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ABSTRACT 
In non-Newtonian fluids, the mass or heat transfer on particles 
are of major interest in many industrial processes using 
suspensions such as fluidized beds or microfluidics reactors. In 
all these problems we often face hydrodynamic and mass or 
thermal interactions between a single particle and others or 
between a single particle and some walls. In this study, such 
confined configurations can be modeled by a spherical particle 
translating parallel to the axis of a cylindrical tube. As the 
suspending fluid may be non-Newtonian, and before examining 
any possible additional viscoelastic effect on suspension, the 
first step in the understanding of the consequences of the 
principal non-Newtonian behavior is the study of the shear 
thickening or shear thinning (power law model) regarding the 
transfer phenomena. Then, when the particle translates along 
the axis of the tube in symmetrical configuration, we 
numerically solved the momentum and mass (or heat) transfer 
equations using the stream/vorticity functions formulation 
coupled to the singularity technique in order to make a 
numerical conformal mapping for the mesh. For Newtonian 
fluids, the successful comparisons firstly between our 
numerical results and asymptotical solutions obtained by us in 
the lubrication regime, and secondly between our results and 
those obtained by other authors in unlimited medium, confirm 
the validity of our approach. Thereby we extended this method 
to power law fluids. As the geometrical distribution of particles 
in suspensions is not at all symmetric, we study the influence of 
some geometrical disturbance breaking the symmetry of the 
system. To answer this question, we numerically investigate, 

using the finite volume method, the simple configuration of 
single spherical particles translating parallel to and in the off-
axis position in the tube. 
 

INTRODUCTION 
In various kinds of engineering processes (fluidized beds 
reactors for example) we are concerned by the mass or heat 
transfer on suspensions of spherical particles. More and more, 
in many processes the transporting fluid is non-Newtonian. 
These processes are also present in microfluidics systems 
(biochemical, …). The control of mass or heat transfer on 
spherical particles in suspensions or in microchannels implies 
to understand hydrodynamic and mass or thermal interactions 
between single particles and others or between a single particle 
and some plane or curved walls. These confined geometrical 
configurations can be modeled by a spherical particle 
translating at constant velocity parallel to the axis of a 
cylindrical tube and maintained at fixed concentration or 
temperature. As such configurations rarely have specific 
geometrical symmetries, the knowledge of the consequences of 
an asymmetry in the transfer on a sphere is therefore useful for 
optimization of this transfer. In fact, the introduction of some 
geometrical noise in the position of particles or in variation of 
their diameters (polydisperse particles) in an array of ordered 
monodisperse spheres could lead to a fluctuation of the transfer 
with amplitude that is necessary to be estimated. In order to 
elucidate the physics which controls the transfers involved in 
such geometrically disturbed situations, we focus in this work 
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on the basic model constituted by the same sphere translating at 
constant velocity parallel to the axis and in different off-axis 
positions in the tube. As the suspending fluid may exhibit a 
non-Newtonian rheological behavior, and before studying the 
possible additional viscoelastic effects on suspensions, it is 
worthwhile to have a sufficient knowledge on the main 
behavior exhibited by almost non-Newtonian fluids which are 
the shear thinning or shear thickening described by Ostwald-de 
Waele model. In all cases, the momentum and mass or heat 
transfer problems are solved for Dirichlet or Neumann 
boundary conditions. 
Let us recall that the effect of the confinement on the 
hydrodynamic correction factor of the drag submitted by a 
sphere in power law fluids, at low generalized Reynolds 
numbers, is solved previously [1,2] from unbounded medium to 
the lubrication regime. Notice also that in the case of shear 
thinning, our dynamical results are in good agreement with 
those given by Missirlis et al. [3] and by Chhabra et al. [4,5] for 
0 0.5k  . In this work, we will give the correction factor due 
to this confinement on the mass or heat transfer on a sphere in 
this non-Newtonian fluid. A comparison with an asymptotic 
approach in the lubrication regime is made. At low Reynolds 
numbers, in contrary to the Newtonian case where the thickness 
of the boundary layer is very high and a cutoff of this one can 
be introduced only by the confinement, notice that the power 
law behavior introduces (at low generalized Reynolds 
numbers) a hydrodynamic screen length 11 nrx   which can 

be controlled through the index of the fluid n . In this situation, 
it is expected that in the mass or heat transfer, the introduction 
of this screen length implies another cutoff permitting, in the 
shear thinning case ( 1n  ), a decrease of the mass or thermal 
boundary layers in the convective regime (for high Péclet 
numbers) which can allow an increase of the flux. 
Due to the difficulty to give an analytical solution of this non 
linear hydrodynamic problem despite the linearity of the mass 
(or heat) transfer equation, we numerically solved the 
momentum equations using the stream/vorticity functions 
formulation coupled to the singularity technique in order to 
make a numerical conformal mapping for the mesh. The 
velocity vector components are expressed in terms of the 
stream function in the mass or energy equation which is written 
in the new coordinates. For the solution of these differential 
equations we have used the finite differences method. We 
successfully verified our results by using the finite volume 
CFD code FLUENT. 
 

BASIC EQUATIONS AND METHODS OF SOLUTION 
The aim of this study is to determine the influence of the 
confinement on the mass or heat transfer on a spherical particle 
of radius a  moving at constant velocity 0U  parallel to the axis 

of a tube of radius b a k  and maintained at concentration sc  

(or temperature sT ) when it is placed in an off-axis position in 

the tube filled with a power law fluid. Firstly, the dynamic 
problem was solved in unbounded and confined medium and is 
not discussed here but all the results have been successfully 
verified by a comparison with our asymptotic calculations in 
the lubrication regime [1,2]. Let us recall that the rheological 
law of the Ostwald-de Waele fluid is described by 

 1 22 (2 ) n
IIp m D D      where   is the stress tensor, 

  1 2 tD u u  
 

 is the strain rate tensor and  2

IID tr D  

is the second invariant with u


 the fluid velocity. This law 

exhibits a shear thinning behavior  1for n   and a shear 

thickening one  1for n  . The apparent viscosity of such 

fluids is given by:   1 2
2

n

a IIm D  . This flow takes place at 

very low generalized Reynolds number 

 2
0Re 2

nn
n U a m  . The fluids we are concerned with have 

sufficiently high Schmidt numbers (or high Prandtl numbers: 
highly viscous fluids) to reach a range of Péclet numbers 

02 mPe aU D  where the convective regime can take place. 

mD  corresponds to the molecular diffusion coefficient (in the 

thermal case, this coefficient must be replaced by the thermal 
one th pD C  ). In spite of the dynamic non-Newtonian 

behavior of the fluid in this work, both diffusion coefficients 
are assumed to be in first approximation independent of the 
hydrodynamics, and then they are supposed to be constant. 
Besides, all the thermo-physical properties are supposed to be 
constant. But it is important to point out that in the lubrication 
regime, as the fluid elements will locally experience higher rate 
of shearing in the small gap, the viscous dissipation may not be 
negligible anymore with shear thickening fluids, necessitating 
to add the Rayleigh dissipation function to the energy equation 
and the thermodynamic laws describing the evolution of the 
thermo-physical properties. In these conditions, the equations 
which must be solved here are reduced to the Cauchy equations 
taking into account the rheological power law model, the 
continuity equation and the convective mass transfer equation 
(or the energy equation). The momentum equations have been 
solved numerically by using the stream function   and 

vorticity  , which are written in an orthogonal system of 
curvilinear coordinates matching perfectly the contours of the 
sphere and the cylindrical wall of the tube. We express the 
velocity vector components in terms of the stream function in 
the mass (or energy) equation which is written in the new 
orthogonal coordinates. All these equations have been written 
in a dimensionless form, by the use of the respective 
characteristic parameters: length  a , velocity  0U , pressure 

  0

n
m U a  and time    12

0

n
a m U a 

. The 

dimensionless concentration is defined by: 

   s sc c c c c    . The generation of the grid was 

performed by the singularities method, corresponding to the 
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internal flow of an inviscid fluid [6-9]. The domain with curved 
borders was transformed into a rectangular domain through a 
numerical conformal mapping. Then a finite differences 
method was applied by using the successive over-relaxation 
(S.O.R.) and the alternating direction implicit (A.D.I.) 
techniques [10-13] respectively to calculate the functions   

and   of the fluid. For more details, this method is explained 
in [14]. The convergence criterion is defined as 

      1 1 6, , , , , , 10i i iSh k n Pe Sh k n Pe Sh k n Pe    . In all 

cases, we numerically calculated the Sherwood (or Nusselt 
number)    , , , , 2mSh k n Pe k n Pe aD c    for different 

Péclet numbers, different confinements k a b , different 

eccentricities e d a  and different indexes of fluidity n . Let 

us recall that for the thermal corresponding problem, the 
Nusselt number is obtained by replacing  , ,m k n Pe  by 

 , ,s pk n Pe C  . To check this numerical method, we 

successfully verified our results by using the finite volume 
CFD code FLUENT, where the SIMPLE algorithm was 
employed with a QUICK scheme on a structured mesh. The 
convergence criterion used is similar to the one used in our 
method. Nevertheless in front of this success, we used this last 
code to solve the asymmetric problem in 3D geometry. In fact, 
in this situation, the problem is fundamentally tridimensional in 
contrary to the axisymmetric case which possesses an axial 
symmetry in the range of the low Reynolds numbers considered 
here. 
The geometry and the boundary conditions used in this 
problem are defined in the Fig. 1. 
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Figure 1: Sketch of the problem 

RESULTS AND DISCUSSION 
In this chapter, we will give and discuss our numerical and 
asymptotical results concerning the transfer on the sphere 
translating at low Reynolds numbers in the axial and off-axis 
position of the tube filled with an Ostwald-de Waele fluid. 
 
Case 1: Sphere in symmetrical position 
To improve our numerical method, we calculated for the 
Newtonian fluid the evolution of the Sherwood number (or 
Nusselt number in the thermal case) with the Péclet number for 
very low confinements until we have no influence of the tube’s 
wall. We compare the results obtained for 610k a b    with 

the well-known analytical result given by Acrivos [15] and 
Leal [16] for low Péclet number: 

  2 2 31 1
1 2 ln 0.2073 ln (1)

2 4 2 16 2

Pe Pe Pe
Sh Pe Pe Pe Pe     

and by Acrivos et al. [17] for high Péclet numbers: 

 
1 3

5 1.249 0.922 (2)
2

Pe
Sh Pe

    
 

The successful comparison seen in the Fig. 2 with our results 
and those analytical ones confirms the validity of our code in 
the Newtonian case and confirms that the infinite medium is 
achieved for 610k   and even for 210k  . 
 

 
Figure 2: Sherwood number versus Péclet number for 
unbounded medium for the Newtonian fluid  1n   

 
Let us remark that for the micro and nano-particles, as their 
radius is very low, we are not concerned by the convective 
regime for the transfer and all the transfer takes place in the 
plateau regime (pure diffusive). For this reason, we are 
studying the influence of the confinement in this pure diffusive 
regime. 
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Figure 3: Evolution of the Sherwood number with the 

confinement (Dirichlet boundary condition) 
 
For very low Péclet numbers, at pure diffusive regime, it is 
obvious that the transfer coefficient (Sherwood or Nusselt) 
does not depend on the Péclet number for a finite-size particle 
or in confined geometry. And also, it does not depend on the 
dynamic non-Newtonian character of the fluid as explained 
above. For all these reasons, we give, for a Dirichlet boundary 
condition, in the Fig. 3 the variation of the Sherwood number 
with the reduced distance between the sphere in the axial 
position and the tube which is valid for Newtonian and non-
Newtonian fluids. In the lubrication regime, the Sherwood 
number varies as 1 2   which is in good agreement with the 
asymptotic calculation giving the following relation: 

  1 2, 0 2 (3)Sh k Pe      

 

 
Figure 4: Evolution of the Sherwood number with the 

confinement (Neumann boundary condition) 
 
But when we impose, in the same diffusive regime, the 
Neumann condition to the tube’s wall, the transfer decreases 

with the confinement in contrary to the Dirichlet case for which 
the transfer increases with the confinement, as it is shown in 
Fig. 4. This decrease of the transfer, when the particle draws 
near the tube’s wall is due to the fact that the isoconcentration 
lines are forced to be perpendicular to this wall, then reducing 
the thermal gradient on the sphere. However, one can note that 
a saturation regime of the transfer is reached in the lubrication 
regime. 
For non-Newtonian fluids we give in the Fig. 5 the numerical 
results obtained for unbounded medium. The principal result is 
that the transfer is enhanced in the case of the shear thinning 
behavior  1n   and decreased in the shear thickening 

fluid  1n  . In fact, in the first case as the hydrodynamic 

length screen   varies as 11 nr  in turn the mass transfer 

boundary layer decreases inducing an enhancement of the flux. 
The opposite scenario takes place in the shear thickening case. 
 

 
Figure 5: Sherwood number versus Péclet number for 

unbounded medium for a power law fluid 
 
In the Fig. 6, we give for the mass Dirichlet condition on the 
tube’s wall the results of the transfer on the sphere with Péclet 
number for different confinements k  and for different fluidity 
indexes n . As discussed above, for the low confinements, 
these results can be explained by the fact that the 
hydrodynamic screen length in power law fluids decreases for 
shear thinning fluids and consequently as the flux is inversely 
proportional to the diffusive boundary layer thickness, the flux 
therefore increases. The opposite situation occurs for shear 
thickening fluids with the decrease of the transfer. But for high 
confinements, we have an additional length scale due to the 
confinement which is the gap between the sphere and the tube. 
Then when the gap is lower than the hydrodynamic screen 
length, the transfer is controlled principally by the confinement. 
Thus the insensibility of the transfer to the fluidity index n  can 
be explained. The principal enhancement of the transfer is due 
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to the confinement. For high Péclet numbers, the Sherwood 
number varies as expected by our asymptotic calculations as 

1 3Pe  in any case. Notice that this dependence on the Péclet 
number (to the power of 1/3), due here to the fact that the 
Reynolds number is sufficiently low (Stokes type regime), 
means also that the flux varies as 1 3

nSc  (or 1 3Prn ). This 

variation is in good agreement with the numerical and 
experimental results obtained for Re 5n   [18-20]. 

 

 
Figure 6: Sherwood number versus Péclet number for a 
confined medium filled with a power law fluid (Dirichlet) 

 

 
Figure 7: Sherwood number versus Péclet number for a 

confined medium filled with a power law fluid (Neumann) 
 
When the tube’s wall is supposed insulated, the transfer on the 
sphere is presented in the Fig. 7 with Péclet number. In the 
diffusive regime, the transfer decreases with the confinement. 
When the particle draws in the vicinity of the tube’s wall the 
isoconcentration lines are forced to be perpendicular to this 
wall, thus we assist to a reduction of the thermal gradient on 

the sphere. This behavior is already discussed above in the Fig. 
4. For convective regime, the transfer is independent of the 
boundary condition because the mass boundary layer which 
controls the transfer is lower than the gap between the sphere 
and the tube’s wall. 
 
For high Péclet number, we give in the Fig. 8 the evolution of 
the flux as a function of  . All the results corresponding to this 
convective regime present a similar behavior and seem to be 
independent on the type of boundary condition for all the 
confinements and independent on the fluidity index of the fluid 
only for the high confinement. In the lubrication regime, all the 
results seem to be in good agreement with those obtained 
asymptotically for a Newtonian fluid: 
 

   
 

1
2 3 31 33

, (4)
2 2 3

Pe
Sh k Pe


      

 

 
This agreement is probably due to the fact that at very low 

Reynolds number, 
2 2

Re ap
n n

ap

U a U a
Pe Sc

D D




    does not 

depend on the index of fluidity and the flux is controlled by the 
cutoff of the mass or thermal boundary layer imposed by the 
gap between the sphere and the wall in the lubrication regime 
( 0  ). 
 

 
Figure 8: Evolution of the Sherwood number with the 

confinement for a power law fluid 
 
 
Case 2: Sphere in asymmetrical position 
Now we will discuss the same problem as described above, 
studying the influence of asymmetrical position on the transfer. 
We recall that this asymmetry is characterized by the 
eccentricity parameter e d a  where d  is the distance 

between the axis of the tube and the center of the sphere. This 
parameter e  varies between 0 when the sphere is in its 
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symmetrical position and max 1e k   when the sphere touches 

the wall of the tube. 
 

 
Figure 9: Evolution of the Sherwood number with the off-

axis position of the particle translating in a power law fluid 
for various Péclet numbers (Dirichlet) 

 
In the Fig. 9, we show, for a Dirichlet condition, the numerical 
results concerning the evolution of the transfer normalized by 
its value in the symmetrical position with the normalized 
eccentricity. In the diffusive regime, we assist to a 
monotonically increase of the transfer with the eccentricity. 
This enhancement is due to the cutoff of the mass boundary 
layer by the gap (see Fig. 10.a). For low Péclet numbers, it is 
obvious that the transfer in different asymmetrical positions is 
independent on the rheological behavior as discussed above. In 
the same figure, the plots corresponding to high Péclet numbers 
( 310Pe  ) give a typical behavior in the convective regime. It 
shows that the flux varies non monotonically and goes through 
a minimum off the symmetry axis at a value max/ 0.8e e  . The 

transfer reduction is about 5%  for 0.44k   compared to its 
value in the symmetrical position. This non monotonic 
behavior is due to the backflow induced in the confined 
geometry and is similar to that obtained for the drag [21]. 

 
Figure 10.a: Isoconcentration profile in the vicinity of the 
wall at high Péclet number (Dirichlet boundary condition) 

 

 
Figure 10.b: Isoconcentration profile in the vicinity of the 

wall at high Péclet number (Neumann boundary condition) 
 

 
Figure 11: Evolution of the Sherwood number with the off-
axis position of the particle translating in a power law fluid 

for various Péclet numbers (Neumann) 
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On the other side, when we impose a Neumann boundary 
condition on the tube’s wall, for low Péclet numbers, we obtain 
in a similar way than in the symmetric configuration a 
monotonic decrease of the transfer with the eccentricity as 
shown in the Fig. 11. In the other way, in the convective 
regime, we get the similar behavior with the eccentricity as that 
obtained with a Dirichlet boundary condition shown in the 
Fig. 9. 
 

 
 

Figure 12 : Comparison between the Sherwood numbers 
obtained with Dirichlet and Neumann boundary conditions 

in the asymmetric case for high Péclet numbers 
 
Due to the non intuitive evolution of the transfer with the 
eccentricity in the convective regime, we give in the Fig. 12 a 
comparison between the results obtained for the two boundary 
conditions. Firstly, far from the tube’s wall, the evolution seems 
to be independent on the fluidity index as shown in the 
axisymmetric case. For the Dirichlet boundary condition, the 
non monotonic evolution ends by an increasing in the transfer 
near the wall due to the raise of the backflow convection 
related to the narrowest gap where the maximal transfer takes 
place (see the Fig. 10.a). However, when we impose the 
Neumann boundary condition, an additional surprising 
behavior of the transfer occurs by a decrease of the transfer in 
the vicinity of the tube’s wall. This effect may be explained by 
the fact that the convective backflow effect is less efficient than 
in the decrease of the flux due to the proximity of the insulated 
wall as explained before in the sense that under these 
conditions, the isoconcentration lines are forced to be 
perpendicular to this wall reducing the thermal gradient on the 
particle. This phenomenon is illustrated in the Fig. 10.b where 
we can see that the concentration on the wall is slightly equal to 
that imposed to the particle. 

CONCLUSION 
In this work, we studied numerically and asymptotically the 
consequences of an asymmetrical confinement in the mass or 
heat transfer on a spherical particle moving at low Reynolds 
number in the tube which mass or thermal boundary conditions 
are of the Dirichlet or Neumann type. In the other way, we 
studied the influence of the rheological shear thickening and 
shear thinning behaviors of non-Newtonian fluid on this 
transfer. For Dirichlet boundary conditions in symmetrical 
position and at low Péclet number the results show for all fluids 
as expected a purely diffusive behavior and the flux increases 
with the confinement. The Sherwood number varies as 1 2   in 
the lubrication regime, in good agreement with our asymptotic 
development. In the convective regime, the Sherwood number 
varies as 1 3Pe  for a given confinement k  in accordance with 
the boundary layer theories and in the lubrication regime as 

1 3   for a given Péclet because of the backflow as obtained in 
the asymptotical approach. Notice that also the influence of the 
fluidity index appears principally in unbounded situation or 
very low confinements. For Neumann, the transfer is reduced 
when the confinement is increased in the diffusive regime with 
the same conclusion than for the Dirichlet case concerning the 
non-Newtonian effect. In order to study the influence of the 
asymmetry, we studied the evolution of the transfer with the 
eccentricity of the sphere. For the convective regime and for 
both boundary conditions, the effect of the asymmetry is 
characterized by the appearance of a minimum of the transfer 
in the off-axis position. This behavior is analogous to that 
observed for the drag force in the dynamic problem. This non 
monotonous evolution is due to the backflow related to the 
confinement. But it is important to mention the existence of a 
decrease of a transfer in the vicinity of the tube’s wall when the 
Neumann boundary condition is imposed. 
 

NOMENCLATURE 
a  radius of the sphere, m  
b  radius of the tube, m  

c  solute concentration, 3.kg m  

sc  solute concentration on the sphere’s surface, 3.kg m  

c  solute concentration in the fluid, 3.kg m  

pC  specific heat of the fluid, 1 1.J kg K   

D  molecular diffusion coefficient or thermal diffusivity, 
2 1.m s  

D  strain rate tensor, 1s  

IID  second invariant of the strain rate tensor, 2s  

d  distance between the axis of the tube and the sphere 
center, m  

e  eccentricity 

maxe  maximal eccentricity 

k  confinement coefficient 
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m  consistancy, . nPa s  
n  index of fluidity 
Nu  Nusselt number 
p  pressure, Pa  

Pe  Péclet number 

  1
2

Pr
n

n
th

m U a

D



  Prandtl number 

sT  temperature on the sphere’s surface, K  

fT  fluid temperature, K  

Ren  generalized Reynolds number 

  1
2

n

n

m U a
Sc

D



  Schmidt number 

Sh  Sherwood number 
t  time, s  

0U  sphere velocity, 1.m s  
 

Greek symbols 
  reduced distance between the sphere and the tube’s 
wall 

m  mass flux on the sphere, 1.kg s  

s  heat flux on the sphere, W  

  thermal conductivity, 1 1. .W m K   
  stream function, 1.kg s  

  vorticity, 1s  

a  apparent viscosity, .Pa s  

  density, 3.kg m  

  stress tensor, Pa  
 

Indexes 
  dimensionless quantity 
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