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ABSTRACT 
Two methods for solving coupled particle dynamics and 

flow field equations simultaneously by considering fluid-
particle interactions to simulate two-phase flow are presented 
and compared. In many conditions, such as magnetic micro 
mixers and shooting high velocity particles in fluid, the fluid-
particle interactions can not be neglected. In these cases it is 
necessary to consider fluid-particle interactions and solve the 
related coupled equations simultaneously. To solve these 
equations, suitable algorithms should be used to improve 
convergence speed and solution accuracy. In this paper two 
algorithms for solving coupled incompressible Navier-Stokes 
and particle dynamics equations are proposed and their 
efficiencies are compared by using them in a computer 
program. The main criterion that is used for comparison is the 
time they need to converge for a specific accuracy. In the first 
algorithm the particle dynamics and flow field equations are 
solved simultaneously but separately. In the second algorithm 
in each iteration for solving flow field equations, the particle 
dynamics equation is also solved. Results for some test cases 
are presented and compared. According to the results the 
second algorithm is faster than the first one especially when 
there is a strong coupling between phases. 

 

NOMENCLATURE 
  d [m] Particle diameter 
  m [kg] Particle mass 
  V
r

 [m/s] Fluid’s velocity vector 
 

pV
r  [m/s] Particle’s velocity vector 

relV
r  [m/s] Particle’s velocity relative to the fluid 

velocity 
  t [s] Time 
  p [N/ m2] Pressure 
  F [N] Force 
  f [N] Force 

MC  [-] Added mass coefficient 

 Re [-] Reynolds number 
dF  [N] Drag force 

gF [N] Gravity force 

LF  [N] Lift force 

SF [N] Fluid stress gradients force 

hF [N] Basset history force 

Fw [N] Wall interaction force 

DC  [-] Drag coefficient 

PA  [m2]   Cross section area of the particle 
  x [m] Cartesian axis direction  
  y [m] Cartesian axis direction  

2R  [-] Coefficient of determination 
 r  [m] Position  
ζ [1/s] Velocity gradient ( )yV ∂∂ /  

ω [1/s] Particle angular velocity 
 
Special characters 

pΩ  [m3] Particle volume 
 ψ  [-] Ratio of  particle density to fluid density 
μ  [kg/ms] Fluid dynamic viscosity 
ρ  [kg/m3] Density 

 
Subscripts 
 p  Particle 
 rel  Relative  
  f  Fluid 
  0  Initial 
   
INTRODUCTION 
       Nowadays two-phase flows are common in industries. 
Chemical industries, MEMS, aerospace systems, combustion 
technology and biological applications are a few examples 
[1,2]. Two-phase flow simulation by using CFD is a powerful 
tool for reducing costs and doing optimization in industry. 
Two-phase flow that is considered in this paper is related to 
motion of solid particles in continuum fluid surrounding. 
Approaches of the dispersed-phase (solid particles, droplets, or 
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bubbles) are commonly classified by their treatment as 
Eulerian vs. Lagrangian [1]. In the Eulerian approach it is 
assumed that the particles properties such as velocity, 
temperature and concentration can be described as a 
continuum. In the Lagrangian approach particles positions are 
carefully traced and the properties are extracted by using them. 
Both have pros and cones. For example Eulerian simulation 
gives a good physical insight but needs large computer 
resources and Lagrangian particle tracking is economical, 
feasible and flexible but it has some limitations on accuracy 
and resolution [3]. Two methods are presented in the 
Lagrangian approach: first is “point-volume” representation 
and second is “resolved-volume” representation [1]. 
    In Figure 1 these two methods are presented. There is 
another classification in two-phase flow modeling: One-way 
coupling and two-way coupling. When the fluid flow affects the 
particles dynamics but particles have no effect on the fluid flow, 
the condition is one-way coupling. If particles can change the 
fluid flow, two-way coupling is occurred. To model the two-way 
coupling there are two general algorithms in the literature [4-
8]. In fact these general algorithms talk about the sequences 
and steps that should be done between fluid flow and dispersed 
phase simulations. In this paper two algorithms for point-
volume two-way coupling Lagrangian particle tracking are 
presented and their efficiency are compared by using them in a 
code that is written for this purpose. Tests are done in a micro 
channel by using micro spheres. The emphasis is very much on 
the time they need to converge to a specific error. At the end 
the better algorithm is introduced.  
 

 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 1: Comparison of point-volume and resolved-volume 
particle representations [1]. 

 

A REVIEW OF TWO GENERAL ALGORITHMS FOR 
SOLVING TWO-WAY COUPLING TWO-PHASE FLOW 
     Several kinds of forces act on solid particles accelerating in 
liquid flow. If we consider drag force as the dominant force in a 
two-way coupling two-phase flow in point-volume two-phase 
flow model, as it is usual in literature [1], then the two-way 
coupling problem could be split into three major problems (in 
an incompressible isothermal fluid surrounding): 

1. Flow field calculation 
2. Calculating  drag force 
3. Calculating particle velocity 

    By considering these three steps, regardless of the CFD 
method that is used for velocity and pressure field calculations 
and the method used for drag calculation, two general 
algorithms could be made: 
I. Algorithm1: At each time step: continue the following 
steps until all the variables converge, i.e. velocity field, 
pressure field and particle velocity (Figure 2):  

i) Calculating velocity and pressure field until they 
converge. 

ii) Calculating drag force exerted on the particle. 
iii) Calculating particle velocity 
 
The drag force that is exerted on the particle is in fact 
the force exerted on the fluid elements but in the 
opposite direction. Therefore this force is used in 
velocity and pressure field calculation. 

 
 

Figure 2: Algorithm 1 
 
II. Algorithm2:  In each iteration to solve flow field equations 
to reach the convergence criteria, particles dynamics equations 
are also solved (Figure 3). 
  The first algorithm is called “explicit coupling between two 
phases” and the second is called “implicit coupling between 
two phases” [7].  
    The time they consume to converge is a highly competitive 
factor that shows their efficiency. Therefore this factor will be 
used for comparing these two algorithms in this paper. 

Calculating 
drag force 
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particle. 
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velocity 
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until 
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Figure 3: Algorithm 2 
 
    

THEORY AND ASSUMPTIONS          
 The model that is used in this paper is called "point-volume" 
which is a branch of two-phase flow simulation models. This 
method belongs to an approach that models drag forces and lift 
forces instead of calculating them by using fine mesh around 
the object. For using this method there is a necessary 
condition: particle's dimensions should be smaller than the 
cell's dimensions. In this approach angular velocity could also 
be modelled. At limit, when the particle's volume fraction of 
dispersed phase is very small, particles are treated as "points". 
It is a very usual method that is used by many researchers such 
as [4, 11]. In this situation particle's volume is assumed to be 
zero, therefore there is no angular velocity and the only 
equation that should be solved is the linear momentum 
equation.    
 The fluid is assumed to be Newtonian incompressible 
isothermal liquid. The behavior of fluid is governed by 
incompressible continuity and Navier-Stokes equations: 

0=⋅∇ V
r

                  (1)  

),().( 2 trfVPVV
t
V

f
rrrrr

r

+∇+−∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+

∂
∂ μρ  (2) 

According to the point-volume model, f
r

 in equation (2) is the 
force that is exerted by the particle on the fluid element at point 
rr and at time t . 
In a general form, dynamics equation of a moving particle in 
fluid is [1]: 

∑=+Ω k
p

Mpp F
dt

dV
C )/1( ψρ    (3) 

whslgdk FFFFFFF +++++=∑    (4) 

Usually dF
r

 and gF
r

are dominant forces [1]. In the case that is 

discussed in this paper gF
r

  is 3101.8 −× pN, and dF
r

 is in the 

order of 1pN, therefore, gravitational force can be neglected. 
 Particle's density in our case is in the order of fluid density and 
the particle experience a high acceleration; therefore, it is 

reasonable to consider the added mass effect. Magnus lift force 
is a function of particle's angular velocity. Because we have 
used "point-volume" method, this force does not exist in our 

case. According to [12], when 0.1)/(Re ≥− ppp VVD ζ , the 
magnitude order of Saffman lift is the same as Stokes drag. 

yV ∂∂= /ζ , y is the perpendicular direction relative to the main 
stream flow. The flow velocity between two parallel plate, based 

on our assumptions, is [4]: )./41(2/3)( 22
0 wyVyVx −=  By 

doing some calculation it can be deduced that the maximum 

value of )/(Re ppp VVD −ζ could be about 
5108 −× . Therefore this 

force can surely be omitted. No collision is done in this case, 
therefore, wF =0. 
 It would be useful to notice an important point. Our study is in 
fact a comparison between two ways for solving coupled 
equations. Here we have incompressible fluid flow equations 
and particle dynamics equation which are coupled due to high 
velocity of the particle and as a result: high momentum 
coupling between phases. Therefore if some forces in this study 
were neglected, it would not disadvantage the result. 
 Therefore the equation of motion becomes: 

d
p

Mpp F
dt

dV
C

r
=+Ω )/1( ψρ       (5) 

dF
r

 is calculated from the below equation [2]: 

||)(
2
1

pppDfd VVVVACF
rrrrr

−−= ρ    (6) 

where DC  depends on the Reynolds number that is considered 
in the code. In a general case, equations (1), (2) and (3) should 
be solved simultaneously. Therefore, it is a coupled problem. 
  The cases simulated in this paper are in micro scales. Because 
of micro channel's small dimensions and very slow fluid 
velocity, Reynolds number is below 1. Additionally, due to very 
small dimension of micro sphere and its low mass, it is not 
necessary to model turbulence. It is clear from the results that 
when the micro sphere is shot into the fluid, it does not disturb 
the streamlines seriously, therefore this assumption is correct. 
     
NUMERICAL SCHEME AND THE CODE ABILITIES 
   A computer code for taking numerical tests is developed to 
calculate flow field. Particle’s dynamics equation is integrated 
by using “improved Euler method” that is equivalent to 
“second order Runge-Kutta” [9].  Gauss-Seidel algorithm is 
used to solve linear system of equations. 
   This code can calculate flow field and dynamics of desired 
number of particles by considering momentum exchange 
between them and the flow field. The code is capable of using 
both algorithm1 and algorithm2 to solve two-way coupling in 
an unsteady mode. Grid generation subroutine is also included 
in the code that can make structured grid. 
   The geometry that is considered for the numerical tests is a 
two dimensional channel. No-slip boundary conditions are 
applied on the channel walls.  Constant velocity inlet is the 
inlet boundary and at the channel outlet, zero pressure is 
applied. 
 

Calculating: 
Velocity field, 
Pressure field, 
Drag force on the particle, 
Particle’s velocity 

No 

Convergence 

Yes 
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Code validation 
   To validate the code, the analytical solution of particle 
dynamics equation is used. It is assumed that a micro sphere 
with a high-velocity is injected into the middle of a micro 
channel. Because the velocity of fluid is very low 
(about sm /001.0 ), it is assumed that the particle is injected in 
a stationary surrounding. The drag force exerted on the micro 
sphere is as follows [2]: 

μρ /)(Re dVVpfp

rr
−=       (7) 

))(Re15.01(3

800Re1:
687.0

preld

p

VdF

if

+=

<<
rr

πμ
   (8) 

The dynamics equation of the particle which should be solved 
is: 

d
p

Mpp F
dt

dV
C

r
=+Ω )/1( ψρ               (9) 

Suppose that the micro sphere is injected with velocity equal to 
sm /50 . Micro sphere properties are: 

kgm 161027.8 −×=    

md 610−=  
319236.5 mp

−=Ω  
Fluid properties are: 

mskg /10 3−=μ  
3/1000 mkgf =ρ  

5.0=MC  
By integrating equation (8) and applying initial conditions, 
following equation is achieved: 

4556.1687.1

4546.2
))/(3(

)15.0(17934.9
1

pp

ptCmd

VV
V

e Mfp

+
=Ω+− ρπμ (10) 

In Figure 4 analytical and numerical results are plotted. 
Numerical results are coincident and are in good agreement 
with the analytical result. Injection is done in x and y-directions   
using either algorithm.  
   The disturbed and the undisturbed streamlines are shown in 
Figure 5 and 6 respectively. In the disturbed case, the particle 
is injected in the y-direction. It is clear that the particle 
momentum has affected the flow field and two-way coupling is 
done 
 
Position and velocity of injection are as follows: 
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Figure 4: Particle injection test 

 
 

 
Figure 5: Undisturbed flow field 

 
 

 
Figure 6: Disturbed flow field 

 
 
 
 

X-velocity contour 

X-velocity contour 
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TESTS AND RESULTS 
    To compare implicit with explicit coupling methods, some 
numerical experiments are performed. In these experiments a 
particle which is m610−  in diameter, is injected into a micro 
channel, which is m0008.0  in length and m00015.0  in height. 
The particle is shot along channel’s length with various 
velocities, from sm /10  to sm /150 . The momentum of the 
particle affects the flow field and disturbs it. In addition, 
because of drag force exerted on the particle, it decelerates and 
its velocity decreases. Time that each algorithm needs to reach 

sm /5.1 for particle velocity is the factor of efficiency. This 
experiment is performed for both algorithms for errors 610− , 

710−  and 810− . In this paper error refers to the error in mass 
balance for solving flow field equations and also shows the 
error of calculating particle's velocity. Both of these errors are 
set to be equal in calculations. 
 Inlet velocity of the micro channel is sm /10 3− and fluid 
properties are the same as in the validation part. xΔ  and yΔ  

in the grid in physical domain are m6108 −×  and  m6105.7 −×   
respectively. Number of grid points along the x-axis the y-axis 
is 100 and 20 respectively. By a simple calculation it can be 
shown that the cross section area of the particle is only 

%3.1 of a computational cell, therefore, the point-volume 
assumption is correct. 
   In Figure 7, results with error equal to 610− are plotted.  

Time consumed to reach Vp=1.5 (m/s) from injection velocity, error=1E-6
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Figure 7: Result for error equal to 610−  

 
     It can be observed in Figure 7 that at low velocities (in this 
figure until 20m/s) both algorithms need equivalent time. But by 
increasing the injection velocity, algorithm 2 becomes faster. 
Curve fitting can be done for the results to achieve a better 
insight. A curve fitting has been done on both curves and results 
are in Figure 8. A power function and a logarithmic function 
are fitted on the data of algorithm 1 and algorithm 2 
respectively.        The results are shown in Figure 8. 
     It is clear that at low velocities the times needed to reach the 
specified velocity for both algorithms are almost the same. 
However by increasing the shooting velocity, the difference 
becomes larger. According to this curve, algorithm 2 is faster 
than algorithm 1. A curve fitting has been done on both curves 
and results are in Figure 10. A power function is fitted on the 
data of algorithm 1 and a logarithmic curve fitting is performed 
on the data of algorithm 2.   
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Figure 8: Curve fitting on results with error equal to 610−  
 
   In Figure 9, results with error equal to 710− are plotted. 
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Figure 9: Result for error equal to 710−  
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Figure 10: Curve fitting on results with error equal to 710−  

 
   In Figure 11, results with error equal to 810−  are plotted.  
Similar to the results with error equal to 710− , at low velocities 
the results for both algorithms are close, but by increasing the 
injection velocity, the difference becomes larger.  
Again algorithm 2 is faster than algorithm 1. 
Curve fitting is also done for these data. It is presented in 
Figure 12. Types of functions are the same as the previous case 
and they only differ on constants. 
Figure 13 shows the ratio of run-times in case 3(error equal 
to 810− ) to run-times in case 2(error equal to 710− ), for each 
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algorithm. It is noticeable that in this factor, similar to the run-
time factor, algorithm 2 is the faster one.  
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Figure 11: Result with error equal to 810−  
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Figure 12: Curve fitting on results with error equal to 810−  
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Figure 13: Relative increment in run-times 

 
CONCLUSION 
    According to the obtained results, it can be understood that 
the implicit coupling algorithm is faster than the explicit one, 
especially in high velocity cases. In the other hand, the implicit 
method is more suitable when the coupling is very strong. 
Additionally, if a better accuracy is needed (it means a lower 
error), relative increment in computational time for implicit 
method is less than the explicit method. Velocity of injection 
could be a sign of coupling between two phases; because in 

higher velocity the momentum exchange is higher and two-way 
coupling is noticeable, because at limit when the particle's 
velocity is equal to the fluid velocity there is no coupling 
between phases and by increasing the particle's velocity 
coupling becomes more serious. Therefore it is reasonable to 
assume that the time consumption in an algorithm is 
proportional to: 
A “Power function” of two-way coupling for algorithm 1. 
A “Logarithmic function” of two-way coupling for algorithm 2. 
   As a general conclusion : in two-way coupling two-phase 
flow, if there is a strong coupling, implicit method should be 
used; and if coupling is negligible, there is not a significant 
difference between explicit and implicit algorithms. In other 
words if there is a high momentum exchange in a multiphase 
flow (regardless of the source of the coupling: high volume 
fraction of the dispersed phase or high velocity of the particles) 
algorithm 2 can reduces the cost of calculations. 
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