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ABSTRACT 
 Slip flow in noncircular microchannels has been examined 
and a simple model for normalized Poiseuille number is 
proposed to predict the friction factor and Reynolds number 
product fRe for slip flow. The developed model for normalized 
Poiseuille number has an accuracy of 4.2 percent for all 
common duct shapes. As for slip flow, no solutions or graphical 
and tabulated data exist for most geometries, the developed 
simple model can be used to predict friction factor, mass flow 
rate, and pressure distribution of slip flow in noncircular 
microchannels for the practical engineering design of 
microchannels such as rectangular, trapezoidal, double-
trapezoidal, triangular, rhombic, hexagonal, octagonal, 
elliptical, semielliptical, parabolic, circular sector, circular 
segment, annular sector, rectangular duct with unilateral 
elliptical or circular end, annular, and even comparatively 
complex doubly-connected microducts. 
 
Keywords:  Slip Flow, Microchannels, Noncircular Ducts, 
Poiseuille number, Pressure Distribution, Mass Flow Rate, 
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NOMENCLATURE 
A = flow area, m2  
Ai, Ao = inner and outer areas, m2 
a = major semi-axis of ellipse or rectangle, m 
a = base width of a trapezoidal, triangular, double-

trapezoidal, or rhombic duct, m 
b = minor semi-axis of ellipse or rectangle, m 
b = height of a trapezoidal, triangular, double-

trapezoidal, or rhombic duct, m 
c = short side of a trapezoidal or double-trapezoidal 

duct, m 
D = diameter of circular tubes, m 
Dh = hydraulic diameter, = 4A/P 
E(e) = complete elliptical integral of the second kind 
e = eccentricity, = 221 ab−  

f  = Fanning friction factor, = ( )2
2
1/ wρτ  

Kn  = Knudsen number, = ( )2Aελ  
L  = channel length, m 
L  = arbitrary length scale, m 
m&  = mass flow rate, kg/s 
m* = normalized mass flow rate 
N = number of sides of a polygon 
n = correlation parameter 
P  = total wetted perimeter, m 
Po  = Poiseuille number, = wμτ L   

p  = pressure, 2mN  
R = specific gas constant, KkgJ  
Re = Reynolds number, = νLw  
r = dimensionless radius ratio, = ri/ro 
ri =  inner radius of a concentric duct, m 
ro =  outer radius of a concentric duct, m 
T  = temperature, K 
w = velocity, m/s 
w   = average velocity, m/s 
x, y = Cartesian coordinates, m 
z = coordinate in flow direction, m 
 
Greek symbols 
α       = parameter 
β       = dimensionless slip parameter, = Kn(2-σ)/σ 
δn = eigenvalues 
ε       = effective aspect ratio 
λ       = molecular mean free path, m 
μ = dynamic viscosity, 2msN  
ν       = kinematic viscosity, m2/s 
ρ = density, kg/m3 
σ     = tangential momentum accommodation  
  coefficient 
τ = mean wall shear stress, 2mN  
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Ω = half angle of annular sector, rad 
Φ = normalized Poiseuille number 
 
Subscripts 

A  = based upon the square root of flow area 
Dh       = based upon the hydraulic diameter 
i = inlet 
L  = based upon the arbitrary length L  
ns = no-slip 
o = outlet 

I. INTRODUCTION 
Fluid flow in microchannels has emerged as an important 

research area. This has been motivated by their various 
applications such as medical and biomedical use, computer 
chips, and chemical separations. The advent of Micro-Electro-
Mechanical Systems (MEMS) has opened up a new research 
area where non-continuum behavior is important. MEMS are 
one of the major advances of industrial technologies in the past 
decades. MEMS refer to devices which have a characteristic 
length of less than 1 mm but greater than 1 µm, which combine 
electrical and mechanical components and which are fabricated 
using integrated circuit fabrication technologies. Micron-size 
mechanical and biochemical devices are becoming more 
prevalent both in commercial applications and in scientific 
research. 

Microchannels are the fundamental part of microfluidic 
systems. In addition to connecting different devices, 
microchannels are also utilized as biochemical reaction 
chambers, in physical particle separation, in inkjet print heads, 
in infrared detectors, in diode lasers, in miniature gas 
chromatographs, or as heat exchangers for cooling computer 
chips. Understanding the flow characteristics of microchannel 
flows is very important in determining pressure distribution, 
heat transfer, and transport properties of the flow. The 
characteristic dimension associated with the term 
“microchannels” is ambiguous. Nominally, microchannels may 
be defined as channels whose characteristic dimensions are 
from one micron to one millimeter. Typical applications may 
involve characteristic dimensions in the range of approximately 
10 to 200 μm. Generally, above one millimeter the flow 
exhibits behavior which is the same as no-slip flows. The 
noncircular cross sections such as rectangular, isosceles 
triangular, trapezoidal, double-trapezoidal, and rhombic, are 
common channel shapes that may be produced by 
microfabrication. These cross sections have wide practical 
applications in MEMS [1-5]. 

The Knudsen number (Kn) relates the molecular mean free 
path of gas to a characteristic dimension of the duct cross-
section. Knudsen number is very small for continuum flows. 
However, for microscale gas flows where the gas mean free 
path becomes comparable with the characteristic dimension of 
the duct, the Knudsen number may be greater than 0.001. 
Microchannels with characteristic lengths on the order of 100 
µm would produce flows inside the slip regime for gas with a 
typical mean free path of approximately 70 nm at standard 
conditions. The slip flow regime to be studied here is classified 
as 0.001 < Kn < 0.1. 

In the slip regime, intermolecular collisions become less 
frequent and molecules arriving at the solid surface are unable 
to come into equilibrium with the surface. As a result, the no-
slip boundary conditions are not valid, and a kinetic boundary 
layer on the order of one mean free path [2, 6], known as the 
ordinary Knudsen layer, starts to become dominant between the 
bulk of the fluid and the wall surface. The flow in the Knudsen 
layer cannot be analyzed using the Navier-Stokes equations, 
and it needs special equations of Boltzmann. However, for Kn 
≤ 0.1, the contribution of the Knudsen layer is small since it 
covers less than 10% of the channel height. The Knudsen layer 
can be replaced by extrapolating the bulk gas flow towards the 
walls [2]. 

II. LITERATURE REVIEW  
Rarefaction effects must be considered in gases in which the 

molecular mean free path is comparable to the channel’s 
characteristic dimension. The continuum assumption is no 
longer valid and the gas exhibits non-continuum effects such as 
velocity slip and temperature jump at the channel walls. 
Traditional examples of rarefied gas flows in channels include 
low-density applications such as high-altitude aircraft or 
vacuum technology. The recent development of microscale 
fluid systems has motivated great interest in this field of study. 
Microfluidic systems must take into account non-continuum 
effects. There is strong evidence to support the use of Navier-
Stokes and energy equations to model the slip flow problem, 
while the boundary conditions are modified by including 
velocity slip and temperature jump at the channel walls. 

The small length scales commonly encountered in 
microfluidic devices suggest that rarefaction effects are 
important. For example, experiments conducted by Pfalher et 
al. [7, 8], Harley et al. [9], Choi et al. [10], Arkilic et al. [11, 
12], Pong et al. [13], Liu et al. [14], Shih et al. [15], Wu et al. 
[16], Araki et al. [17], Zohar et al. [18], Jang and Wereley [19], 
Hsieh et al. [20] on the transport of gases in microchannels 
confirm that continuum analyses are unable to predict flow 
properties in micro-sized devices. 

Arkilic et al. [11, 12] investigated helium flow through 
microchannels. The microchannels were 52.25 µm wide, 1.33 
µm deep, and 7.5 mm long. The results showed that the 
pressure drop over the channel length was less than the 
continuum flow results. The friction coefficient was only about 
40% of the theoretical values. The significant reduction in the 
friction coefficient may be due to the slip flow regime, as 
according to the flow regime classification by Schaaf and 
Chambre [21], the flows studied by Arkilic et al. [11, 12] are 
mostly within the slip flow regime, only bordering the 
transition regime near the outlet. When using the Navier-Stokes 
equations with a first-order slip flow boundary condition, the 
slip model with full tangential momentum accommodation (σ = 
1) fit the experimental data well. 

Araki et al. [17] investigated frictional characteristics of 
nitrogen and helium flows through three different trapezoidal 
microchannels whose hydraulic diameter is from 3 to 10 μm. 
The measured friction factor was smaller than that predicted by 
the conventional theory. They concluded that this deviation was 
caused by the rarefaction effects. 
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Liu et al. [14] has also proved that the solution to the 
Navier-Stokes equation combined with slip flow boundary 
conditions show good agreement with the experimental data in 
microchannel flow. 

Shih et al. [15] used helium and nitrogen for the flow 
experiments over a Reynolds number range of 0.001 – 0.01. 
The friction coefficient is only 30-45% of the theoretical 
values. This significant reduction in the friction coefficient may 
be due to the slip and transition flow regimes, as the Knudsen 
number for the data ranges from 0.02 to 0.16. This is consistent 
with the results of Liu et al. [14] and Arkilic et al. [11, 12]. 
Shih et al. conducted that the mass flow rate was greater than 
conventional no-slip theory predicted. The data agreed very 
well with a first-order slip flow model. 

Hsieh et al. [20] investigated the behavior of nitrogen gas 
flow in a 200 μm wide and 50 μm deep microchannel for 
Reynolds numbers between 2.6 and 89.4 and a value of the 
Knudsen number ranging from 0.001 to 0.02. The results were 
in good agreement with the solutions to the Navier-Stokes 
equation with first order slip boundary conditions. 

Maurer et al. [22] conducted experiments for helium and 
nitrogen flow in 1.14 μm deep 200 μm wide shallow 
microchannels. Flowrate and pressure drop measurements in 
the slip and early transition regimes were performed for 
averaged Knudsen numbers extending up to 0.8 for helium and 
0.6 for nitrogen. The authors also provided estimates for 
second-order effects and found the upper limit of slip flow 
regime as the averaged Knudsen number equals 0.3±0.1. 

Aubert and Colin [23] studied slip flow in rectangular 
microchannels using the second-order boundary conditions 
proposed by Deissler [24]. In a later study, Colin et al. [25] 
presented experimental results for nitrogen and helium flows in 
a series of silicon rectangular microchannels. The authors 
proposed that the second-order slip flow model is valid for 
Knudsen numbers up to about 0.25. 

Ewart et al. [26] measured mass flow rate of isothermal 
gaseous slip flow in microtubes. The measured values were 
compared with analytical solutions and satisfactory results were 
obtained. The authors show that the second order effects could 
exist for average Knudsen numbers larger than 0.1. 

The analytical study of internal flows with slip previously 
has been confined to simple geometries. Kennard [27] studied 
internal flows with slip in the circular tube and parallel-plate 
channel. Ebert and Sparrow [28] performed an analysis to 
determine the velocity and pressure drop characteristics of slip 
flow in rectangular and annular ducts. Sreekanth [29] 
developed a second-order analytical model for slip flow in 
circular tubes and Mitsuya [30] proposed a second-order 
analytical model for parallel plates. Duan and Muzychka [31] 
investigated slip flow in elliptic microchannels. 

A number of researchers have attempted to develop second-
order slip models which can be used in the transition regime. 
However, there are large variations in the second-order slip 
coefficient. The lack of a universally accepted second-order slip 
coefficient is a major problem in extending Navier-Stokes 
equations into the transition regime [2,32]. As analytical 
models derived using the first-order slip boundary condition 
have been shown to be relatively accurate up to Knudsen 

numbers of approximately 0.1, the first-order slip boundary 
condition will be employed in this paper. 

III. SLIP FLOW MODELS 

Characteristic Length Scale 
 One of the most fundamental problems in fluid dynamics is 
that of fully developed laminar flow in circular and noncircular 
channels under constant pressure gradient. Upon obtaining the 
velocity distribution w(x, y) and mean velocity w , the friction 
factor Reynolds number product may be defined using the 
simple expression denoted in some texts as the Poiseuille 
number [33,34]: 

 
2
ReL

L

L
L f

w
dz
dp

P
A

w
Po =

⎟
⎠
⎞

⎜
⎝
⎛−

==
μμ

τ  (1) 

The factor 2 appears because the Fanning friction factor is 
employed. The above grouping Po is interpreted as the 
dimensionless average wall shear stress. The mean wall shear 
stress may also be related to the pressure difference by means 
of the force balance 

 pAPL Δ=τ  (2) 

From this relation the mean wall shear stress is obtained 

 
P
A

L
pΔ

=τ  (3) 

Using the method of scale analysis, we can examine the 
momentum equation and consider the various force balance. 
Considering the force balance between the friction and pressure 
forces for a long microchannel: 

 
L
pw Δ

μ
1~2L

 (4) 

Substituting the relation for τ  and the scale for w  gives the 
following scale for the Poiseuille number: 

 
LL
1~

P
APo  (5) 

which is purely geometric because it depends on the cross-
section area A, the perimeter P and the arbitrary length scale 
L . 

For closure the geometric parameter LC  is introduced so 
that 

 
LLL
1

P
ACPo =  (6) 
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The geometric parameter LC  is found to depend on the 
geometry of the cross-section such as the shape, the aspect 
ratio, and the choice of the length scale L . 

The most frequently recommended length scale is the 
hydraulic diameter defined as 

 A
P

A
P
ADh

44
===L  (7) 

For this length scale the Poiseuille number becomes 

 
4

h

h

D
D

C
Po =  (8) 

A novel length scale proposed by Muzychka and Yovanovich 
[34] is A=L . For this length scale the Poiseuille number 
becomes 

 
P
ACPo AA =  (9) 

The grouping AP  is an important geometric scaling factor 
to describe fluid flow physical behavior. 
 In the fluid flow and heat transfer literature the convention 
is to use the hydraulic diameter. For circular tubes, the choice 
of the length scale in the definition of Reynolds number is 
obvious. However, for noncircular ducts, the question always 
arises of what to use as the correct length scale. Although it is 
customary to use the hydraulic diameter, this choice may be 
incorrect. The choice of a length scale with noncircular ducts 
has been a perennial and contentious issue. For noncircular 
geometries, it is desirable to eliminate or reduce the effects of 
geometry such that the general trends for all duct shapes may 
be easily modeled. It is better to choose an appropriate 
characteristic length scale to non-dimensionalize the fluid flow 
and heat transfer data. We will now examine the rectangular, 
elliptical and annular friction factor Reynolds number product 
results employing characteristic length A  as Muzychka and 
Yovanovich [34], Duan and Muzychka [35], and Duan and 
Yovanovich [36] showed that the square root of the cross-
sectional area was a more appropriate characteristic length 
scale than the hydraulic diameter for non-dimensionalizing the 
laminar no-slip and slip flow data. 

Rectangular Ducts 
 We may now examine the solution for rectangular ducts for 
slip flow. Duan and Muzychka [35] presented the friction factor 
and Reynolds number product 
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where the eigenvalues, δn, can be obtained from 

 

b

nn λ
σ
σ

δδ
−

=
2

1tan  (11) 

The characteristic length scale for Knudsen number in the 
present analysis is defined as the smaller halfwidth of the cross-
section b 

 

A
b

Kn

2
ε
λλ

==  (12) 

Thus, 

 
β

σ
σ

δδ 1
2

1tan =
−

=
Kn

nn
 (13) 

where λ is the molecular mean free path. The parameter σ 
denotes tangential momentum accommodation coefficient, 
which is usually between 0.87 and 1 [37]. Although the nature 
of the tangential momentum accommodation coefficients is still 
an active research problem, almost all evidence indicates that 
for most gas-solid interactions the coefficients are 
approximately 1.0. The same procedure is valid even if σ ≠ 1, 
defining a slip parameter as β = Kn(2-σ)/σ. 

It can also be demonstrated that Eq. (10) reduces to its 
continuum flow limit as β → 0: 
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 (14)        

 It was shown in [35] that the friction factor Reynolds 
number product fRe for slip flow in rectangular microchannels 
may be computed with reasonable accuracy by considering 
only the first term of the series in Eq. (10). 

Considering only the first term of the series, Eq. (14) gives: 
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Figure 1 Fully developed 

hDf Re  for noncircular ducts 
 

Figures 1-5 [36] demonstrate that the square root of cross-
sectional area is a more appropriate characteristic length scale 
than the hydraulic diameter for non-dimensionalizing the fully 
developed laminar flow data. The data for some noncircular 
ducts reported as 

hDf Re  are plotted versus the effective aspect 
ratio ε in Figure 1. Some data increase with increasing values 
of ε while other data decrease with increasing values of ε. The 
definition of aspect ratio proposed by Muzychka and 
Yovanovich [34] and Duan and Yovanovich [36] is 
summarized in Table 1 for a number of geometries. The aspect 
ratio for regular polygons (N ≥ 4) is unity. The aspect ratio for 
most singly connected ducts is taken as the ratio of the 
maximum width to maximum length such that 0 < ε < 1. For 
the trapezoid duct, double-trapezoid duct, triangle duct, 
rhombic duct and the doubly connected duct, simple 
expressions have been derived to relate the characteristic 
dimensions of the duct to a width to length ratio. The next step 
in the comparisons is to convert all data from 

hDf Re  to 

Af Re  and re-plot versus the effective aspect ratio. When this 
is done as shown in Figure 2, all data follow closely a similar 
trend where the values decrease with increasing values of ε. 
Figure 3 shows the numerical data of fRe based on the 

hydraulic diameter for two families of doubly connected 
channels. When the length scale is changed to A  as shown in 
Figure 4, all data follow the trend of the circular annulus which 
has a simple analytical solution. The large scatter in the data of 
Figure 3 vanishes when the length scale is changed from Dh to 

A  as seen in Figure 4. Finally, the data for all doubly 
connected channels are plotted as 

Af Re  versus the effective 
aspect ratio as shown in Figure 5. The agreement is quite good. 
It was found that the use of the hydraulic diameter in laminar 
flow situations yields greater scatter in results as compared 
with the use of A  as a characteristic length scale. When A  
is used, the effect of duct shape becomes minimized, and all of 
the laminar flow data can be predicted using a simple model 
based on the solution for the rectangular duct Eq. (15). This 
means that the dimensionless average wall shear stress can be 
made a weak function of duct shape. It is clear that Eq. (15) 
characterizes the fully developed laminar flow in noncircular 
ducts. The maximum deviation of exact values is less than 
6.5%. The difference is much smaller and within 3% for most 
practical engineering configurations. 
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Figure 2 Fully developed 

Af Re  for noncircular ducts 
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Figure 3 Fully developed

hDf Re  for doubly connected ducts 
 

0 0.2 0.4 0.6 0.8 1

1-√Ai/Ao

0

40

80

120

160

fR
e √

A

Solid Symbol - Polygon with Circular Core
Hollow Symbol - Circle with Polygonal Core

Circular Annulus Model Eq. (23)
Triangle
Square
Hexagon
Octagon
18 Sides
Triangle
Square
Hexagon
Octagon
18 Sides

 
Figure 4 Fully developed

Af Re for doubly connected ducts 
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Figure 5 Fully developed

Af Re for doubly connected ducts 
 

Table 1 Definitions of effective aspect ratio 
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The friction factor results can be presented conveniently in 
terms of normalized Poiseuille number. The Poiseuille number 
reduction depends on the geometry of the cross-section. It is 
convenient that the Poiseuille number results are expressible to 
good accuracy by the relation: 

 
( ) αβ+

===Φ
1

1
Re
Re

nsns f
f

Po
Po  (16) 

A simple physical interpretation of Po/Pons is based on the fact 
that the mean wall shear stress and the mean velocity are 
influenced by slip. It is given by 

( ) ( )
( ) ( )slipwithoutvelocitymeanslipwithoutstressshearwallmean

slipwithvelocitymeanslipwithstressshearwallmean
Po
Po

ns

=

  (17) 

The parameter α should depend on ε and β for two-dimensional 
slip flows such as in rectangular microchannels. 

We can solve for α given values of β and Po/Pons from Eq. 
(16). Thus 

 ⎟
⎠
⎞

⎜
⎝
⎛ −= 11

Po
Pons

β
α  (18) 

 Calculated values of α for different values of ε and β are 
listed in Table 2. The values of α for a particular value of ε vary 
very slowly with β. For a given value of β, the values of α 
depend strongly on ε. It is clear that α is a weak function of β, 
and therefore it can be assumed that ( )εαα = . This was also 
observed for the ellipse and annulus solutions [31, 35]. 
 

Table 2 The parameters α for different ε and β 
 

ε 0.1 0.3 0.5 0.6 0.7 0.8 0.9 1.0 
β α 

0.01 3.036 3.130 3.266 3.362 3.482 3.626 3.793 3.981 
0.02 3.036 3.130 3.264 3.359 3.478 3.621 3.788 3.976 
0.03 3.036 3.128 3.260 3.355 3.472 3.615 3.781 3.968 
0.04 3.036 3.126 3.256 3.349 3.466 3.608 3.773 3.959 
0.05 3.035 3.123 3.252 3.344 3.460 3.601 3.765 3.951 
0.06 3.035 3.121 3.248 3.339 3.454 3.594 3.758 3.942 
0.07 3.034 3.119 3.243 3.334 3.448 3.588 3.750 3.935 
0.08 3.034 3.117 3.239 3.329 3.443 3.581 3.743 3.927 
0.09 3.033 3.114 3.235 3.324 3.437 3.575 3.737 3.920 
0.10 3.032 3.112 3.232 3.320 3.432 3.569 3.730 3.913 
0.20 3.027 3.093 3.198 3.280 3.387 3.520 3.677 3.855 

 
Since the parameters α are a function of aspect ratio and a 

weak function of β, the average values for each aspect ratio are 
fitted to a simple correlation as follows. It is found that the 
maximum error caused by using these constants in Eq. (19) is 
less than 1%. The error is much smaller and negligible for most 
cases 

 32 508.0135.0289.000.3 εεεα +++=  (19) 

Using Eqs. (16) and (19) we obtain: 

( )βεεε 32 508.0135.0289.000.31
1

++++
=

nsPo
Po  (20) 

Therefore, using the simple expression Eq. (20), the Poiseuille 
number results can be easily obtained to facilitate practical 
application for almost all common noncircular microchannels 
as follows: 

( ) ⎥
⎦
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⎞

⎜
⎝
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=

ε
π
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εεε

αβ
2

tanh19211

12
1

1Re

5

Af  (21) 

The maximum difference between Eq. (21) and the exact 
solution for the rectangular duct Eq. (10) is less than 0.9%. 

Elliptical Ducts 
Duan and Muzychka [31] investigated slip flow in elliptic 

microchannels. An analytical solution of Poiseuille number was 
obtained using separation of variables in elliptic cylinder 
coordinates. Duan and Muzychka [31] developed a simple 
correlation for predicting the Poiseuille number in elliptic 
microchannels for slip flow: 

 

( ) ( ) β
π

εε
2

87.441.953.121

1
2 eEPo

Po

ns +−+
=  (22) 

Annular Ducts  
Using a similar procedure as for rectangular ducts, it is not 

difficult to show that the no-slip friction factor Reynolds 
number product and the normalized Poiseuille number for an 
annular duct are as follows: 
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−
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=
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where r = ri/ro is the dimensionless radius ratio. 

Other Ducts 
Morini et al. [38] numerically studied the velocity 

distribution in microchannels with trapezoidal (with an apex 
angle ω = 54.74° imposed by the crystallographic morphology 
of the <100> silicon) and hexagonal (double-trapezoidal 
obtained by gluing together two trapezoidal channels) cross-
section typical of microchannels. For the trapezoidal 
microchannels, the aspect ratio b/a cannot exceed the value of 
( ) 2ωtg , corresponding to the degeneration of the isosceles 

triangular ducts. In the case of a double trapezoidal cross 
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section, the aspect ratio b/a ranges between 0 (parallel plates) 
and 1.414 (rhombic configuration). The channel height was 
employed as the length scale to define Knudsen number. The 
corresponding value of α for trapezoidal and double-trapezoidal 
microchannels was numerically determined and reported for 
different aspect ratios. 
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Figure 6 comparison of the model for noncircular 
microchannels 
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 Figure 7 comparison of the linear model for noncircular 
microchannels 

The simple model, Eq. (20), can also be applied to other 
common geometries. Figure 6 presents the comparison between 
the proposed simple model Eq. (20) and the analytical solution 
of elliptic ducts [31], rectangular and annular ducts [35], the 
numerical data of isosceles triangular, rhombic, trapezoidal, 
double-trapezoidal and hexagonal ducts [38]. The model 
predictions are in agreement with all the available slip flow 
data within 4.2%. 

Furthermore, it is very convenient to express the Poiseuille 
number results by the following linear relation: 

 αβ+==
Φ

11
Po

Pons  (25) 

Figure 7 demonstrates the comparison between the 
proposed linear simple model Eq. (25) and all the available slip 
flow data. It is found that the model predictions agree with all 
the data very well (within 4.2%). 

It is clear that Eq. (20) or Eq. (25) characterizes the 
noncircular microchannel slip flow. The maximum deviation of 
exact values is less than 4.2 percent. The friction factor 
Reynolds number product may be predicted from Eq. (20) or 
Eq. (25), provided an appropriate definition of the aspect ratio 
is chosen. 

IV. Mass Flow Rate and Pressure Distribution 
 Now, we take account of the compressibility of the gas. 

We treat compressible flow at low Mach numbers as a Navier-
Stokes problem with slip. The flow is assumed to be locally 
fully developed and isothermal. The locally fully developed 
flow assumption means that the velocity field at any cross 
section is the same as that of a fully developed flow at the local 
density and the wall shear stress also takes on locally fully 
developed values. Compressibility effects enter through state 
equation and continuity equation. The mass flow rate in the 
microchannel is given by using the equation of state p = ρRT, 
and the developed simple model 

( ) ( )αβ+= 1ReRe
nsAA ff . Combining these expressions 

yields: 
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  (26) 

We can use oopp ββ =  from kinetic theory of gases since pβ 
is constant for isothermal flow. After integrating Eq. (26) from 
z = 0 to local position z, we obtain: 
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Letting z = L gives: 
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It is convenient to define the dimensionless mass flow rate as 
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  (29) 

When the parameter 12 <<Δ opp , the effect of 
compressibility is negligible. When 1<<oαβ , then the slip 
effect is negligible. When both parameters are sufficiently 
small, the general relation becomes 

 ( )
nsAfPL

pAAwm
Re

2 25

μ
ρρ Δ

==&  (30) 

which is the relation for flow of an incompressible fluid 
without slip. 
 The no-slip mass flow rate is given from Eq. (28): 
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The effect of slip may be illustrated clearly by dividing the slip 
flow mass flow Eq. (28) by the no-slip flow mass flow Eq. 
(31): 
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It is seen that the rarefaction increases the mass flow and that 
the effect of rarefaction becomes more significant when the 
pressure ratio decreases. 

The mass flow rate model Eq. (29) has been examined 
using experimental data by Arkilic et al. [12]. Figure 8 presents 
the normalized mass flow rate as a function of the pressure 
ratio. It is found that the predictions agree with experimental 
data by Arkilic et al. [12] within 9.8%. It is seen that there is a 
significant mass flow rate increase due to rarefaction effects 
from this Figure. The experimental data and model predictions 
are in good agreement. 
 Combining Eq. (27) and Eq. (28) and solving for oz pp , 
we obtain the expression for pressure distribution in noncircular 
microchannels: 
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  (33) 
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Figure 8  Normalized mass flow rate comparison for 

experimental data by Arkilic et al. [12] 
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Figure 9  Pressure distribution comparison for 

experimental data by Pong et al. [13] 
 

The pressure distribution exhibits a nonlinear behavior due 
to the compressibility effect. Pressure drop required is less than 
that in a conventional channel without slip. The deviations of 
the pressure distribution from the linear distribution decrease 
with an increase in Knudsen number. The nonlinearity 
increases as the pressure ratio increases. The effects of 
compressibility and rarefaction are opposite as Karniadakis et 
al. [2] demonstrated. 

Figure 9 demonstrates the pressure distribution comparison 
between the proposed model Eq. (33) and experimental data by 
Pong et al. [13]. It is found that the model predictions agree 
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with experimental data by Pong et al. [13] within 2.2%. From 
an inspection of this Figure, it is seen that when the pressure 
ratio is very small, the pressure distribution is nearly linear, 
which is close to an incompressible flow. 

The deviations of the nonlinear pressure distribution from 
the linear distribution is given by: 
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Taking the derivative of Eq. (34) and setting it equal to zero, 
we obtain the location of the maximum deviation from linearity 
as 
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It is seen that the location of maximum deviation from 
linearity is between 0.5 and 0.75. The location approaches to 
0.5 for low pressure ratio and approaches to 0.75 for high 
pressure ratio. The typical practical location of maximum 
deviation from linearity is between 0.5 and 0.6. 
 It may be pointed out that momentum changes are neglected 
in the above analysis for the pressure distribution and mass 
flow rate in microchannel flows. The effects of the momentum 
changes due to gas acceleration along the channel will become 
gradually important when the Mach number is increased. The 
effects of momentum changes on pressure distribution and 
mass flow rate have been analyzed by Duan [39,40]. 

V. CONCLUSION 
This paper investigated slip flow in noncircular 

microchannels. A simple model for normalized Poiseuille 
number was developed for predicting the friction factor 
Reynolds number product in noncircular microchannels for slip 
flow. The accuracy of the developed model for normalized 
Poiseuille number was found to be within 4.2 percent. As for 
slip flow no solutions or tabulated data exist for most 
geometries, this developed model can be used to predict 
Poiseuille number, mass flow rate, and pressure distribution of 
slip flow in noncircular microchannels such as rectangular, 
trapezoidal, double-trapezoidal, triangular, rhombic, hexagonal, 
octagonal, elliptical, semielliptical, parabolic, circular sector, 
circular segment, annular sector, rectangular duct with 
unilateral elliptical or circular end, annular, and even 
comparatively complex doubly-connected microducts. 

These models are general and robust and can be used by the 
research community for practical engineering design of 
microchannel flow systems. The shape dependence has been 
minimized. The developed models will be extended to the 
transition regime by employing the second-order slip boundary 

conditions in another paper. A similar method can be applied to 
associated slip flow heat transfer problems in the future work. 
Also, due to the length restriction, the criterion for 
compressibility of gas flow in microchannels will be discussed 
in the future paper. 
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