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ABSTRACT

Microscale flow simulation is considered in this paper for a 
microchannel flow geometry. Lattice Boltzmann Model (LBM) 
was used as the numerical method for flow simulation, in which 
an effective mean free path was used in relaxation time 
appeared in LBM. The effective mean-free-path makes it 
possible to investigate flow characteristics in transition flow 
regime, for which Knudsen number varies from 0.1 to 10. Such 
implementation does not change the computational efficiency of 
LBM significantly. Results are obtained for flow configuration 
in a long microchannel. The slip velocity was predicted in this 
flow configuration with good accuracy. Good correspondence 
with Direct Simulation Monte Carlo (DSMC) method was 
observed.

INTRODUCTION
Microscale gas flows have received much attention particularly 
due to the rapidly emerging technology of Micro-Electronic-
Mechanical-System (MEMS) [1] and the need of studying flow 
through them. Two main characteristics of the flow in MEMS 
are low Mach number and nonzero Knudsen number, 

HKn /λ= , a parameter defined as the ratio of mean-free-path, 

λ , to the characteristic length of the domain, H. Low-speed 
gaseous flows in micro-devices have large Knudsen numbers in 
the range of slip ( 1.0001.0 << Kn ) or transition flow 
( 101.0 << Kn ) which are far from thermodynamic equilibrium. 
The Navier-Stokes equations with no-slip boundary condition 
are only appropriate when 001.0<Kn  while Boltzmann 
Equation (BE) is valid for flows with arbitrary Knudsen 
number. On the other hand, numerical solution of BE is very 
time expensive especially for the most accurate one which is 
called Direct Simulation Monte Carlo (DSMC) method [2]. 
Moreover, this method is suitable for high-speed transition flow, 
a situation never exist in microchannels. 
Gas microflow experiences some non-equilibrium phenomena, 
among them are velocity slip and temperature jump at the solid 
walls and a nonlinear stress-strain relationship within the 
Knudsen layer which is a region near a solid wall with a 
thickness of a few mean free path. Lattice Boltzmann Model 
(LBM) which is a numerical method derived from BE, is a 
relatively new and effective numerical approach in simulating 
fluid flows [3,4]. LBM has greater potential to model non-
equilibrium flows with non-zero Knudsen number due to its 
origin which is BE. Moreover, LBM has some major 
advantages as compared to other methods in fluid flow 
simulations: implementation of fully parallel algorithms, 
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computationally efficient and accurate method. It was shown 
that LBM is able to simulate flows in microchannels for a range 
of Knudsen numbers up to the transition flow regime [5, 6]. 
Although transition flow regime was investigated by some 
authors [7,8], prediction of flow characteristic in this regime 
still remains a challenge in modeling such flow regimes. 
Various authors studies microchannel flows through LBM. 
Verhaeghe et al. [6] presented the lattice Boltzmann equation 
(LBE) with a multiple relaxation times (MRT) to simulate 
pressure-driven gaseous flow in a long micro channel. Zhang et 
al. [7] proposed an effective mean-free path to address the 
Knudsen layer effect. Guo et al.[5] studied the physical 
symmetry, spatial accuracy, and relaxation time of the lattice 
Boltzmann equation (LBE) for microgas flows in both the slip 
and transition regimes. They indicated that for a microgas flow, 
the channel wall confinement exerts a nonlinear effect on the 
relaxation time, which should be considered in the LBE for 
modeling microgas flows. Such treatment can improve the 
accuracy of the LBE for simulating microgas flows with a 
relative large Knudsen number. Niu et al. [8] provided a 
systematic description of the kinetic LBM, including the lattice 
Boltzmann equation and definition of the relaxation time to 
capture the nonlinear effects due to the high-order moments and 
wall boundaries. They used an effective relaxation time and a 
modified regularization procedure of the non-equilibrium part 
of the distribution function based on previous works. 
The present study focused on the application of an effective 
mean free path (EMFP) and diffuse scattering boundary 
condition (DSBC) for slip and transition flow regimes in 
microchannel flow. A common flow configuration in 
microchannels, namely long microchannel flow, is discussed 
with the application of the EMFP and DSBC.

NOMENCLATURE

αf Particle density distribution functions
αe Particle velocity direction

ρ Density
u Macroscopic velocity
T Temperature
x Location
t Time 
λ Mean free path of the molecules
Kn Knudsen number
H Characteristic length
µ Viscosity
P Pressure
R Ideal gas constant
τ Dimensionless relaxation time 

∗λ Effective mean free path
∗τ Effective relaxation time
tδ Time step

α Discretized direction

eq
ξ

Equilibrium condition
Particle velocity

Lattice Boltzmann method

LBM approximates kinetic equation for the single particle 
distribution function ),,( txf ξ  on the mesoscopic level. BE 
with BGK approximation using single relaxation time is written 
as:

][1. )0(fffft −−=∇+∂
λ

ξ (1)

Where ξ  is the particle velocity, )0(f  is the equilibrium 
distribution function (the Maxwell-Boltzmann distribution 
function), and λ  is the relaxation time. The velocity space ξ
can be discretized into a finite set of points, αξ . In the 
discretized velocity space the Boltzmann Eq. (1) becomes:

)28,...,1,0(][1. )( Dforffff eq
t −=−−=∇+∂ α

λ
ξ αααα (2)

)(eqfα  is the equilibrium distribution function in discretized 
velocity space. A two-dimensional nine-velocity component 
(D2Q9) square lattice is used in the present computations which 
is shown in Fig. 1. 
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Fig. 1 Velocities in the D2Q9 lattice Boltzmann model

Here αe  is used to denote the discrete velocity set, which can 
be written as
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Where txc δδ /=  is the lattice constant ( tδ , and xδ  are the time 
step and lattice spacing respectively). The equilibrium 
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distribution function, )(eqfα  , is a function of density and 
macroscopic velocity of the fluid as follows: [9] 
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With the discretized velocity space, the hydrodynamic 
moments, which show density and macroscopic velocity, are 
given by:

∑=
α

αρ f (6a)

α
α

αρ feu ∑=
r

(6b)

Proceeding with the Chapman-Enskog analysis, it can be shown 
the NS equations are recovered in the near incompressible limit 
from the BE [10]. Eq. (2) can be further discretized in space 
and time. The completely discretized form of Eq. (2), with time 
step tδ  and space step te δα , is:

)],(),([1),(),( )( txftxftxftexf i
eq

iitti ααααα τ
δδ −−=−++ (7)

Where tδλτ /=  is the nondimensional relaxation time, and ix
is a point in the discretized physical space. The above equation 
is called LBE with Bhatnagar-Gross-Krook (BGK) 
approximation. The left-hand side of Eq. (7) is physically a 
streaming process for particles while the right-hand side models 
collision through relaxation time. 
Application of LBM in microchannel flow simulation needs 
special attention duo to the phenomena of Knudsen layer, 
determination of the effective relaxation time τ  and boundary 
conditions. A brief discussion of each of these phenomena is 
presented here along with their computational procedure.

MICROCHANNEL FLOW SIMULATION BY LATTICE 
BOLTZMANN 

A key non-dimensional parameter for gas microflow is Knudsen 
number, which is defined as the ratio of the mean free path λ  to 
the characteristic length, H , of the flow configuration:

H
Kn λ

≡                                             (8)

Rarefaction effect becomes more important as the Knudsen 
number increases. A fluid flow can be considered as continuum 
for 310−≤Kn  and free-molecular flow for )10(OKn ≥ . A 
rarefied gas can be considered neither an absolutely continuous 
medium nor a free-molecular flow. It covers a range of Knudsen 
numbers between 310− to 10 . This region is divided into two 
parts, i.e slip flow )1.010( 3 <<− Kn  and transition flow regimes 

)101.0( << Kn , see Fig. 2.

Fig. 2 Knudsen number regimes.

The Knudsen number defined in Eq. 8 is called oulet Knudsen 
number, Knout, in microchannel flows. There is a local Knudsen 
number in such flows which is not constant and changes with 
location. For isothermal flow in microchannel, the relation 
between Knout and local Knudsen number, Kn, is: Knout=Kn×P. 
The parameter “P” is the local pressure. 
Knudsen layer (or kinetic boundary layer) is a region near a 
solid wall with a thickness of a few mean free paths where the 
usual linear relationship between the stress and rate of strain is 
no longer valid [7]. Fig. 3 shows schematically the Knudsen 
layer. Solid line in this figure shows the structure of the 
Knudsen layer within a shear flow bounded by a planar wall.
In this region the gas is far from a state of local thermodynamic 
equilibrium. For many flow situations, the scale of the Knudsen 
layer is negligible in comparison to the macroscopic length 
scale of interest. However, for Knudsen numbers greater than 
about 0.01, Knudsen layer starts to impact on the entire flow 
field. A slip-boundary condition is used in Navier-Stokes 
equations for simulating Knudsen-layer effects [2]. However the 
slip velocity obtained from this boundary condition is not the 
actual velocity slip that occurs at the gas surface interface as is 
observed in Fig. 3. Knudsen layer becomes a significant 
proportion of the flow field for high Knudsen numbers, where 
the Navier-Stokes equations would not be appropriate.
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Fig. 3 Schematic diagram showing the Knudsen layer. real 
velocity profile( solid line), velocity profile obtained by Navier-

Stokes ( dashed line).

 Knudsen layer will have a significant impact on the distance a 
gas molecule can travel between successive collisions through 
the presence of a solid wall. As a consequence, the mean free 
path will be smaller than that observed in the bulk flow for near-
wall region. Some authors used an effective mean free path 
[5,6] in their computations, which is defined as the average 
distance a gas molecule will travel between consecutive 
collisions with either another gas molecule or the solid wall.

Effective relaxation time (ERT) 
In kinetic theory, the relaxation time τ  can be defined in term 
of viscosity µ as [11]:

P
µτ =                           (9)

Where P  is the pressure and viscosity is proportional to a 
qualitatively defined molecular mean-free-path λ . For gas 
molecules considering as hard spheres, it is expressed as:

RTP 2
πµλ =                                (10)

Where R  is the Gas Constant and T  is the temperature. 
Consequently, the relaxation time can be written as:

HcKnc ss π
λ

π
τ 22

==            (11)

Here 3/ccs = is the speed of sound. The mean free path 
given by Eq. (10) is valid for unbounded systems. In a micro-
scale gas flow system confined by the solid boundaries, some 
molecules will hit the walls and their flight path may be shorter 
than the molecular mean free path λ  defined in the unbounded 
systems. Therefore the mean free path in bounded system 
should be modified to reflect the boundary wall effects. 
According to the previous investigations for an isothermal, 

incompressible flow [7], an effective mean free path (EMFP) 
*λ  can be used to denote the property of gas flow in the 

bounded systems, which can be expressed as:

λ

λλ /
*

7.01 cye−+
=               (12)

Where y is the distance normal to the wall, and C  is a 
constant. Substituting *λ  as λ  in Eq. (11) results in an 
effective relaxation time as follows:
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                           (13)

Eq. (13) represents the effective relaxation time (ERT) for a 
bounded system. This ERT is used in Eq. (7) instead of τ.

Boundary conditions
Capturing slip flow in microchannels is done through 
appropriate boundary conditions. Several methods were used 
for capturing slip velocity in microchannel flows among them a
commonly used boundary condition, called diffuse-scattering 
boundary condition (DSBC) [12] was used here.  DSBC was 
used in the present work to capture the slip velocity at the wall. 
It is expressed a (see Fig. 4):
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Where 'α  and α  are directions of the incident and reflected 
particles, respectively. n  is the inward unit normal vector of the 
wall and w  indicates the wall boundary. NA  is a normalization 
coefficient and can be obtained by satisfying zero normal flux 
conditions on the wall. It is represented as follow:

∑
∑
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       (16)

AN depends on the velocity model used in the lattice Boltzmann 
method. Its value is 6 for D2Q9 model which is based on the 
fact of zero normal velocity at the wall.
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Fig. 4  Schematic diagram of the diffuse-scattering boundary condition 
based on the D2Q9 model (n is the inward normal vector of the wall 
boundary; solid arrow lines represent functions of the particles 

streaming from flow field while dashed arrow lines represent functions 
of the particles diffused from the boundary).

For the horizontal wall boundary with flow on its upside as 
shown in Fig. 4, the distribution functions at α = 2, 5 and 6 
directions pointing to the flow field from outside the wall are 
unknown and the distribution functions at α =1, 3, 4, 7 and 8 
are known because of the stream from the points inside the flow 
field. The unknown distribution functions can be determined 
from the known distribution functions. For the wall boundary 
shown in Fig. 4, Eqs. (14) to (16) can be simplified to the 
following explicit forms [12] 
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RESULTS AND DISCUSSION

To demonstrate advantages of the present LBM approach with 
ERT introduced above, a long micro channel flow is 
investigated for a range of Knudsen number in this section.
Validate the ERT-LBE was done using the information-
preservation direct simulation Monte Carlo (IP-DSMC) and 
DSMC methods. For comparison, the LBM results of Shen et 
al. [13] were also included. The ratio of length L to height H of 
the channel was considered as 100, and the ratio of the pressure 
at the inlet to the one at the outlet was selected as 1.4 and 2 in 
our simulations. Three cases were studied according to the 
Knudsen number at the exit, i.e., 194.0,0194.0=outKn , 
and 388.0 . This problem has also been used to test the validity 
of the LBE for microgas flows.
A regular lattice with 2000×20 nodes is used; such number of 
nodes is required to achieve grid-independent solution. For two 
walls, the DSBC and the linear extrapolation method [14] were
used to specify the pressure boundary condition at the inlet and 
outlet.
Figs. 5, 6 and 7 illustrate the normalized streamwise velocity 

max/Uu  at the outlet of the channel for Knout of 0.0194, 0.194 

and 0.388 respectively. As is observed in figure 5, velocity 
profile obtained from present computation has better 
correspondence with DSMC for Knout = 0.0194 as compared to 
that obtained from LBM. However, LBM computations of Shen 
et. al. [13] are also in reasonable agreement with DSMC.
Velocity profiles computed for Knout of 0.194 and 0.388 (Figs. 5 
and 6) show much discrepancy for those obtained from LBM as 
compared to the present computation when they are compared 
to DSMC. Therefore, ERT-LBE is capable of predicting 
relatively accurate flow for transition flow regimes. 
Figures 8, 9 and 10 represent pressure distribution along the 
channel centerline for the same Knout mentioned before. As is 
observed in figure 8, both LBM and present ERT-LBM pressure 
computations follow the same trend of DSMC for Knout =
0.0194, while ERT-LBM mimics the behavior of DSMC better 
thatn LBM. Figures 9 and 10 show that pressure distribution 
obtained from LBM is totally unacceptable for such flow 
configuration. However, pressure computations obtained from 
ERT-LBM follow those of DSMC reasonably for Knout of 0.194 
and 0.388. 
As expected, using ERT-LBE leads to a significant 
improvement in the accuracy of the results in contrast to the 
normal LBM. At 0194.0=outKn , the flow is in the near 
continuum or the slip flow regime. In this case, the ERT-LBE 
results agree well with the information-preservation DSMC (IP-
DSMC) and the DSMC results of Chen et al. [14]. The 
difference in maximum outlinear PPP /)( −  obtained by the LBE 
and IP-DSMC increases as Knout increases. The difference in 

max/Uu  is relatively small when 194.0=outKn , but becomes 
larger near the wall when 388.0=outKn .

CONCLUSION

A computational procedure based on Lattice Boltzmann Method 
with effective relaxation time (ERT) was used for flow 
computation in a long microchannel with length to height ratio 
of 200. Such effective relaxation time is capable of predicting 
flow for higher Knudsen numbers, the ones that occur in 
transition flow regimes. ERT-LBM results obtained for velocity 
distribution across the channel show good agreement with those 
obtained from Direct Simulation Monte Carlo Method 
(DSMC); LBM results represent remarkable discrepancies 
especially near walls. Results obtained for pressure distribution 
along the channel reveal the fact that LBM computations is 
totally unacceptable for Knudsen numbers greater than 0.1, 
while those of ERT-LBM are in reasonable agreement with 
DSMC. 
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FIG. 5. Streamwise velocity at the exit. Comparison of ERT-LBM
(LBM with effective mean free path), normal LBM (without 
effective mean free path), DSMC, and IP simulations,, 

outKn =0.0194, pressure ratio=1.4. DSMC and IP-DSMC data are 
taken from Ref. [8].

FIG. 6. Streamwise velocity at the exit. outKn =0.194, pressure 
ratio=2.0.

FIG. 7. Streamwise velocity at the exit. outKn =0.388, pressure 
ratio=2.0.

FIG. 8. Pressure along the channel centerline. Comparison of ERT-
LBM, normal LBM, DSMC, and IP simulations,, outKn =0.0194, 

pressure ratio=1.4.



7 Copyright © 2010 by ASME

FIG. 9. Pressure along the channel centerline. outKn =0.194, 
pressure ratio=2.0.

FIG. 10. Pressure along the channel centerline. outKn =0.388, 
pressure ratio=2.0.

REFERENCES

[1] Ho, C. M. and Tai, Y. C., 1998, “Micr-Electro-Mechanical-
Systems (MEMS) and fluid flows”, Annu. Rev. Fluid. Mech., 
30, pp. 579-612.
[2] Bird, G. A., 1994, Molecular Gas Dynamics and the Direct 
Simulation of Gas Flows, Clarendon Press, Oxford, UK.
[3] Succi, S., 2001, The Lattice Boltzmann Equation: For Fluid 
Dynamic and Beyond Series Numerical Mathematics and 
Scientific Computation, Oxford University Press, Oxford, UK.
[4] Wolf-Gladrow, A., 2002, Lattice-gas Cellular Automata and 
Lattice Boltzmann Method, Springer, USA.
[5] Guo, Z. L., Zhao, T. S. and Shi, Y., 2006, “Physical 
symmetry, spatial accuracy, and relaxation time of the lattice 

Boltzmann equation for micro gas flows”, J. Appl. Phys., 99,
074903. 
[6] Verhaeghe, F., Luo, L. S. and Blanpain, B., 2009, “Lattice 
Boltzmann modeling of microchannel flow in slip flow regime”, 
J. Comp. Phys., 228, pp. 147-157. 
[7] Zhang, Y. H., Gu, X. J., Barber, R. W. and Emerson, D. R., 
2006, “Capturing Knudsen Layer Phenomena Using A Lattice 
Boltzmann Model”, Phys. Rev. E, 74, 046704.
[8] Niu, X. D., Hyodo, S. A. and Munekata, T., 2007, “Kinetic 
Lattice Boltzmann Method for microscale gas flows: Issues on 
boundary condition, relaxation time and regularization”, Phys.
Rev. E, 76, 036711. 
[9] He, X. and Luo, L. S., 1997, “A perior derivation of the 
lattice Boltzmann equation”, Phys. Rev. E. 55, pp. R6333-
R6336.
[10] Chen, H., Chen, S., and Matthaeus, W. H., 1992, 
“Recovery of the Navier-Stockes equations using the lattice gas 
Boltzmann method”, Phys. Rev. A, 45, pp. R5339-R5342.
[11] Cercignani, C., 1975, Theory and Application of the 
Boltzmann Equation, Scottish Academic Press, Edinburgh, 
Germany.
[12] Niu, X.D., Shu, C. and Chew, Y.T., 2007, “A thermal 
lattice Boltzmann model with diffuse scattering boundary 
condition for micro thermal flows”, Computers & Fluids, 36,
pp. 273–281.
[13] Shen, C., Tian, D. B., Xie , C. and Fan, J., 2004,
“Examination of the LBM in simulation of micro channel flow 
in transitional regime”, Nanoscale and Microscale Thermophys.
Eng. 8, pp. 423-433.
[14] Chen, S., Martinez, D., and Mei, R., 1996, “On boundary 
conditions in Lattice Boltzmann methods”, Phys. Fluids, 8(9), 
pp. 2527-2536.


