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INTRODUCTION 
 The electrokinetic transport phenomena are to be 
numerically studied based on cross-linked microchannel 
networks, which have been commonly employed for on-chip 
capillary electrophoresis applications. Applied potential field, 
flow field and concentration field should be solved to predict 
the species transport process under electrokinetic flows. 
Together with the well-designed channel geometry, a detailed 
physical model was firstly formulated through a series of 
governing equations and corresponding boundary/initial 
conditions, which was briefly re-presented from our previous 
publications. The emphasis of current work was to justify the 
simplest non-dimensional scheme and identify the most 
beneficial parameters so that an effective and simplified non-
dimensional model was developed for numerical studies.  

NOMENCLATURE 
c   Species concentration  
D   Species diffusion coefficient 

wl,   Microchannel length and width  
ScRe    Reynolds-Schmidt number 

v   Velocity  

epeo μμ ,   Electroosmotic or electrophoretic mobility  

ν   Kinematic viscosity 
φ   Applied electrical potential 

PHYSICAL PROBLEM FORMULATION 
As shown in Fig-1, two perpendicular channels connecting 

four reservoirs are arranged in a microfluid chip. Analytes are 
injected horizontally and then separated in the vertical 
microchannel through a generated sample plug in the 
intersection. The whole process is initiated and controlled by 
the applied potential field settled by electrodes in reservoirs. ∇2߶ = 0  
The resulting flow field is determined by the continuity and 
simplified momentum equation,   

∇ሬԦ ∙ ሬԦݒ = 0;  −భഐ∇ሬሬԦ݌ + ߭∇ଶݒԦ = 0 

Due to the employed laminar flow with pretty low Reynolds 
numbers, the transient and convection term in momentum 
equation are ignored here. Meanwhile, the difference of 
velocity (parallel to channel wall) only exists in the very thin 
electrical double layer, and therefore a slip-wall boundary 

condition, ݒሬԦ݈ =  ሬሬԦ݈, is applied to replace the electrical dragܧ݋݁ߤ
force. As for the unsteady species transport, it is described by  ߲ܿ݅ ݐ߲ + ൣ൫ݒሬԦ + ൯݅݌ሬԦ݁ݒ ∙ ∇ሬԦ൧ܿ݅ = ⁄2ܿ݅∇݅ܦ  

 
Fig-1. Schematic diagram of the cross-linked microchannel  

NON-DIMENSIONALIZATION 
In Tab-1, various reference values and scaling parameters 

are proposed for variable non-dimensionalization, and then 
investigated by comparing the resulting equation arrangements 
and pop-up controlling parameters. After applying them, the 
governing equations for a 2-D expansion will be,  ∆థೝ∆௫ೝమ (డమథ∗డ௫∗మ + డమథ∗డ௬∗మ) = 0  ∆௨ೝ୼௫ೝ (డ௨∗డ௫∗ + డ௩∗డ௬∗) = 0  
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డమ௨∗డ௫∗మ + డమ௨∗డ௬∗మ = ∆௣ೝ∆௫ೝఓ∆௨ೝ డ௣∗డ௫∗,  
డమ௩∗డ௫∗మ + డమ௩∗డ௬∗మ = ∆௣ೝ∆௫ೝఓ∆௨ೝ డ௣∗డ௬∗

 ∆௫ೝ ∆௨ೝ⁄∆௧ೝ డ௖೔∗డ௧∗ + ൫ݑ∗ + ∗௘௣௜ݑ ൯ డ௖೔∗డ௫∗ + ൫ݒ∗ + ∗௘௣௜ݒ ൯ డ௖೔∗డ௬∗ =஽೔∆௨ೝ∆௫ೝ (డమ௖೔∗డ௫∗మ + డమ௖೔∗డ௬∗మ)  

Accordingly, the local slip-wall velocity boundary condition 
and individual electrophoretic velocity are, ݑ௟௢௖௔௟∗ = ିఓ೐೚డథ డ௫⁄∆௨ೝ = − ఓ೐೚∆థೝ∆௨ೝ∆௫ೝ డథ∗డ௫∗ ∗௘௣௜ି௟௢௖௔௟ݑ   = ିఓ೐೛೔డథ డ௫⁄∆௨ೝ = − ఓ೐೛೔∆థೝ∆௨ೝ∆௫ೝ డథ∗డ௫∗   

 
Tab-1. Non-dimensionalization of variables 

General 
variable 

∗ࣂ ࢘ࣂઢ ࢘ࣂ ࣂ = ࣂ − ࢘ࣂ∆࢘ࣂ  

Geometry ࢒૚~࢒૝, ,ࢎ࢝  ࢜࢝
௥ݔ ݔ = 0 Δݔ௥ ݔ∗ = ݔ ⁄௥ݔ߂  

Potential ࣘ૚~ࣘ૝ 
߶ ߶௥ Δ߶௥ ߶∗ = ߶ − ߶௥∆߶௥  

Flow ݑ ݑ௥ = 0 Δu௥ ݑ∗ = ݑ ⁄௥ݑ∆ ௥݌ ݌  = ∗݌ ௥݌௔ Δ݌ = ݌ − ௔݌
Δ݌௥  

Concentration ࢐࢔࢏࢚,  ࢏ࡰ ,࢏࢖ࢋࣆ  ࢖ࢋ࢙࢚
ܿ ܿ௥ = 0 Δܿ௥= ܿ௢௥௜௚ 

ܿ∗ = ܿܿ௢௥௜௚ ݐ ݐ௥ = 0 Δݐ௥ ݐ∗ = ݐ Δݐ௥⁄  

 

If we chose ∆݌௥ = ఓ∆௨ೝ∆௫ೝ  and ∆ݐ௥ = ∆௫ೝ∆௨ೝ, some coefficients 

in above equations will be kept as one no matter how the rest of 
scaling parameters are determined. As a result, the problem 
becomes to choose the three scaling parameters 
,௥ݔ∆)  ௥ܽ݊݀ ∆߶௥) to acquire the simplest non-dimensionalݑ∆
equations with minimum number of controlling parameters. For 
the length scaling parameter, the vertical channel width ݓ௩ is 
found to be better than other options like horizontal channel 
width ݓ௛ or any channel length ݈ଵ~݈ସ. By doing so, a unique 
non-dimensional separation channel width is ensured for 
different scenarios, and the separation process in this channel is 
the most important issue people concerned.  

As listed in Tab-2, three different velocity scaling 
parameters are proposed based on reference diffusivity, 
kinematic viscosity and electroosmotic velocity. A consistent 
time scaling parameter (i.e. the time consumption for this 
velocity scale to pass through a characteristic length) for each is 
developed accordingly. For these three schemes, there is no 
difference for the final whole set of equations and 
boundary/initial conditions except for two things. One is the 
coefficient of diffusion term in non-dimensional concentration 
equation, ܥ஽, and the other is the coefficient (ܥ௏) of the non-
dimensional expression of slip-wall velocity boundaries, ݈ܽܿ݋݈ݑ∗ = ∗߶߲∗݈ܸܥ− ⁄∗ݔ߲ , and individual electrophoretic 
velocities, ݈ܽܿ݋݈−݅݌݁ݑ∗ = ∗݅݌݁ߤܸܥ− ݈∗߲߶∗ ⁄∗ݔ߲ . It can be seen that 

there is only one controlling parameter ܴ݁ܵܿ௜ for the choice of 
an electroosmotic velocity under a reference applied potential 

field strength, ܧ௥௘௙ = ௥߶߂ ݈⁄ . Thus, this scheme is considered 
as the best and then adopted in practice.  

 
Tab-2. Three scaling parameters and resulting coefficients 

௥௘௙ܦ ࢛࢘∆ ࢕ࢋ࢜ ࣇ ࢌࢋ࢘ࡰ  Δݔ௥⁄ ߥ  Δݔ௥⁄ ଶ(௥ݔΔ) ࢚࢘∆ ,௥௘௙ܧ௘௢ߤ  ௥௘௙ൗܦ  (Δݔ௥)ଶ ߭⁄  Δݔ௥ ⁄(௥௘௙ܧ௘௢ߤ) ࡰ࡯  ௜ܦ ⁄௥௘௙ܦ 1 ܵܿ௜⁄ 1 (ܴ݁ܵܿ௜)⁄ࢂ࡯ ܴ݁ܵܿ௥௘௙ ܴ݁ 1
 
Two options are available for the non-dimensionalization 

of the last applied potential by choosing ߶௥ and Δ߶௥. The first 

method is to use ߶∗ = థିథరೞథమೞିథరೞ  (or ߶∗ = థିథయ೔థభ೔ିథయ೔ ) to non-

dimensionalize both injection and separation. The second one is 

to apply ߶∗ = థିథయ೔థభ೔ିథయ೔ for injection and ߶∗ = థିథరೞథమೞିథరೞ  for 

separation, respectively. It is found that the second scheme is 
better by producing one less parameter. Two new controlling 
parameters (߶ଵ௜∗ , ߶ଷ௜∗ ) appear in the first method, but only one 
(ܴ݁௜௡௝ܵܿ௜) shows up in the second scheme. Moreover, one 
unique solution will be achieved for potential and flow by 
avoiding duplicated simulations, and it will not bring any 
influence to the intermediate concentration distribution between 
injection and separation.  

PARAMETERS IDENTIFICATION 
In the final non-dimensional model, four groups of 

optimized controlling parameters are generated to formulate the 
problem, and they are geometry (channel length ݈ଵ∗~݈ସ∗  and 
width ݓ௛∗ ), applied electrical potentials (individual side 
potentials,  ߶ଶ௜∗ , ߶ସ௜∗ and ߶ଵ௦∗ , ߶ଷ௦∗ ), species-fluid properties 
(electrophoretic mobilities ߤ௘௣௜∗  and Reynolds-Schmidt 
number ܴ݁ܵܿ௜), and operational time (for injection ݐ௜௡௝∗  and 
separation ݐ௦௘௣∗ ). All above parameters will be investigated and 
future employed to perform parametric studies. 

In summary, an effective and optimized non-dimensional 
model was achieved for subsequent numerical analysis on 
electrokinetic transport phenomena in microchannels. People 
can benefit from the simple and tidy non-dimensional equations 
and boundary/initial conditions derived in this study. 
Meanwhile, the minimum number of controlling parameters 
ensures adequate simplification of the model, and a meaningful 
parameter ܴ݁ܵܿ௜ is obtained to understand the problem better.  
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