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ABSTRACT 
A computer program based on a Molecular Dynamics-
Continuum hybrid numerical method has been developed in 
which the Navier-Stokes equations are solved in the continuum 
region and the atomistic molecular dynamics in molecular 
region. The prepared algorithm and the computer code are 
capable of computing flows in micro and nano-scale 
geometries. The coupling between the continuum equations and 
the molecular dynamics is constructed through constrained 
dynamics within an overlap region where both molecular and 
continuum equations are solved simultaneously. An Overlap 
region is introduced in two directions to improve the choice of 
using molecular region in smaller areas. The proposed method 
is used to simulate steady and start-up Couette flow showing 
quantitative agreement with results from analytical solutions 
and full molecular dynamics simulations. 
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INTRODUCTION 

Continuity is the most fundamental assumption in 
Continuity is the most fundamental assumption in macroscopic 
fluid mechanics which is governed by the Navier–Stokes (NS) 
equations (see, for example, [1]). This assumption breaks down 
as the spatial scale of flows approaches the molecular mean 
free path [2]. In particular, the molecular mean free path may 
no longer be negligible and macroscopic constitutive relations 
and boundary conditions become inadequate. In principle, this 

problem can be resolved by using a fully atomistic description 
such as molecular dynamics (MD) simulations. However, MD 
simulations on current computers are typically limited to 
dimensions less than 100 nm and times much shorter than a 
microsecond ([3,4,5,6,7]).  Thus they can not treat most systems 
of experimental interest[8]. Moreover, in most cases the 
breakdown of the continuum description is confined to limited 
domains, such as fluid– fluid or fluid–solid interfaces. Hence it 
is desirable to develop hybrid methods that combine continuum 
fluid dynamics and molecular dynamics, using the most 
efficient description in each region of space [9]. 

In recent years, a new class of hybrid approaches has 
been developed that combines the strengths of atomistic and 
continuum approaches. The first hybrid method was proposed 
by O’Connell and Thompson (1995) which combined MD 
simulation with continuum solver [10].The so-called hybrid 
method was widely used in simulating channel flows of larger 
scale but with microscopic view of interfacial phenomena. This 
class of approaches is a multiscale simulation combining 
continuum and particle (atomistic) models so as to extend the 
computational domain to a range beyond that in the pure 
atomistic simulation. Thereby the wall-fluid interaction in near-
wall thin regions can be resolved by atomistic results, while the 
bulk flow in the core region at a sufficient distance from the 
wall is computed using the continuum model based on Navier–
Stokes (N–S) equations. In hybrid computations, there are two 
kinds of interface. One is the physical interface where the fluids 
contact the solid walls. Another one is between the particle and 
the continuum regions, where an overlap region is arranged. In 
the overlap region, exchange of the computational results from 
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particle to continuum (P→C) as well as from continuum to 
particle (C→P) regions needs a particular care [8]. 

In all previous hybrid studies of flow in nanochannels, the 
overlap region, that combines the continuum and molecular 
dynamics solutions, were spread out in only one direction. 
Therefore, investigation of flow behavior with MD simulation 
over a tiny portion of wall arouses a necessity to use atomistic 
description for the entire region near wall. However, by 
considering the overlap region in two directions, selection of 
smaller region near the wall will be available and the 
simulation can focus on the interested areas. 
In the current paper, a hybrid numerical method was 
developed. In this method interfacial regions were described by 
molecular dynamics simulations and bulk regions by the 
incompressible Navier-Stokes (NS) equations. The method was 
applied to a simple steady as well as start-up Couette flow and 
the obtained results have been shown quantitative agreement 
with the results from analytical solutions. The pure atomistic 
simulation is solved in small region near the wall. In addition, 
extending the overlap region to two dimensions and adding 
complexity to its governing equations enabled one to select 
longer channels and still solving the interested area with pure 
MD simulation. 
 
SIMULATION METHOD 

The simulation domain is divided into two spatial domains 
shown in figure 1, the particle (atomistic) domain is indicated 
by dots and the continuum domain is represented by shading. 
Molecular dynamics simulations are performed in the atomistic 
domain, and classical continuum fluid dynamics equations are 
solved on a grid in the continuum domain. The overlap region 
is constructed in molecular region and extends typically a few 
times the continuum grid spacing. Both molecular dynamics 
and continuum calculations are performed in this overlap 
region. 

As shown in figure 2, the geometry is a 3D channel 
surrounded by solid planar wall. The top and bottom walls are 
constructed in y-x plane and the side walls are in z-x plane. 
Periodic boundary condition is applied on the inlet and outlet 
of the channel in y-z plane and x-direction. The MD region is a 
slit shaped domain, constructed on the center of the bottom 
wall and spread from inlet to the outlet of the channel, and 
measures 4Δy and 5Δy in y and z directions respectively. The 
bottom wall behaves as atomistic wall when MD equations are 
solved and acts as a barrier with no-slip condition when NS 
equations are solved. 

In the MD simulation, fluid atoms are allowed to interact 
via Lennard-Jones 6-12 potential. The molecular interaction 
potential between both wall-fluid and fluid-fluid is given by a 
shifted Lennard–Jones potential as follows: 
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where σ is molecular diameter and ε is the well depth of 
potential function. 

Using Newton’s second law the molecular dynamics 
equation of motion is found from: 
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where ULJ is established from (1). 
 

 
Figure 1- locations of Overlap, Continuum and MD in the 

simulation geometry and the discretized computational space  
 
To reduce the computational cost, the interaction is set to 

zero when atoms are distanced more than the cut-off length rc = 
2.5σ. Mass of atoms were set to m and the density is set to ρ= 
0.81mσ-3, to allow comparison between previous results 
[8,9,11]. The atomic wall consists of atoms, with mass and 
density the same as fluid and forming two (001) planes of an 
FCC crystal. Each wall atoms is attached to its lattice site by a 
harmonic spring of constant k=400ε/σ2 to maintain a well-
defined solid structure with a minimum number of solid atoms. 
The spring constant k controls the thermal roughness of the 
wall as well as its responsiveness to the fluid and is adjusted so 
that the mean squared displacement of each atom about its 
lattice site is less than the Lindemann [12] criterion for 
melting. For the results shown <δu2>/d2=0.01 is used. 
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Figure 2- Simulation Geometry and boundary conditions 

schematic 
 
Fluid and solid atoms also interact with a Lennard- Jones 

potential, but with a reduced binding energy εwf = 4.0ε which 
leads to a no-slip boundary condition. By implementing thermal 
wall model, momentum and energy exchanges between fluid 
and the wall take place properly. Therefore, excessive heat in 
the fluid is transferred to the walls and then, the heat is 
dissipated through the thermostat applied on the walls. Nose-
Hoover chain of second order [13] was applied to the separate 
layers of the wall atoms to hold the wall temperature constant 
at 1.1ε/kB. The equations of motion are integrated using the 
Gear predictor-corrector scheme [14] of fifth order with time 
step ΔtMD =0.005τ, where τ≡(mσ2/ε)1/2 is the characteristic time 
of MD equations of motion. 

In the continuum region, the following three-dimensional 
incompressible Navier–Stokes equations are solved. 
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where u is the fluid velocity, μ is the dynamic viscosity and 
p is the pressure. The transport coefficients are determined 
through preliminary MD simulations to be consistent with the 
atomistic potential in order to ensure continuity in the overlap 
region and therefore the dynamic viscosity is selected as 
μ=2.14ετσ-3. The above equations 
Error! Reference source not found. are solved numerically 
using the SIMPLE [15] method. The Navier-Stokes equations 
are integrated with mesh size of Δx=Δy=5.21σ and Δz=4.82σ 
on staggered grid [16] as shown in figure 1. Pressure is defined 
at the centers of cells and x and y components of the velocity 
are marked out at the middle of the vertical (crosses) and 
horizontal (circles) edges of the cells, respectively. The time 
scale on which atoms sample different kinetic energies is of 
order the velocity autocorrelation time tvv= 0.14s [17]. 
Therefore, the simulations used ΔtFD = 50ΔtMD = 0.25τ, where 
ΔtFD and ΔtMD are the time steps for continuum and atomistic 
regions respectively. 

The key element in hybrid methods is the scheme used for 
coupling macroscopic and microscopic solutions to ensure the 
consistency of mass, energy and momentum in the overlap 
region and the continuity of fluxes across it. In transferring 
information from particle region to the continuum, a (Particle 
to Continuum) P→C condition is introduced in which 
continuum velocities are extracted from the coarse-grained MD 
velocity. On the other hand, the (Continuum to Particle) C→P 

condition is more complicated because the information about 
macroscopic quantities does not uniquely specify the 
microscopic state of particles and thus, a sum of various 
actions builds this condition. The goal of continuum to particle 
coupling is to constrain the mean particle behavior without 
introducing unphysical artifacts associated with the constraint 
or the termination of the particle domain. The overlap region 
helps to minimize these effects. For construction of P→C 
condition, MD solution obtains velocity values by averaging the 
velocities of all MD particles within a volume of dimensions 
Δx×Δy×Δz that is centered on the point of interest. The average 
is also performed over a time interval ΔtFD=0.25τ that is 
centered on the time for the continuum equations. This means 
that in transferring the data from the continuum region to the 
MD region, information is only available for times ΔtFD/2 
earlier than the current MD time. In the overlap region, a 
constrained dynamics is implemented for atoms equations of 
motion in order to achieve the mass and momentum 
consistencies between the molecular and continuum 
descriptions. The momentum consistence implies that the local 
mean of the particle momentum is equal to the instantaneous 
macroscopic momentum for arbitrary cells in the overlap 
region: 
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Where NJ is the number of particles in cell J. Therefore, 
the mean particle velocity in each cell J is constrained to follow 
the continuum solution uJ. Equation (4) introduces a 
nonholonomic constraint to equations of motion of the particles 
in the overlap region. There are various ways to modify the MD 
equations of motion which has its own advantage and 
disadvantages. Kane`s method, Lagrange multiplier method 
and Gauss’s principle of least constraint are the methods that 
can be utilized to implement a nonholonomic constrain to 
equations of motion. By implementing Lagrange multiplier and 
Kane’s methods a very accurate formulation, which can predict 
the true trajectories of the particles can be derived [18]. But 
the shortcoming of both methods is the complexity of the 
derived relations which made it almost impractical to 
implement on MD equations of motion. In this paper, according 
to [8,9,19] the following modified equation for the ith particle 
is found by using Gauss’s principle of least constraint: 
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where DuJ/Dt indicates the material derivative. The last 
two terms ensure that the mean particle velocity tracks the 
continuum solution by subtracting the sum of all forces on 
particles in the cell and adding the material derivative of the 
continuum solution [8]. ξ is a characteristic time constant 
which relaxes the continuum equation on MD equation. The 
relaxation is found necessary for the current 3D geometry to 
decrease the unsatisfactory fluctuation induced by the MD 
simulation. Various methods have been developed recently to 
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find an appropriate relation for modifying the relaxation factor 
[11,20]. In this paper, an arithmetic progression is chosen to 
find a relation for increasing the relaxation factor so that the 
atomistic solution relaxes on continuum solution with a finite 
time lag in the very beginning of the simulation. By using the 
proposed relation, the relaxation factors starts from 0.1 and 
tends towards unity as the simulation progresses. The 
relaxation factor relation is shown in the figure 3. 

 
Figure 3- Variation of the relaxation factor with simulation 

timestep. The relaxation factor increases from 0.1 to 1 following the 
above curve. A polynomial of order 3 is fitted to the mentioned 

progression which is shown in the figure 
 
To prevent molecules from freely drifting away from the 

MD simulation domain, an external force is applied to particles 
in the last layer of the overlap region. A similar force is also 
applied in the y direction. For the particles between Z2 and Z3 
this equation is as follow: [9] 
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where p0 is the equilibrium pressure corresponding to the 
fluid density and α is a constant of order one. In the current 
simulation α was set to unit and the hybrid simulation is 
insensitive to the magnitude of α when it is of unit order. 

Mass continuity can be achieved by moving particles 
across the boundary of the overlap region. The number of 
particles in each cell is changed by the net flux in an interval 
ΔtFD. The mass flux is evaluated by the NS equations and the 
number of particles that should be inserted or removed across 
the boundary is evaluated from: 

/FDn A u t mρ⊥ ⊥= − Δ  (7) 
where A┴ is the area of the cell perpendicular to the 

interface. If n is negative, the n particles closest to the outer 
layer of the overlap region are removed. If n is positive, 
particles are inserted at regular intervals over the subsequent 
ΔtFD at positions near the outer layer of the overlap region and 
randomly distributed along x and y direction in each cell. To 
prevent the distance between the inserted particles and the 

previous ones from being too small, the above process is 
repeated. At each interval ΔtFD, the nearest integer of n is taken 
and the remaining particle fraction is included at the next time 
step. [11] 

 
Figure 4- Time coupling in the Hybrid method showing the C→P 

and P→C condition. MD is the molecular region timestep and NS is 
the continuum region timestep 

 
The time coupling scheme in the overlap region is shown 

in Figure 4. First, 50 time steps in the MD are conducted, then 
the average is performed over the time interval in a box of 
Δx×Δy×Δy around the interested point and the averaged 
velocities are transferred to the NS equations using P→C 
condition at the center point of the interval; then, the NS 
equations are advanced for one time step and the information is 
sent to the MD using the C→P condition, where the 
extrapolation of velocity field is needed. The MD and NS 
equations are shown in the figure with 1 and 2, respectively. 
 
RESULT AND DISCUSSION 

Steady Couette flow with no-slip boundary condition is 
first simulated in a nanochannel using presented hybrid model. 
Argon atoms are confined between four parallel walls in a 3D 
geometry as shown in figure 2. Channel measures 53.6σ, 36σ 
and 23.04σ in x, y and z direction respectively. The MD region 
is in the middle of the channel adjacent to the lower wall and is 
comprised of 2780 fluid atom and 1950 wall atoms. The 
overlap region is spread from Z0 plane to Z3 plane in the Z 
direction and includes three layers of computational cells as 
shown in figure 1. 

The temperature of the fluid is kept constant at T =1.1ε/kB, 
by using second order Nose-Hoover chain thermostat and at 
these given T, the fluid is in a well-defined liquid phase with 
viscosity μ=2.14 ετσ-3. Top wall is moving in the x direction 
with uw=10σ/τ while the lower wall is kept still. The 
computational domain is divided into bins of the same 
dimensions as computational grid. To observe the accuracy of 
the presented model velocity profile is obtained in the x-
direction and compared to the results obtained from simulating 
the whole domain with pure atomistic molecular dynamic 
simulation. As illustrated in figure 5, the stream direction 
velocity profile is computed for different layers of fluid from the 
lower layer (layer 1), adjacent to the still wall; to the upper one 
(layer 16) adjacent to the moving wall. The hybrid and the MD 
solutions are shown with continuous line and discrete dots 
respectively. The results showed a good agreement between the 
predicted velocity profile from both hybrid and MD simulations 
in a nanochannel steady flow. 
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Because the current geometry is three dimensional and the 
overlap region is spread in two directions, for reducing the 
unsatisfactory fluctuations induced by the MD solution, 
choosing a proper relaxation factor becomes very important. 
Therefore, unsteady sudden start-up Couette flow is 
investigated in the above geometry as another example. The 
velocity profiles are obtained for two different times and are 
compared with the analytical solution in figure 6. According to 
[21] velocity profile at the outlet plane for a Couette flow can 
be found from: 

( )2 2
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2 11 exp sin
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u y n yn t
U h n h
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π
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Where h is the channel height and U0 is the wall velocity. 
 
 

 
Figure 5- different layers of fluid undergoing Couette flow with 

hybrid solution and pure MD solution 
 
 

 
Figure 6- Comparison of obtained results with analytical results 

for sudden start-up Couette flow 
 
 
CONCLUSION 
A computer program based on a Molecular Dynamics-
Continuum hybrid numerical method has been developed. The 
prepared algorithm and the computer code are capable of 
computing flows in micro and nano-scale geometries. MD 
simulations are used in interfacial regions where the 

discreteness of the fluid is important and the Navier–Stokes 
equations are solved in regions where a continuum description 
is accurate. The two descriptions are coupled by imposing 
continuity of fluxes at the boundaries of an overlap region. The 
mean particle velocities provide boundary conditions for the NS 
solution at one side of the overlap region (P→C). A 
constrained dynamics algorithm forces the instantaneous mean 
particle velocity to equal the continuum solution at the other 
boundary (C→P). Flux across the overlap region is maintained 
by adding or removing a number of particles that is consistent 
with the continuum flux. 

Simulations of steady and sudden start-up Couette flow 
are investigated in a 3D nanochannel and the obtained results 
are compared to pure MD simulation and analytical solutions. 
As the overlap region expands to two dimensions the 
unsatisfactory fluctuations become necessary and to cope with 
current phenomena gradually increasing relaxation coefficient 
is implemented. 
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