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ABSTRACT 
The understanding of some physical phenomena involved in 
the transport of free particles such as fibers during injection 
processes is an important issue. To answer some of the 
questions arising in such problems, we study here numerically 
the quasi-steady kinematics of a free cylindrical solid particle 
moving in a Newtonian fluid confined between two parallel 
plane walls taking the hydrodynamic interactions into account. 
This is achieved by the use of the resistance matrix technique 
relating the kinematics of the particle to the forces and the 
torques exerted on the particle and to the dissipation induced by 
the motion of this particle. Our approach is confirmed by 
asymptotical developments and by a comparison with other 
authors in some cases. The solutions of three practical 
problems are given. In the first one, the sedimentation of the 
particle is studied. It is found that the maximum settling 
velocity of the free particle is obtained at a position off the 
symmetry plane. The cylinder is observed to rotate counter 
intuitively against the direction of rolling along the adjacent 
wall. Moreover the angular velocity has an influence on the 
settling velocity when the concentration is very high. The 
second problem concerns the transport of a neutrally buoyant 
cylindrical particle in a Poiseuille flow. This study reveals that 
there are relative translational and angular velocities between 
the free particle and the undisturbed fluid particle contrary to 
the commonly admitted hypothesis used in several models and 
numerical codes. Finally the third problem is a combination of 
the two previous situations: the transport of a non-neutrally 
buoyant particle in a Poiseuille flow. Depending on the ratio of 

the buoyancy forces to the viscous ones, different solutions are 
possible and exposed. Other problems can also be solved with 
this approach which is less time-consuming than complex 
methods such as DNS. 
 
INTRODUCTION 
Situations in which transported particles are encountered are 
numerous [1]. Let us cite for instance the case of sedimentary 
particles; in the industry field, this phenomenon plays a role in 
oil engineering, filtration, in pharmaceutical and food 
industries, in the design of composite materials or in 
biomedical engineering. A correct understanding of the 
physical phenomena involved in such situations is therefore 
essential. The study of the flows past small particles goes back 
to the early works of Stokes [2] for the flow around a solid 
spherical particle. In infinite medium and for a finite cylinder 
of radius a  and length l , when / 1l a , Batchelor [3] 
developed the slender body theory based on the creeping flow 
equations. As discussed in a previous article [4], we showed 
that in a bounded medium (high concentration), the slender 
body approach and the Stokes type solution obtained for a 
cylinder in the creeping flow are similar.  
 
The motions of particles in concentrated regimes are 
complicated because the hydrodynamic interactions slowly 
decay with distance and the kinematics of each particle depends 
on the motions of the nearby particles and is strongly affected 
in the near-wall regions. This is for example the case in the 
injection molding of fiber-reinforced thermoplastics where the 
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rheological properties of the material are very sensitive to the 
fiber orientation which affects the velocity profile of the flow. 
This sort of process is therefore characterized by a complex and 
strong coupling and it seems essential to control or at least to 
predict the orientation of the fibers during the injection phase. 
From a theoretical point of view, Jeffery [5] proposed in 1922 a 
first model for the evolution of the orientation of a solid 
ellipsoidal particle in infinite medium. When many particles 
interact (concentrated regime), it is not possible anymore to 
assume that each particle moves at the same velocity as the 
fluid. Notice that many proposed models to describe the 
evolution of transported particles such as Folgar et al’s [6] do 
not properly take the hydrodynamic interactions into account. 
To overcome the theoretical difficulties due to these 
interactions, various numerical methods are available. They 
belong to three main families: the first one is the two-fluid 
model which treats each phase as a separate fluid with its own 
set of governing balance equations. Each phase has its own 
velocity, temperature and pressure. The main difficulty in this 
type of approach is to correctly calculate the interaction term 
between both phases. The second family of numerical methods, 
called LNS methods (Lagrangian Numerical Simulation), 
consists in tracking each particle when the evolution of the 
hydrodynamic fields is known, this latter being often computed 
with an Eulerian method. The main problem in these methods 
is the correct estimation of the hydrodynamic interactions 
between the particles. The third approach is known as the DNS 
methods (Direct Numerical Simulation). They consist in 
solving exactly the Stokes equations for the fluid phase and the 
Newton equations for the solid phase taking the whole 
interactions into account. The particles are not defined as points 
associated with forces and torques but by their own intrinsic 
characteristics such as their shape or volume. This kind of 
methods is often used to solve problems dealing with 
sedimenting particles (see for instance the work of Hu et al. [7] 
or of Pan et al. [8]). Unfortunately, they are very time-
demanding and as such they often require the use of massive 
computer ressources. 
 
As mentioned above, both the analytical and numerical 
methods available to solve two-phase flow problems are very 
complex. In the present work, we chose a completely different 
approach, based on the generalized resistance matrix technique, 
in order to obtain the quasi-steady kinematics of a free 
cylindrical particle in three classical situations: the first one is 
the sedimentation of a particle, the second is the transport of a 
neutrally buoyant particle in a plane Poiseuille flow and the 
third is the transport of a non-neutrally-buoyant particle in the 
same plane Poiseuille flow. Notice that this quasi-steady 
approach does not account for inertial effects such as lateral 
migration (Segré-Silberberg effect [9]). In the next paragraph, 
the method and the studied system are described. 

DESCRIPTIONS OF THE METHOD AND THE MODEL 
The main goal is to determine the quasi-steady kinematics of a 
free particle and to assess the effects of the confinement 
(hydrodynamic interactions) and of the asymmetrical position 
on the particle. We will solve problems of a particle in 
stationary motion subject to hydrodynamic interactions from 
two parallel walls at very low Reynolds numbers. In order to 
evaluate these effects, we intentionally limit the complexity of 
the system and we study an infinitely long cylindrical particle 
moving through a Newtonian fluid as justified in [4]. This latter 
assumption allows separating the effects due to the 
hydrodynamic interactions (confinement and asymmetry) from 
the effects due to the complex behavior of the fluid. We also 
suppose that the particle moves parallel to the walls and that the 
axis of the particle remains perpendicular to the direction of 
motion. 

 
Fig. 1 - Sketch of the problem 

 
The geometry of the problem is presented in Fig. 1. The radius 
of the particle is called a , half the distance between the 
parallel walls is called b  and the distance between the axis of 
the particle and the symmetry plane is called c . The 
dimensionless groups /k a b=  and /e c b=  are respectively 
called the confinement and the eccentricity parameters. The 
problem of the two-dimensional flow around a circular particle 
moving in an unlimited medium when the inertial effects are 
neglected is characterized by the existence of the well-known 
Stokes paradox highlighted by Oseen [10] in 1910 and solved 
by Lamb [11] shortly afterwards: for such a problem, there is 
no solution to the Stokes equations that obeys both the 
boundary conditions at infinity and at the particle wall. 
However in confined situations, it was demonstrated that 
Stokes type solutions exist for such a cylindrical particle. Then 
the solution of the Navier-Stokes equations at very low 
Reynolds numbers leads to the existence of a proportionality 
relationship between the force and the velocity (Stokes type 
solution). In fact this result is much more general and it is 
possible to show that a particle moving at the velocity 

x x y yU U e U e= +  and rotating at the angular velocity z zeΩ = Ω  
undergoes some forces and torques proportional to these 
velocities. Therefore at very low Reynolds number, we can 
introduce to the first order of the inertia effetcs a matrix, called 
the resistance matrix, linking the kinematics of the particle to 
the forces and torques exerted on it: 
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represents the Stokes type, non-inertial part of the solution of 
the Navier-Stokes and continuity equations:  
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with adapted boundary conditions to each configuration. Notice 
that all the terms due to inertia in the matrix 0M  are taken to 
be zero and that this matrix is symmetrical (Happel et al [12]). 
The inertial part of the solution of (3) is thus transferred into 
the matrix Re inerM . The determination of the coefficients ijA  
is achieved with four series of numerical simulations: in the 
first one, the particle translates without any angular velocity, at 
the velocity xU  along the parallel walls through a quiescent 
fluid. This first series fills the first column of the resistance 
matrix. The second one is similar but the motion is in a 
direction perpendicular to the walls at velocity yU . The third 
series of simulations concerns the flow generated by the 
rotation of the particle around its axis at angular velocity zΩ  in 
an otherwise fluid at rest. The fourth column is finally 
completed with the simulation of a fixed particle in a plane 
Poiseuille flow of mean velocity U . 
 
The numerical calculations were done using the finite volume 
technique and a projection method. The set of equations (3) is 
solved adimensionally with a two-step fractional-step 
procedure based on an article of Ye et al [13] and discretized 
using a fully orthogonal rectilinear grid. A second order 
Adams-Bashforth scheme was employed for the convection 
terms and the diffusion terms with an implicit Crank-Nicholson 
scheme. The numerical resolution of the various systems of 
algebraic equations was performed using the well-known SOR 
iterative method. A validation was done with asymptotic 
developments and finally the results are compared to those 
obtained with the commercial CFD code Fluent. Both 
comparisons successfully confirm the accuracy of our code. In 
order to avoid the numerical difficulties related to the motion of 
the particle when it moves parallel to walls, we solved the 
equivalent problem of a fixed particle with parallel walls 
moving at the same velocity. However this artifice cannot be 

used anymore for the perpendicular motion to compute 22A  and 
so we used the fact that for very low velocity and very large 
kinematic viscosity ( Re 1 ), the quasi-steady state is 
established, inducing a negligible error in the position of the 
particle and the transient regime is reduced due to the weakness 
of the vorticity diffusion time scale 2 /aτ ν= . The results 
obtained by this method were successfully compared to those 
obtained using a dynamic mesh technique implemented in the 
commercial CFD package Fluent. 
 
RESULTS AND DISCUSSION 
In this paragraph, we successively present the results 
concerning the problems of the sedimentation of a solid 
particle, of a neutrally buoyant particle in a Poiseuille flow and 
of a non-neutrally buoyant particle in the same Poiseuille flow. 
We only report here the data concerning the translational and 
angular velocities but the results concerning the additional 
pressure losses were also determined in the same manner. 
 
Case N°1: sedimentation of a particle 
Let us study the sedimentation of a particle in a direction 
parallel to the vertical plane walls when gravity is directed in 
the positive x direction. If the difference between the particle 
density and the fluid density is called ρΔ  and when the steady-
state sedimentation is reached, we can write: 

2
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The apparent weight of the particle balances the drag force, the 
torque on the particle and the mean flow are nil. With the 
conditions (4) and inverting the resistance matrix 0M , we 

obtain from (1) when Re 0inerM = : 
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with: 
2

(7)g aU ρ π
μ

∗ Δ
=  

a characteristic velocity of the sedimentation. Let us recall that 
equations (5) and (6) are valid only in the limit of small particle 
Reynolds numbers. In our study, this is verified at least up to: 

2
Re 0.01

S
x

S
U aρ
μ

= =  

with ρ  the fluid density. However we know that the 
confinement delays the advent of the inertial effects and the 
limit given here may become higher if the confinement 
becomes more important. In the article of Feng et al [14], the 
lateral drift of the settling particle due to inertia is obtained for 
a particle Reynolds number 10 times greater than here. 
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Therefore in the present study, it is acceptable to neglect the 
lateral migration of the particle.  

 
Fig. 2 - Sedimentation velocity vs transversal position 

 
In Fig. 2, we report the evolution of the sedimentation velocity 
according to the eccentricity parameter max/e e  for four 
confinement parameters ranging between 0.29k =  and 

0.6k = . Let us recall that the confinement parameter /k a b=  
varies between 0 when the particle moves in an unbounded 
medium and 1 when the particle fills the whole space between 
the parallel plane walls (total blockage). The eccentricity 
parameter /e c b=  varies between 0 when the particle moves 
halfway between the parallel plane walls and max 1e k= −  when 
the particle touches one of the parallel walls. The main result 
clearly visible in Fig. 2 is the non-monotonous variation of the 
sedimentation velocity with the transversal position. The 
location of maximum sedimentation velocity is off the 
symmetry plane, at a position depending on the confinement 
parameter k . As the parameter k  decreases, the position of 
maximum velocity gets closer to the symmetry plane 

max/ 0e e = . For instance for 0.29k = , the maximum velocity 
is reached at max/ 0.7e e ≈  whereas for 0.44k = , it is obtained 

at max/ 0.8e e ≈ . It must be also emphasized that the relative 
increase of the maximal sedimentation velocity with regard to 
the velocity in the symmetry plane grows when the 
confinement parameter increases. For 0.29k = , the maximal 
sedimentation velocity is about 28% greater than the velocity in 
the symmetry plane and for 0.6k = , the increase reaches 
almost 90% (for such a confinement, the particle moves nearly 
twice as fast as in the symmetry plane). We also compare our 
results for 0.29k =  with those obtained by Dvinsky et al [15] 
who numerically studied the same problem but for 0.30k = . In 
their study, they use a coordinate transformation of the 
governing equations expressed in the vorticity-stream function 
formulation based on the resolution of two elliptic partial 
differential equations. We can see that the trends are similar, 
with an optimum occurring at the same lateral position at 

max/ 0.7e e ≈ . However, our data are higher than those of 
Dvinsky et al (maximum difference of 10% for max/ 0e e = ) 
but this discrepancy can be attributed to the difference in the 
confinement parameters. The study of Fig. 2 could lead to the 
misunderstanding that a small particle would move faster than a 
large particle. We must keep in mind that the sedimentation 
velocity plotted in Fig. 2 is normalized with the characteristic 
velocity given by equation (7) in which the particle size a  
appears.  
If we now rather consider the case of particles of various sizes 
falling in the same tank of constant dimension b , it is more 
relevant to plot the sedimentation velocity normalized with the 
new characteristic velocity: 

2 *
**

2 (8)g b UU
k

ρ π
μ

Δ
= =  

For the symmetrical position max/ 0e e =  for instance, the 
variation of **/S

xU U  is plotted in Fig. 3 as a function of the 
confinement parameter k . In this particular plot, for a fixed 
wall separation b , the velocity of a particle falling in the 
symmetry plane reaches a maximum for a cylinder of critical 
radius 0.35cra b= . This non-intuitive result can be explained 
as follows: for particles such that 0 cra a< < , the sedimentation 
velocity increases when the size of the particle increases. In this 
range the apparent weight of the particle, proportional to the 
square of the particle radius, grows faster that the drag force, 
resulting in an increase of the sedimentation velocity. On the 
other side for cra a b< < , the opposite situation occurs: when 
the radius grows, the increase of the drag force due to the 
backflow prevails over the increase of the apparent weight of 
the particle, leading to a decrease of the sedimentation velocity. 
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Fig. 3- Sedimentation velocity vs k  for max/ 0e e =  

 
We did an asymptotical development [4] in the lubrication 
regime for 1k → . In this limit, the velocity behaves like the 
following equation: 

5

**1

1 (1 ) (9)
9 2

S
x

k

U klim
kU π→

−
≈

 
This relation is also plotted in Fig. 3 and accurately matches the 
numerical data in the lubrication regime. For 0.9k =  the 
relative difference between the asymptotical development and 
the numerical data is about 10% and it decreases to less than 
1% for 0.99k = . Finally, the numerical results of Dvinsky et 
al [15] are also reported in figure 3 and satisfactorily agree 
with ours. A slight difference is obtained for the lowest 
confinement parameters. We showed in a previous study (see 
Fig. 4 in [4]) that the results of Dvinsky et al, when compared 
to various numerical, experimental and analytical studies, 
underestimate the drag force for 0.25k <  and thus inversely 
overestimate the settling velocity in this range.  
 
In figure 4, we present the evolution of the angular velocity S

zΩ  
given by equation (6) as a function of the transversal position 
in the channel. The main feature is the “anomalous” direction 
of rotation. If the particle settles along the positive x-axis in the 
region 0y >  as shown in Fig.1, it rotates clockwise and 
opposite to the direction of rolling on the upper wall. The 
opposite rotation direction is found if the particle is in the 
region 0y < . At the center of the channel, the particle does 
not rotate for obvious symmetry reasons. This phenomenon 
was already reported (see for instance [16], [17] and [18]) and 
is due to the blockage effect in the smallest gap when the 
particle is off the symmetry plane. Most of the backflow 
created by the particle motion goes between the particle and the 
furthest wall. This backflow imbalance creates the torque 
responsible for this “anomalous” rolling direction. 

 
Fig. 4- Angular velocity vs transversal position 

 
The comparison with the results of Dvinsky et al [15] presented 
in Fig. 4 is once again satisfactory, the difference in the 
confinement parameters accounting for slight discrepancy 
between both curves. 
 
Finally, we investigated in Fig. 5 the influence of the angular 
velocity S

zΩ  on the settling velocity S
xU  of the particle for 

0.6k = . When the rotation is impeded, we notice that the 
particle settles slower compared to the free particle 
configuration. When we looked at the pressure field around the 
free particle, it was observed that the rotation of the particle 
induces a lower pressure upstream and a higher pressure 
downstream. This pressure difference explains the enhanced 
settling velocity for the completely free particle. 
 

 
Fig. 5- Sedimentation velocity vs transversal position with or 

without angular velocity for 0.6k =  
 
 
 



 6 Copyright © 2010 by ASME 

Case N°2: transport of a neutrally buoyant particle in a 
plane Poiseuille flow 
Now we suppose that the fluid and the particle have the same 
density and that the particle is transported in a plane Poiseuille 
flow of mean velocity U : 

2

2

3( ) ( 1 ) (10)
2
U yu y

b
= −  

If the particle is free to move and when the steady state is 
reached, the particle is in dynamic equilibrium and the sum of 
the external forces and torques acting on it is zero. Hence we 
can write: 

0
(11)

0
x zF M

U

= =⎧⎪
⎨

≠⎪⎩  

 
The resolution of the system yields: 

13 34 14 33

11 33 13 31

( ) (12)P
x

A A A A
U U

A A A A
−

=
−  

31 14 11 34

11 33 13 31

( ) (13)P
z

A A A A U
A A A A a

−
Ω =

−  
Let us recall that equations (12) and (13) are valid only in the 
limit of small bulk and particle Reynolds numbers. In this 
study, this is verified at least up to: 

2Re 0.01U

U bρ
μ

= =
 

2
Re 0.01

P
x

P
U aρ
μ

= =  

In the article of Feng et al [17], the lateral migration, computed 
with a DNS simulation, is present for bulk and particle 
Reynolds numbers of 0.625 and 40 respectively. In the present 
study, the Reynolds numbers are much smaller and it is 
legitimate to neglect lift forces and lateral migration 
phenomena. In Fig. 6 we present the variation of the transport 
velocity of the particle according to the transversal position for 
various confinement parameters. We can see in this graph that 
the maximal transport velocity is always obtained in the 
symmetrical position for max/ 0e e = . Then this velocity 
continuously decreases as the particle gets closer to a wall. 
Another result is the existence of two regions: an inner region 
roughly for max/ 0.5e e <  in which the smaller the size of the 
particle, the faster the particle is transported and an outer 
region for max/ 0.5e e >  in which the opposite trend occurs. 
The most significant result is however obtained when we 
compare the transport velocity and the velocity of the 
undisturbed Poiseuille flow. This comparison is shown in Fig. 7 
for the single confinement parameter 0.29k = . This graph 
reveals that the particle is always transported with a lesser 
velocity than the Poiseuille flow: there is a relative velocity for 
the transported particle. The further from the symmetry plane, 
the larger this relative velocity.  

 
Fig. 6 - Transport velocity of a neutrally buoyant particle in a 

plane Poiseuille flow versus transversal position 
 
These results unambiguously contravene the hypothesis of 
Jeffery [5] and used by Folgar et al [6] in their models to 
describe the behavior of particles in shear flows (they assume 
that a particle moves at the same velocity as the undisturbed 
flow).  

 
Fig. 7 - Transport velocity of a neutrally buoyant particle in a 

plane Poiseuille flow vs transversal position 
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This assumption should be reviewed in the cases of large 
hydrodynamic interactions, in particular in regions with high 
particle concentrations and/or in the near-wall regions. We also 
report in figure 7 the numerical results of Dvinsky et al [19] for 
the slightly different confinement parameter 0.30k = . The 
comparison is satisfactory except in the vicinity of the wall as 

max/ 1e e → . 
When the particle moves in the symmetrical position 

max/ 0e e = , we find that the effect of the confinement is given 
by a simple relationship such as: 

max 2

3( / 0) (14)
2

P
xU

e e
kU

= =
+  

This expression is plotted in Fig. 8 together with the numerical 
data. The agreement between both approaches is very 
satisfactory. In the limit 0k → , it is found that the particle 

moves with the velocity max3 / 2U U= . Thus it is transported at 
the same velocity as the undisturbed flow.  
 

 
Fig. 8 - Transport velocity of a neutrally buoyant particle in a 

plane Poiseuille flow versus k  for max/ 0e e =  
 

In the opposite limit 1k → , it is observed that the particle 

moves with the mean velocity U : the particle behaves like a 
plug and is pushed at the same speed as the mean flow. The 
maximum relative velocity obtained for 1k →  is equal to 33% 
of the particle fluid velocity maxU . 
Finally in Fig.9, we plot the evolution of the angular velocity 
according to the transversal position of the particle. Contrary to 
the sedimentation problem, the rotation direction of the particle 
is “normal”. This is due to the velocity gradient in such a shear 
flow. The velocity of the Poiseuille profile is larger in the 
region close to the symmetry plane than near the walls. This 
induces a torque responsible for the observed rotation direction. 
In the same figure, we also reported the results obtained by 
Dvinsky et al [19] for 0.30k =  and both studies yield similar 

results. Finally, we plotted the angular velocity of a fluid 
particle in the undisturbed Poiseuille flow: 

1| | | |
2

uω = ∇×  

The comparison reveals that although the angular velocities of 
the cylinder particle and of fluid particle are similar near the 
symmetry plane, they drift from each other as the cylindrical 
particle is close to a wall. Moreover, the angular velocity of the 
particle is always slower than the fluid particle and thus there 
exists too a relative angular velocity which should not be 
neglected for an accurate estimation of the particle transport 
characteristics. 

 
Fig. 9 - Angular velocity of a neutrally buoyant particle in a 

plane Poiseuille flow vs transversal position 
 
Case N°3: transport of a non-neutrally buoyant particle in 
a plane Poiseuille flow 
To evaluate a possible way to fractionate a polydispersed 
suspension, the last situation presented here is a combination of 
the two previous ones when the vertical Poiseuille flow is 
directed upwards and opposite to gravity. Because of the 
linearity of the system, the solution of a non-neutrally buoyant 
particle in a vertical plane Poiseuille flow is straightforwardly 
obtained by the superposition of the solutions of cases 1 and 2. 
Hence we find: 

33

11 33 13 31

13 34 14 33

11 33 13 31

( )
(15)

( )

P S S P
x x x

A
U U U U

A A A A
A A A A

U
A A A A

+ ∗−
= − =

−

−
−

−
 

In Fig. 10 we present the evolution of the transport velocity for 
a single confinement parameter 0.29k =  as a function of the 
transversal position. This velocity is scaled by the mean 
velocity of the Poiseuille flow U . According to the above-
written equation, we introduce a new parameter α  such that: 
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2

(16)U g a
U U

ρ πα
μ

∗ Δ
= =

 
This dimensionless number compares the effects of the 
buoyancy force and the effects of the Poiseuille flow.  
 

 
Fig. 10 - Transport velocity of a non-neutrally buoyant particle 

in a plane Poiseuille flow vs max/e e  for 0.29k =  and for 
various values of α  

 
To the factor π , this number is also the ratio of the 
Archimedes and Reynolds numbers Ar  and Re : 

3 2/ (17)
Re/

ga Ar
Ua

ρ ρ μα
ρ μ

Δ
∝ =  

 
The case 0α =  corresponds to the neutrally buoyant particle 
studied in the previous section. The dotted curve for this case in 
Fig. 10 is exactly the same curve as in Fig. 7. When 0α > , the 
particle is heavier than the carrying fluid so that the transport 
velocity is reduced by the effect of its sedimentation compared 
to the neutrally buoyant condition. Noteworthy is that it is 
possible to find situations for which the particle velocity is 
positive in an inner region and negative in an outer region. This 

is clearly visible in Fig. 10 for 30α =  for example. In this 
case, as long as max0 / 0.44e e< < , the transport velocity is 
positive and the particle moves in the same direction as the 
Poiseuille flow (but with a large relative velocity). Globally the 
Poiseuille flow dominates sedimentation. For max0.44 / 1e e< <  
however, the velocity becomes negative and the Poiseuille flow 
cannot carry the particle anymore so that it settles in the 
direction opposite to the Poiseuille flow. In the near-wall 
region, the transport velocity induced by the Poiseuille flow 
become very low as can be seen in Fig. 7. This phenomenon 
could be used in particle or colloid analysis methods as an 
alternative to techniques such as Split-Flow Thin Fractionation 
(SPLITT cells). Indeed because α  depends on the particle size 
a , the fractionation of a polydispersed sample could be 
performed. When α  becomes greater than 40, the particle 
settles at any transversal position. Now when 0α < , the 
particle is lighter than the fluid so that the opposite behavior 
occurs. The transport velocity is enhanced by the buoyancy 
whatever the transversal position of the particle.  
 
CONCLUSION 
In this work, we used the resistance matrix, the coefficients of 
which were numerically determined, in order to solve three 
practical problems involving a cylindrical particle in 
hydrodynamic interactions between two parallel walls. In this 
approach, we do not take into account inertial effects which 
induce any lateral migration because of the low values of the 
Reynolds numbers chosen here. Concerning the case of the 
sedimentation of the particle in a quiescent fluid, we showed 
the existence of a maximal settling velocity off the symmetry 
plane and of an “anomalous” rotation direction due to the 
backflow. When the particle settles symmetrically in a tank of 
fixed dimensions, we highlighted the non-intuitive existence of 
a critical particle radius at which the settling velocity is 
maximal. For the problem of the neutrally buoyant particle in a 
Poiseuille flow, we proved the existence of a relative 
translational and angular velocity between the particle and the 
undisturbed flow. Finally, in the problem of the non-neutrally 
buoyant particle in a Poiseuille flow we obtained positions at 
which the particle could be transported in the same direction as 
the carrying fluid and positions at which the direction of 
particle and of the Poiseuille flow are opposite. This result 
could lead to a new fractionation technique when the gravity is 
parallel to the flow direction. The results presented here 
emphasize the importance of the hydrodynamic interactions in 
the analysis of two-phase flow problems such as fiber transport 
at high particle concentrations or in the presence of confining 
walls. Others problems can be obtained once the resistance 
matrix is completed. 
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