
 1 Copyright © 2010 by ASME 

Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International 
Nanochannels, Microchannels, and Minichannels 

FEDSM2010-ICNMM2010 
August 2-4, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30580 

LIQUID SQUEEZE FILM DAMPING IN MICROSYSTEMS APPLICATIONS 
 
 

Shujuan Huang Diana-Andra Borca-Tasciuc John Tichy*  
Department of Mechanical, Aerospace, and Nuclear Engineering 

Rensselaer Polytechnic Institute, 110 Eighth Street, Troy NY 12180-3590 USA 
 
 

                                                           
* Corresponding author:tichyj@rpi.edu 

Squeeze film damping (SFD) in microscale systems 
employing plates parallel to a substrate and operating in a 
liquid environment is theoretically investigated. Previous 
analytical or numerical studies of SFD in microsystems are 
mainly focused on devices working in a compressible fluid, 
such as air [1-3], where fluid inertia is negligible. However, 
liquid inertia appears to significantly affect the dynamic 
response of a microsystem operating in liquid environment. 
This paper outlines a theoretical framework that takes into 
account the inertia effects on dynamic response and illustrates 
this effect presenting the magnification factor for media with 
high and low density.   

The schematic of the system under consideration is shown 
in Fig. 1. The analysis starts from Newton’s second law, which 
is solved under the assumption of small amplitude vibrations. 
The system consists of a rectangular, rigid plate of length/width 
L/W and an infinite substrate. The plate of effective mass m is 
connected to the substrate by a structure of elastic constant k.  
A thin film of fluid is confined between the plate and the 
substrate. The flow is considered to be two-dimensional (no 
variation in the z-direction, the direction perpendicular to the 
plane of the paper), which is strictly true for W << L, but a 
reasonable approximation for W ~ L. The plate has a single 
degree of freedom in the y-direction of squeezing. In a 
laboratory reference system the position of the plate and 
substrate are yp and ys, respectively.  

Assuming that under an external excitation this system 
undergoes small vertical vibrations, the displacement of the 
substrate can be expressed as: 

   ys = Ys0 + δ H n sin(ω t )              (1) 
where Ys0 is the initial position of the substrate, δ is a small 
dimensionless parameter ( typically ≤ 0.1), Hn is the nominal 
gap (the gap in the absence of a driving force and the plate 
effective mass), ω is the excitation frequency, and t is time. The 
displacement of the plate, yp, is expected to have in-phase and 

out-of-phase components and is given by: 
[ ]0 sin( ) cos( )p p n s cy Y H C t C tδ ω ω= + +       (2) 

where Yp0 is the static displacement, and Cs and Cc are currently 
unknown coefficients for the in-phase (sine) and out-of-phase 
(cosine) components of the plate motion.  

 
Fig. 1.  a) Elastically supported, free-standing plate. Sinusoidal 
displacement is imposed on substrate.  b) Schematic of system 
idealized as single degree-of-freedom. 
 

From Newton’s second law, the equation describing the 
motion of the plate is: 
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where Felas is the elastic force, Fhydr is the force acted upon the 
plate by the fluid and g is the gravitational constant. The 
dynamic elastic force Felas of the system is given by: 

( )elas p s nF k y y H⎡ ⎤= − − −⎣ ⎦             (4) 

The hydrodynamic force Fhydr is the sum of viscous force Fvisc 
and inertia force Finer. Determination of these expressions 
follows the methodology of Tichy and Modest [4] and Tichy 
and Winer [5]: 

hydr visc inerF F F= +                 (5) 
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where η is the viscosity and ρ is the density of fluid, 
respectively. The symbols cv and ci denote dimensionless 
viscous and inertia coefficients, which in the case of two-
dimensional parallel plates are found to be cv = 1, and ci = 1/10, 
respectively [4,5]. Equations 6 and 7 are found by solving for 
pressure from the thin-film Navier-Stokes equations, and 
integrating over the plate length L and width W. Due to small 
amplitude vibrations, the nonlinear convective inertia terms are 
negligible relative to the unsteady terms, enabling a relatively 
straightforward closed form solution. 

Cs and Cc are determined by numerically solving Eq. 3 
after substituting the expression 6, 7 and 4 for fluid and elastic 
force. The resonance response of the system can then be 
determined from the magnification factor, denoted by Cmag [6]: 

2 2
mag s cC C C= +

                

 (8) 

To illustrate the effect of inertia on the dynamic response 
of the system, the response of a system with geometrical 
parameters in a range relevant to microsystems is presented 
next. In this case study the fluid gap Hn = 35 μm, plate length L 
= 500 μm, and width W = 500 μm. The effective mass (plate 
mass and added mass) is taken as m = 1.38 mg. The spring 
constant k of the parallel cantilevers is taken as 2344 N/m, thus 
ω0 = 4.12×104 rad/s, where ω0 is the natural frequency of the 
system.   

The magnification Cmag is plotted in Fig. 2 as a function of 
ω for different (ρ, η) pairs to shows the response of the system 
in different media (air and water) and to illustrate the difference 
in the dynamic response between inertia and viscous dominated 
regimes. The continuous curve in Fig. 2 shows the response in 
air (ρ = 1.2 kg/m3, η = 1.9×10-5 Pa·s). The resonant frequency is 
almost identical with natural frequency of the system. The 
dashdot line is plotted keeping the same density as that of air, 
while increasing the viscosity by almost two orders of 
magnitude (ρ = 1.2 kg/m3, η = 0.001 Pa·s). In this case the 
resonant frequency of the system does not change much. 
However, the amplitude decreases significantly, consistent with 
classical results for single degree of freedom damped vibration 
systems [6]. The dot line is plotted keeping viscosity same as 
air, while increasing density by two orders of magnitude (ρ = 
1000 kg/m3, η = 1.9×10-5 Pa·s). Comparing the continuous and 
dot lines, it can be seen that a larger density shifts the resonant 
frequency to a lower range, while it has little effect on the 
magnitude of the magnification factor. This shows that inertia 
produces an increase in the effective mass of the system. 
Finally, the dash line is obtained for both density and viscosity 
of water (ρ = 1000 kg/m3, η = 0.001 Pa·s). In this case, both the 
magnitude and the position of the magnification factor are 
distinct from that of air.  

These results clearly indicate that the inertia effects must 
be accounted for when designing microsystems operating in 
liquid media and are relevant to a wide range dynamic MEMS 
systems operating in a liquid environment. 

 
Fig. 2  Magnification factor versus frequency. Solid line shows 
the response in air (ρ=1.2 kg/m3, η =1.9×10-5 Pa·s); dashdot line 
shows viscous effects (ρ = 1.2 kg/m3, η = 0.001 Pa·s); dot line show 
inertia effect (ρ = 1000 kg/m3, η =1.9 ×10-5 Pa·s) and dash line 
shows the dynamic response in water (ρ = 1000 kg/m3, η =1.9 x10-5 
Pa·s).  
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