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ABSTRACT 
In this paper a new method is presented in order to determine 
the pore size distribution in a porous media. This original 
technique uses the non Newtonian yield-pseudo-plastic 
rheological properties of some fluid flowing through the porous 
sample. In a first approximation, the very well-known and 
simple Carman-Kozeny model for porous media is considered. 
However, despite the use of such a huge simplification, the 
analysis of the geometry still remains an interesting problem. 
Then, the pore size distribution can be obtained from the 
measurement of the total flow rate as a function of the imposed 
pressure gradient. Using some yield-pseudo-plastic fluid, the 
mathematical processing of experimental data should give an 
insight of the pore-size distribution of the studied porous 
material. The present technique was successfully tested 
analytically and numerically for classical pore size distributions 
such as the Gaussian and the bimodal distributions using 
Bingham or Casson fluids (the technique was also successfully 
extended to Herschel-Bulkley fluids but the results are not 
presented in this paper). The simplicity and the cheapness of 
this method are also its assets. 
 
INTRODUCTION 
Porous media are found literally everywhere around us [1-3], in 
Nature (soils, human skin, sedimentary rocks…) as well as in 
engineering and applied scientific domains (groundwater, 
petroleum engineering, filtration, powder, concrete, cement…). 
Except maybe the metals, some very dense minerals and the 
plastic materials, every piece of matter is porous if it is studied 

at a sufficiently small geometrical scale. Since the early work 
of Darcy [4], the transport phenomena and the flows through 
porous media generated an important research activity which is 
still relevant today. The technological applications involving 
porous media are very numerous and will keep on growing in 
the future because of the increase of the energy cost and the 
realization of environmental challenges. For example let us cite 
the recent application for solar collectors of heat storage in 
granular porous media. Another instance concerns the heat 
storage for human housing using porous phase change 
materials. The continuous decrease of conventional oil and gas 
reserves implies a high level of investments for tertiary 
recovery techniques in particular for bituminous sands and oil 
shale which are also saturated porous media. The storage and 
the behavior of pollutants in porous matter (hazardous wastes, 
CO2 sequestration…) are topics for which it is essential to have 
a deep knowledge and an accurate characterization of porous 
media. 
The strong dependence of the transport properties 
(permeability, diffusivity) in porous media with the size of their 
pores constitutes a challenge in many scientific areas. Many 
techniques were developed in order to measure the pore size 
distribution (PSD1). Let us cite for example the mercury 
intrusion porosimetry (MIP2) [1-3,5] consisting in the injection 
of mercury in the porous medium. As most materials are not 
wetted by mercury, a pressure gradient must be imposed to 
induce a flow. For a given injection pressure P, mercury can 
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only invade the pores which radius are  greater than 

lg2 cos P   where lg  and   are respectively the liquid/gas 

interfacial tension and the contact angle. The pore size volume 
distribution is obtained with the derivative of the curve 
representing the volume of the invaded pores according to the 
radius of the pores. Because of the toxicity of mercury, this 
technique is intended to phase out. Another technique based on 
the calorimetric analysis (DSC3) of the liquid-solid phase 
transition of the fluid in a porous media is called 
thermoporosimetry [6-8]. This alternative method for 
determining the PSD in porous materials, suggested by Kuhn 
and later derived by Brun et al. [9], uses a thermodynamical 
relationship between the depression in the triple point 
temperature of the confined liquid and the radius of the pore 
where the phase transition occurs. It is expressed by the Gibbs-
Thomson equation: 0 0/ 2 /ls l PT T v H R   , where ls  is the 

liquid/solid interfacial tension, lv  the liquid phase molar 

volume, 0H  the molar heat of fusion, PR  the pore radius, and 

0T  being the triple point temperature of the liquid. The 

principle of the method is based on the lowering of the triple 
point temperature of a liquid filling a porous material. The 
phase transitions (crystallization or melting) for a liquid 
confined within a pore are observed to shift to lower 
temperatures that are determined by the pore size. This 
difference in transition temperature T , between confined and 
bulk liquid can be detected calorimetrically by DSC. A 
thermodynamic method makes it possible to measure the 
specific surface of a solid by model BET of a multi-layer 
adsorption [10]. The pore radius distribution can also be 
extracted using for example the DFT4 method [11] based on 
statistical mechanics, which connects macroscopic properties to 
the molecular behavior and B.J.H. method [12]. This classical 
method uses the isothermal desorption due to the molecular Van 
der Waals interactions between a condensing vapor and the 
internal surface of the pores. Finally let us quote destructive 
techniques such as stereology  [13] or non destructive methods 
such as Small Angle Neutron or X-Ray Scattering (SANS5 or 
SAXS6) [14,15], NMR7 [16] etc. Unfortunately the various 
cited experimental approaches can give quite different results 
and are very expensive. Therefore an alternative simpler and 
cheaper technique is proposed in order to characterize the PSD 
of a porous medium. The next paragraph presents and develops 
this new method. 
 
PRESENTATION OF THE MODEL  

This model presented here is based on the existence of the 
threshold in the rheological behavior of some non Newtonian 
pseudo-plastic fluid such as Bingham, Casson or Herschel-
Bulkley fluids. The basic idea is the following: in order to set 
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such fluids into motion, it is necessary to impose between both 

ends of a pore a pressure gradient  P  greater than a critical 

value depending, for a given fluid yield stress  0 , on the pore 

radius  r . As the pressure gradient grows, more and more 

fluid flows through the porous sample via the pores which have 
the radius greater than the critical one corresponding to the 
pressure gradient imposed. The flow of a Bingham fluid is 
analyzed in the first place. 
 
Bingham model 
Such fluids obey the following rheological behavior law: 
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with   the viscous stress tensor, D  the rate of deformation 

tensor and   the constant plastic viscosity of the fluid. The 

well-known Kozeny-Carman capillary model for the porous 
medium is adopted: it is composed of N parallel capillaries 
(Fig. 1); the pore radii of which are distributed according to the 

probability density function  p r . When a pressure gradient 

P  is imposed at both ends of this system, the fluid flows 

through it at the flow rate  Q P . This total flux is related to 

the elementary flow rate  ,q P r  in a capillary of radius r  

and to  p r  by a Volterra integral equation of the first kind: 
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the kernel of which is: 
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As long as 0r r  the fluid does not flow. 0r  is also the radius 

of the core zone of the Bingham plug flow.

 

 
Figure 1: Kozeny-Carman model 



 3 Copyright © 2010 by ASME 

The pore size distribution  p r  can be obtained through a 

differential operator applied to  Q P  [17]: 
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To verify the applicability of this formula, let us assume that the 
PSD can be described by a Gaussian distribution of mean value 
m  and standard deviation  . If m  is taken as characteristic 
length scale and 02 / m  as characteristic pressure gradient 

scale, it is possible to normalize the Volterra integral equation 
(2) as follows: 
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The Fig. 2 below shows the normalized total flow rate versus 
the normalized pressure gradient resulting from the flow of the 
Bingham fluid through a porous medium with a given Gaussian 
distribution PSD. 
 

Figure 2: Total flow rate vs. pressure gradient for a 
Gaussian distribution and a Bingham fluid 

 
This figure is characterized by a first region at low pressure 
gradients in which the flow rate is zero. This region extends up 
to 1P  . It is followed by a second region in which the flow 
rate varies linearly with the pressure gradient, due to the fact 
that the plastic viscosity is constant, beyond the pressure 
gradient threshold. The non-dimensional elementary flow in a 
single capillary tube is: 
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with the Hedström number 2 2
0 (2 ) /He m  . The PSD can 

now be written as follows:
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Equation 7 is called the “Pore Size Distribution Equation” or 
PSDE. 
 

 
Figure 3: Comparison between the initial and the calculated 

PSD 
 

In a second step, the given distribution is ignored and the flow 
rate-pressure gradient curve given by the initial calculation (or 
given by an experiment) is used as a starting point. Then Eq. 7 
is applied to the flow rate-pressure gradient characteristic, and 
the following Fig. 3 which is obtained in the case 1He  . This 
figure exhibits a perfect agreement between the original 
Gaussian distribution and the distribution calculated with the 

relationship obtained for  p r  . To verify the efficiency of 

this technique with more complex distributions, a bimodal 
distribution is considered, with two peaks at 1m  and 2 12m m  

and the same standard deviation   (for instance) such as: 
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in which the radius and the PSD are scaled with 1m . The total 

flow rate Q  is obtained in this case; the result is shown in 

Fig. 4. 



 4 Copyright © 2010 by ASME 

 
Figure 4: Total flow rate vs. pressure gradient for a bimodal 

distribution with 2 12m m  and a Bingham fluid 

 
This figure brings out that the threshold between both regions 
discussed earlier is derived for 0.5P   because 2 12m m  

in our example. Now if Eq. 7 is applied to the characteristic 
shown in Fig. 4, the result is plotted in Fig. 5 below. Once again 
one can notice the good agreement between the initial PSD and 
the calculated PSD ( 1He  ). 
 

 
Figure 5: Comparison between the initial and the calculated 

PSD for a bimodal distribution with 2 12m m  and a 

Bingham fluid 
 

In the next paragraph the case of a more complex pseudo-
plastic fluid will be discussed: the Casson fluid. 
 
Casson model 
In this model the rheological behavior law of the fluid is:  
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The elementary flow rate in a circular capillary tube can be 
written as in [18]: 
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Similarly to the previous section, the total flow rate through an 
array of parallel capillary tubes, the radii of which are 

distributed according to a PSD  p r , is obtained with the same 

Volterra integral equation (Eq. 2). The determination of the 

probability density function  p r  of this integral equation 

leads to the new PSDE:
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where the radius and the PSD are normalized by the 
characteristic mean length scale m  and the pressure gradient by 
the characteristic pressure gradient scale 02 / m . If the PSD is 

supposed to be of the Gaussian type, the total flow rate thus 
obtained is presented in Fig. 6. 
 

 
Figure 6: Total flow rate vs. pressure gradient for a 
Gaussian distribution (Casson and Bingham fluids) 
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This figure also presents for comparison the characteristic 
curve for a Bingham fluid. The total flow rate for a Casson 
fluid exhibits a less steep evolution than the flow rate for a 
Bingham fluid. 
 

 
Figure 7: Comparison between the initial and the calculated 

PSD for a Gaussian distribution and a Casson fluid 
 

Once again when Eq. 11 is applied to the results given in the 
Casson curve plotted in Fig. 6, the initially injected Gaussian 
PSD is retrieved (see Fig. 7 above). Finally for a bimodal 
distribution with 2 12m m  and 2 15 / 2  , the characteristic 

curve in Fig. 8 is obtained and one more time the application of 
the new PSDE (Eq. 11) recovers the initial density probability 
function as shown in Fig. 9. 
 

 
Figure 8: Total flow rate vs. pressure gradient for a bimodal 

distribution with 2 12m m  and 2 15 2   (Casson and 

Bingham fluids) 
 

 
Figure 9: Comparison between the initial and the calculated 

PSD for a bimodal distribution with 2 12m m  and 

2 15 2   for a Casson fluid 

 
This method is therefore as effective and robust for a Casson 
fluid as for a Bingham fluid regardless the initial distribution. 
This technique was also tested for Herschel-Bulkley fluids with 
the same success. 
 
CONCLUSION 
In this paper we presented an original method giving the pore 
size distribution in a porous medium provided that the Kozeny-
Carman model can be used. This method is based on the 
existence of a yield stress in non Newtonian pseudo-plastic 
fluids. This threshold leads to a Volterra integral equation of the 
first kind. The mathematical determination of the probability 

density function  p r
 

in this integral is possible using the 

partial fractional or non fractional derivatives of the total flow 
rate of fluid through the porous medium as a function of the 
pressure gradient. This technique was successfully tested for 
Bingham and Casson fluids in the case of classical Gaussian 
and bimodal distribution. Nevertheless any other distribution 
could be used. This method was also extended to Herschel-
Bulkley fluid with the same achievement. 

NOMENCLATURE 
 

D : rate of deformation tensor 1s    
2 2

0 (2 ) /He m  : Hedström number 

0H : molar heat of fusion 1.J mol     
m , 1m , 2m : characteristic mean length scales of the Gaussian 

and the bimodal distributions  m  

P : pressure gradient 1.Pa m    

02P m P    : non-dimensional pressure gradient 

 p r : probability density function of the pore size 1m    
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   .p r m p r   : non-dimensional pore size distribution 

16cq m  : characteristic flow rate for Bingham and 

Casson fluids 3 1.m s    
Q : total flows rate through a porous medium 3 1.m s    

cQ Q q  : non-dimensional total flow rate through a porous 

medium  

q : elementary flow rate in a capillary of radius r  
3 1.m s    

cq q q  : non-dimensional flow rate in a capillary  

r : pore radius  m  

r r m  : non-dimensional pore radius  

0 02r P  : critical pore radius  m  

0 1r P   : non-dimensional critical pore radius 

0T T T    triple point depression  K  

0T  being the triple point temperature of the liquid  K
 

lv : liquid phase molar volume 3 1.m mol     

 
Greek symbols 
 , 1 , 2 : standard deviation of the Gaussian and the bimodal 

distributions  m  

0 : yield stress  Pa  

 : constant plastic viscosity of the fluid  .Pa s  

ls : liquid/solid interfacial tension 2.J m    

lg : liquid/gas interfacial tension 2.J m    
 : liquid/solid contact angle  

 : viscous stress tensor  Pa  
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