prandtl number is taken 

as 0.72 and Reynolds number is 14.5. The channel aspect ratio 
is fixed at L/H=10, the ratio of groove's height to the grooves 

distance is 0.4, the groove's height to the channel's height ratio 

(h/H) is 0.14 and the length of the grooves are two times of 

their distance (w = 2s).  

 

 
Figure 1. Grooved microchannel's geometry. 
 

 

NUMERICAL SIMULATION  
The lattice Boltzmann method, which was proposed in 1980s, is 

a new particle-based numerical method for fluid mechanics 

simulations. In this method, the macroscopic variables such as 

velocity, pressure and temperature are not solved directly and a 

mesoscopic simulation model is used. To apply this method, the 

fluid domain is discretized in regular square cells or lattices. 

Each lattice is connected to its neighbors by some links, Figure 

2. In the widely used D2Q9 model [6], there are eight links and 

fluid particles are moved only to its eight immediate neighbors 
with eight different velocities: 
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Where c is the lattice speed and determined by δx/δt, and c0 
shows the moving particles with zero velocity, which remain at 

the node.  
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Figure 2. LBM D2Q9 model 

 

In the lattice Boltzmann method the macroscopic quantities are 

obtained in terms of distribution functions fi(x,t), which can be 

calculated by solving Boltzmann equation. The Boltzmann 

equation describes how the distribution functions fi are re-

distributed after an interaction [4]. Based on the BGK model 

this equation is formulated as  
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δt is the time step and τf is momentum relaxation time. fi
eq 

models the equilibrium distribution functions, which can be 

calculated with 

].
2

3
).(

2

9
.

3
1[..

2

2

42

)(
uu

c
uc

c
uc

c
wf

eq

i

rrrr
−++= ααα ρ    (3) 

wα is weighting factor that depends on the LBM model, for 

example for D2Q9 model wα is determined as follow,  
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The physical fluid properties such as density and velocity can 

be described by the distribution functions as follows: 
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For thermal part of the problem, the governing equation for 

internal energy density distribution function gi is written as:  
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Where τg is the thermal relaxation time. In this equation the 

values of compression work carried out by pressure and viscous 

heat dissipation are neglected. gi
eq (x, t) is the corresponding 

equilibrium state in i-th direction: 
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In these equations the weighting factor wi is the same as Eq. 

(4). The internal energy, ρε, and heat flux are calculated in 

terms of internal energy density distribution function gi: 
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And finally the temperature field can be obtained 

by TRρερ = , where R is the gas constant.  

The most important dimensionless parameter in simulating 

microflows, is Kn number, so in the Lattice Boltzmann method 

first the relationship between Kn number and the relaxation 

time should be defined. In the kinetic theory, the kinematic 

viscosity varies linearly with the mean free path: λυ c5.0= , 

where c is the mean molecule velocity and is given by 

πRTc 8= . In the Lattice Boltzmann method, kinematic 

viscosity is determined by tcs ∆−= 2)5.0(τυ , where cs is the 

speed of sound. Using these two kinematic viscosities leads to a 

relation for Kn number for D2Q9 Lattice model: 
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Boundary Condition  
As mentioned before, Navier-Stokes equations even with slip 

boundary condition can be used for small deviation from 

thermodynamics equilibrium, i.e. for kn less than 0.1. In order 

to consider rarefaction effects, the Maxwell slip model has been 

widely used as the boundary condition at the walls. The first-

order slip velocity and temperature jump boundary conditions, 

which were proposed by Maxwell, follow as [16]: 
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Where Pr is the Prandtl number and γ is the specific heat ratio. 

σ = (2 - σv) / σv and φ = (2 – σT) / σT; the tangential momentum 

accommodation coefficient σv is defined as the fraction of 

molecules that are reflected diffusively, and σT is the thermal 

accommodation coefficient. In the Maxwell model, the 

accommodation coefficients are free parameters that depend on 

fluid-solid interface properties and must be determined 

experimentally, so we have no prior knowledge on the values of 
these two coefficients [14-17]. Additionally, the Maxwell slip 

boundary conditions are not appropriate for higher Knudsen 

number flow (Kn > 0.1). Another problem arises when the 

temperature jump is taken into account; increasing or 

decreasing the heat transfer with increasing rarefaction, 

depends on the ratio of the two free parameters: the momentum 

and thermal accommodation coefficients, which must be 

chosen empirically; so Reynolds analogy is not preserved any 

more [15,16]. 

To avoid aforementioned problems, recently the Langmuir slip 

model based on the surface chemistry theory has been 
suggested. In this model the interfacial interaction between the 

gas molecules and the surface molecules are taken into account. 
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Gas molecules are assumed to reside on the solid surface for a 

short period of time via a long range attractive force and after 

some time lag, these molecules may reflect from the surface. 

From the macroscopic point of view, this residence time can be 

interpreted as the degree of wall slip. Consequently in the 

Langmuir slip model the velocity slip and temperature jump 
can be expressed as [14-16,18,19] 
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The subscript w stands for the wall and subscript g represents a 

local value adjacent to the wall; for example mean free path 

away from the wall or a reference value such as free stream 
condition. Coefficient α depends on the type of the gas and wall 

material. For monatomic gases it follows as [16], 
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And for diatomic gases [16], 
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According to these expressions α varies with pressure p, Kn 

number and coefficient ω, which is similar to the slip 
coefficient in Maxwell model but it can be determined with a 

clear physical explanation before simulations. It is clear that α 

→ 1, when Kn → 0 and uslip → uw. In present study we choose 

ω = 1/4 and p = 1.0.  

Now implementation of Langmuir slip model for the Lattice 

Boltzmann method will be demonstrated. Before streaming 

step, some of the distribution functions are unknown and 

should be determined by boundary conditions. The internal 

energy and density distribution functions in c2, c5, c6 direction 

for lower wall and in c4, c7, c8 direction for upper wall are 

unknown. According to the Chapman-Enskog method the 
density and internal energy distribution functions can be 

separated in to parts: the equilibrium part and non-equilibrium 

part [16],  
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Here the expressions are written for unknown density and 

distribution functions in c2 direction for illustration. Other 

unknown distribution functions can be handled in the same 

way. Let O be the boundary node, W be the wall node and B be 
the nearest fluid node to the boundary node. The post collision 

distribution functions can be assumed as [16] 
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According to the Langmuir slip model, the natural choices for 

F2
eq(O, t) and G2

eq(O, t) are 
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f2
eq(B, t) and g2

eq(B, t) are both known since macroscopic 

quantities of the flow such as velocity, temperature and mass 

density are known at the fluid node B. For f2
eq(W, t) and 

g2
eq(W, t), the velocity u (W, t) and temperature T (W, t) are 

both known while ρ (W, t) is unknown. To handle this, using ρ 

(B, t) instead of ρ (W, t) is suggested [16] 
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For non-equilibrium part of the distribution functions at node B 

we can write 
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and the non-equilibrium distribution functions at node W can 
be approximated as [16] 
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Substitute Eq. (23) and (24) into Eq. (21) we have 
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and finally Eq. (18) becomes 
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VALIDATION OF NUMERICAL MODEL 

In order to validate our numerical model, a two-dimensional 

simple microchannel is simulated using Lattice Boltzmann 

method. A cold air is forced through the channel and the walls 

are kept at constant temperature. Figures 3 and 4 show 

comparison between velocity and temperature profiles of 

present work and related analytical solutions resulted by 

solving Navier-Stokes and temperature equations with slip and 

no-slip boundary conditions [5] 
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Where U0 is average velocity, T0 is the wall temperature; Tm is 
the bulk temperature of the stream and α is the thermal 

diffusivity. 



 5 Copyright © 2010 by ASME 

 
Figure 3. Velocity profile of micro-Poiseuille flow: 

solid line, analytical solution; square, Kn = 0.02; 
circle, Kn =0.01 

 

 
Figure 4. Temperature profile of Poiseuille flow: 

Kn<0.001 
 
As the figures 3 and 4 show, the developed numerical model is in 
complete agreement with analytical solutions and this confirms the 

validity of the developed computer code. 
 
 

RESULT AND DISCUSSION   
In this section, the numerical results of the Lattice Boltzmann 

simulation for two values of the Knudsen number: Kn = 0.015 

and 0.02 are presented. Figure 5 and Figure 6 compare heat 

removal for simple microchannel and grooved michrochannel 

at Kn = 0.015 and 0.02. As the results show, the heat removal 
of the grooved microchannel is 50 % more than that for a 

simple microchannel. 
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Figure 5. Comparison between removal heat of 
simple and grooved microchannel at Kn = 0.015 
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Figure 6. Comparison between removal heat of 
simple and grooved microchannel at Kn = 0.020 

 

Although adding rectangular grooves to a simple microchannel 

enhance the heat transfer but causes increasing of pressure drop 

and friction factor too. The friction factor is described as  
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Figure 7 compares friction factor for simple and grooved 

microchannel at Kn = 0.015. According to this figure 
rectangular grooves on top and bottom walls cause higher 

pressure drop compared with simple microchannel. So care 

must be taken to balance heat transfer enhancement and added 

friction factor. Increase of the pressure drop due to the grooves 

is more pronounced for smaller Kn numbers. The friction factor 

increases to more than twice for Kn= 0.015. 
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Figure 7. Comparison between friction factor of 
simple and grooved microchannel at Kn = 0.015 

 

CONCLUSION 
In this paper the laminar gas flow and heat transfer for slip 

regime in a two-dimensional grooved microchannel is 

investigated numerically using the Lattice Boltzmann method. 

Rectangular grooves are located on the top and bottom walls 

which are kept at constant temperature. Boundary conditions 

for slip velocity and temperature jump are applied at the walls. 

The effects of Kn number and rectangular grooves on heat 

transfer enhancement and friction factor of the microchannels 

are also studied. The results show that adding rectangular 
grooves at microchannel's walls, increase heat transfer and 

friction factor compared with a simple microchannel.  
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