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ABSTRACT
High pressure gradient driven micro-channel flow modelling

with very the high ratios of absolute pressure and temperature
(see Agrawal et al. 2005 [1]) define the difference between phys-
ical and computational results using continuum approaches (see
Maurer et al. 2003, Durst et al. 2006, Dongari et al. 2008
[3,4,8]). In the present paper this deviation of the computational
results is explained by the statistical correlation of the molecular
number density and the single molecule velocity inside a com-
pressible gas flow. Classical solutions of Navier-Stokes equa-
tions do not satisfy the physical conditions of compressible, di-
lute molecular flows (see Brenner 2005, Greenshields and Reese
2007, Mizzi et al. 2008 [2,6,9]). Furthermore the consistent en-
tropy production and the comparison between macroscopic phys-
ical values and the molecular diffusion closure are shown. Fi-
nally the computational results using this statistical model are
compared with algebraic solutions verifying the thermodynamic
consistence of the present statistical moment closure model.

NOMENCLATURE
a sonic speed [m/s]
dm molecule diameter [m]
e internal energy [J/kg]
h enthalpy [J/kg]
kB Boltzmann constant (= 1.38065·10−23J/K)
m molecule mass [kg]

∗Address all correspondence to this author.

n molecule number density [1/m3]

p pressure [Pa]
s entropy [J/(kgK)]
t time coordinate [s]
ui fluid velocity [m]
v specific volume [m3/kg]
xi space coordinate [m]
D diffusivity coefficient [m2/s]
E deviation tensor [Pa]
M mole mass [kg/mol]
R0 general gas constant (= 8.31447J/(mol K))
T absolute temperature [T]
γ heat capacity ratio[−]

ζ molecule velocity variance [m2/s2]
κ degrees of freedom [-]
µ viscosity [Pas]
ξi molecule velocity [m/s]
ρ desity [kg/m3]
σ molecule velocity standard deviation [m/s]
Φ diffusion tensor [Pa]
Pr Prandtl number [−]
Sc Schmidt number [−]

INTRODUCTION
Inside a compressible gas flow clouds of molecules move

through a pre-defined flow-volume geometry inside a dilute gas
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flow. The single molecules diffuse with different molecule ve-
locitiesξi and a mean number density ¯n (Knudsen 1909, Grad
1949 [5,10]). Based on the tree conservation equations of mass,
momentum and energy the transport equation of molecule clouds
are defined with the molecule number densityn and the molecule
velocityξi by the time-averaged form of the equation array:

∂
∂ t

(n̄)+
∂

∂x j

(
nξ j

)
= 0 (1)

∂
∂ t

(
nξi

)
+

∂
∂x j

(
nξiξ j

)
= 0 (2)

∂
∂ t

(
n
2

ξiξi

)
+

∂
∂x j

(
n
2

ξiξiξ j

)
= 0 . (3)

The conservation is satisfied by the neglecting time devivative
of the integrated form. Computing mass flux and momentum of
the present gas flow the mean velocity is defined with a number-
density weighted averaging scheme by the ratio:

ξ̃ j =
E(nξ j)

E(n̄)
=

nξ j

n̄
. (4)

By that the continuity equation is written in the averaging form
as follows:

∂
∂ t

(n̄)+
∂

∂x j

(
n̄ξ̃ j

)
= 0 . (5)

Multiplied with the mass of a single molecule this relation has
the same form as the classical mass conservation.

NUMBER DENSITY CORRELATIONS
Modelling the molecule number density/velocity correlation

with following number density and momentum gradient depen-
dencies

n′ξ j = −D
∂ n̄
∂x j

⇒ ξ̄ j = ξ̃ j +
D
n̄

∂ n̄
∂x j

(6)

the statistical moment closure produces the transport equation
of the molecular momentum. Transforming the time-averaged
convection term following triple correlation has to be closed ad-
ditionally.

n′ξiξ j = −D

(
∂

∂x j
nξi +

∂
∂xi

nξ j

)
(7)

The additional diffusion coefficientD defines the molecular mo-
tion not resolved by the mean mass flux, the macroscopic con-
vection [7].
Developing the velocity correlation

ξ̃ ′′
i ξ ′′

j =
2ζ
κ

δi j +
D2

n̄2

[
∂ n̄
∂xi

∂ n̄
∂x j

− 1
κ

∂ n̄
∂xk

∂ n̄
∂xk

δi j

]

−D

[
∂ ξ̃ j

∂xi
+

∂ ξ̃i

∂x j
− 2

κ
∂ ξ̃k

∂xk
δi j

]
(8)

and substituting its trace with 2ζ the specific momentum trans-
port equation get additional source terms depending on mean
molecule velocity and mean number density gradients:

∂
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)
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n̄ξ̃i ξ̃ j

)
= (9)

− ∂
∂xi
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k ξ ′′
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∂

∂x j

[
Dn̄

(
∂ ξ̃ j

∂xi
+

∂ ξ̃i

∂x j
− 2

κ
∂ ξ̃k

∂xk
δi j

)]

− ∂
∂x j

[
D2

n̄

(
∂ n̄
∂xi
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∂x j

− 1
κ

∂ n̄
∂xk

∂ n̄
∂xk

δi j

)]
.

These additional terms explain momentum variation depending
on microscopic physical values, whose have tho be interpreted
with macroscopic forces by a transformation from the hard-
sphere molecule cloud diffusion approach to the macroscopic
thermodynamics of dissipative systems.
Interpreting the number density weighted by the molecular mass
as density, the diffusion coefficientD as momentum diffusion
coefficient (Sc= 1) and the weighted-averaged molecule veloc-
ity as the mean gas velocity macroscopic values are defined by
molecular quantities in the following way (App. A). So the prod-
uct of the trace of the velocity correlation tensor, the densityρ
and the inverse molecular degrees of freedom 1/κ defines the
pressure of a dilute and thermodynamically ideal gas.

ρ = mn̄ µ = mn̄D

ui = ξ̃i p = m
n̄
κ

ξ̃ ′′
k ξ ′′

k (10)

These approximations help parallelizing microscopic molecular
approaches and macroscopic physical views. With the definition
of the mean kinetic molecular energy

ζ =
1
2

ξ̃ ′′
k ξ ′′

k (11)
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the specific pressure is proportional with this energy:

p
ρ

=
1
κ

ξ̃ ′′
k ξ ′′

k =
γ −1

2
ξ̃ ′′

k ξ ′′
k = (γ −1)ζ . (12)

In this way macroscopic values are interpreted as derviatives of
molecular diffusion and kinetics.

HIGHER MOLECULE VELOCITY MOMENT CLOSURE
Developing the kinetic energy transport equation of the

mean velocity multiplying the momentum equation with a
weighted-averaged velocity term

∂
∂ t

(
n̄
2

ξ̃i ξ̃i

)
+

∂
∂x j

(
n̄
2

ξ̃i ξ̃i ξ̃ j

)
= −ξ̃ j

∂
∂x j

(
n̄ξ̃ ′′

i ξ ′′
j

)
(13)

the difference of this equation and the time-averaged energy
transport produces an equation of the velocity variance:

∂
∂ t

(
n̄
2

ξ̃ ′′
i ξ ′′

i

)
+

∂
∂x j

(
n̄
2

ξ̃ ′′
i ξ ′′

i ξ̃ j

)
= (14)

−n̄ξ̃ ′′
i ξ ′′

j
∂ ξ̃i

∂x j
− ∂

∂x j

(
n̄
2
˜ξ ′′

i ξ ′′
i ξ ′′

j

)
.

Developing the third statistical moment the time-averaged form
has to be closed. Using the following approximation

ξ ′
i ξ ′

jξ ′
k =

D
n̄

[
∂

∂xi

(
n̄Φ jk

)
+

∂
∂x j

(n̄Φik)+
∂

∂xk
(n̄Φi j )

]
(15)

with a function of the deviation tensor

Φi j = −2
µ
ρ

(
∂ ξ̃i

∂x j
+

∂ ξ̃ j

∂xi
− 2

3
∂ ξ̃k

∂xk
δi j

)

︸ ︷︷ ︸
Ei j

(16)

the transport equation of the molecular energyζ

∂
∂ t

(n̄ζ ) +
∂

∂x j

(
n̄ζ ξ̃ j

)

︸ ︷︷ ︸
convection

(17)

=
∂
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(
Dn̄
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κ

∂ζ
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)
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diffusion

−n̄
2
κ

ζ
∂ ξ̃k

∂xk︸ ︷︷ ︸
compression

−n̄Φi j
∂ ξ̃i

∂x j︸ ︷︷ ︸
dissipation

− ∂
∂x j

[(
Dn̄

κ +2
κ

∂ ξ̃i

∂xi
− 1

κ
D2

n̄
∂ n̄
∂xi

∂ n̄
∂xi

)
D
n̄

∂ n̄
∂x j

]

︸ ︷︷ ︸
production

consists of the relation between convection, diffusion, compres-
sion, dissipation and production terms.

COMPRESSIBLE DYNAMICS AND THERMODYNAMIC
CONSISTENCE

In the definition of the sonic speed the molecule velocity
standard deviationσ , what is proportional with the square-root
of the internal energye, is proportional with the speed of sound:

a2 =
dp
dρ

= γ
p
ρ

= γ (γ −1)ζ (18)

⇒ σ =

√
2
κ

ζ =
a√γ

. (19)

With the theory ofClausius and Duhemthe change of internal
energy in an isentropic case is different from the case, if the en-
tropys is increasing:

de= Tds− pdv⇔ ρζ̇ = ρTṡ− pρ v̇ . (20)

With the definition of the specific volumev = 1/ρ the time-
derivate of the kinetic energy of a molecule cloud is resulting:

ρ̇ζ + ρζ̇ = ρTṡ− v̇
v

(p+ ρζ )

= n̄Tṡ− n̄
κ +2

κ︸ ︷︷ ︸
=γ

ζ
∂ ξ̃k

∂xk
. (21)

Transforming the developed transport equation of the velocity
variance (eq. 14)

d
dt

(n̄ζ ) =
∂
∂ t

(n̄ζ )+ ξ̃ j
∂

∂x j
(n̄ζ )

= −n̄ξ̃ ′′
i ξ ′′

j
∂ ξ̃i

∂x j
− ∂

∂x j

(
n̄
2
˜ξ ′′

i ξ ′′
i ξ ′′

j

)
− n̄ζ

∂ ξ̃ j

∂x j
(22)

and substituting the molecule velocity variance derive the change
of entropy is developed. To provide the thermodynamic consis-
tence of this statistical method the entropy production is gener-
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ated:

n̄Tṡ = n̄
κ +2

κ
ζ

∂ ξ̃k

∂xk
+

d
dt

(n̄ζ )

=
∂

∂x j

(
1
κ

D3

n̄2

∂ n̄
∂xi

∂ n̄
∂xi

∂ n̄
∂x j

)
− n̄Φi j

∂ ξ̃i

∂x j

+
∂

∂x j

(
Dn̄

κ +2
κ

∂ζ
∂x j

−D2κ +2
κ

∂ ξ̃i

∂xi

∂ n̄
∂x j

)
(23)

and becomes positive for all thermodynamic changes as pre-
scribed by the second law of thermodynamics.

GOVERNING TRANSPORT EQUATIONS
Finally the thermodynamically consistent set of conserva-

tion equations with the adiabatic exponentγ = cp/cv = (κ +2)/κ
results for compressible flows:

∂ρ
∂ t

+
∂

∂x j
(ρu j) = 0 (24)

∂
∂ t

(ρui) +
∂

∂x j
(ρuiu j) = − ∂ p

∂xi

+
∂

∂x j
[2µEi j ]

− ∂
∂x j

[
µ2

ρ3

(
∂ρ
∂xi

∂ρ
∂x j

− γ −1
2

∂ρ
∂xk

∂ρ
∂xk

δi j

)]
(25)

∂
∂ t

(ρζ ) +
∂

∂x j
(ρζu j) = −ρζ (γ −1)

∂u j

∂x j

+2µEi j
∂ui

∂x j
+

∂
∂x j

(
γµ

∂ζ
∂x j

)
(26)

− ∂
∂x j

[(
γµ

∂ui

∂xi
− γ −1

2
µ2

ρ3

∂ρ
∂xi

∂ρ
∂xi

)
µ
ρ2

∂ρ
∂x j

]

with µ =
2m
3d2

m

√
(γ −1)ζ

π3 (27)

andEi j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j
− 2

3
∂uk

∂xk
δi j

)
. (28)

The viscosityµ defining parameters are the specific molecular
kinetic energyζ , the molecule massmand the molecule diameter
dm. Neglecting the direct influence of pressure gradients in the
upper equations, the effectivePrandtl numberis Pr < 1. There-
fore the specific enthalpy would be defined by the formulation
h = γζ .
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FIGURE 1. MEAN FLUID VELOCITY PROFILES

RESULTS AND DISCUSSION
The validation case is given by the reference case of a heated

laminar channel flow [4] with an inlet Reynolds number of 1137.
The fluid medium is air withγ = 1.4 by a temperature of 300K
and an atmospheric pressure of 101325Pa. The channel height
is H = 41mmand the inlet velocity is 0.5m/s. The wall tem-
perature is given with 1000K. Typically following values of
molecule mass and diameter are obtainedm= 4,80·10−26kgand
dm = 3,06·10−10m. The gravity works across the flow orienta-
tion in negative y-direction.
The results of thepresent modelare compared with theki-
netic diffusion theory(Pr=1) and the computational results of
a diffusion-source modelwith additional diffusion source terms
of Durst et al. [4]. The velocity profiles of the present model
match the profiles of the diffusion-source model very good es-
pecially in the channel center. Density and temperature profiles
agree with the diffusion-source model inside the shear layer near
the wall. In the channel center the diffusion-source model re-
sults are closer to the kinetic theory results with a compressible
approximation for dilute gases with Pr=1. So the heat trans-
fer increase at the channel center is higher than shown in the
diffusion-source model with additional source terms for that ef-
fect. The results of following models are compared: the present
model(solid line), the kinetic theory(dashed line)and the diffu-
sion source model(dots). Shown are the profiles of axial velocity,
absolute temperature , fluid density and viscosity at the positions
x∈ {0.08,0.2,0.8,1.6}.

REFERENCES
[1] A. Agrawal, L. Djenidi and R. A. Antonia, 2005.Simula-

tion of Gas flow in microchannels with a sudden expansion
or contractionJ. Fluid Mechanics, 530/135-144.

[2] H. Brenner. 2005.Navier-Stokes revisited.Physica A,
Vol.349/60-132.

4 Copyright c© 2010 by ASME



 0

 0.2

 0.4

 0.6

 0.8

 1

 400  600  800  1000  1200  1400

y/
H

T/(1 K) + 250 x/(1 m)

present model

kinetic theory

diffusion source

FIGURE 2. MEAN FLUID TEMPERATURE PROFILES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

y/
H

ρ/(1 kg/m3) + 2.5 x/(1 m)

FIGURE 3. MEAN FLUID DENSITY PROFILES

[3] N. Dongari, A. Sharma and F. Durst. 2008.Pressure-driven
diffusive gas flows in micro-channels: from the Knud-
sen to the continuum regimes.Microfluidics and Nanoflu-
idics, Online Publication DOI 10.1007/s10404-008-0344-y,
ISSN 1613-4990.

[4] F. Durst, J. Gomes and R. Sambasivam. 2006.Thermoflu-
iddynamics: Do we solve the right kind of equations?.Pro-
ceedings of the 5th International Symposium of Heat an
Mass Transfer, Dubrovnik, p.25-29.

[5] H. Grad. 1949.On the kinetic theory on rarefied gases.
Communications on Pure and Applied Mathematics,
2(4)/331-407.

[6] C. J. Greenshields and J. M. Reese. 2007.The structure
of shock waves as a test of Brenner’s modifications to the
Navier-Stokes equations.J. Fluid Mech., 580/407-429.

[7] R. Groll. 2008. Computational modelling of molecu-
lar gas convection with a c2-z2 model. ASME-I793CD,
ISBN:0791838269, ASME.

[8] J. Maurer, P. Tabeling, P. Joseph and H. Willaime. 2003.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2e-05  3e-05  4e-05  5e-05  6e-05  7e-05  8e-05

y/
H

µ/(1 Pa*s) + 2.5*10-5 x/(1 m)

FIGURE 4. MEAN FLUID VISCOSITY PROFILES

Second-order slip laws in micro-channels for helium and
nitrogen.Physics of Fluids, 15(9)/2613-2621.

[9] S. Mizzi, X. J. Gu, D. R. Emerson, R. W. Barber and J. M.
Reese, 2008.Computational framework for the regularized
20-moment equations for non-equilibrium gas flowsInt. J.
Numerical Methods in Fluids 56/1433-1439.

[10] M. Knudsen. 1909.Die Gesetze der Molekularströmung
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Appendix A: Equivalence of macroscopic and molecu-
lar values

TABLE 1. PAIRS OF EQUIVALENT VALUES

macroscopic molecular

value value

ui ξ̃i

ζ = e−h0
1
2ξ̃ ′′

i ξ ′′
i

h−h0
(1

2 + 1
κ
)

ξ̃ ′′
i ξ ′′

i

R0/M kB/m

γ 1+2/κ

cv κ/2 ·kB/m

cp (1+ κ/2)kB/m

T m/(κkB)ξ̃ ′′
i ξ ′′

i

ρ mn̄

c̄
√

8ξ̃ ′′
i ξ ′′

i /(πκ)

D = µ/ρ 2
3n̄d2

m

√
(γ−1)ζ

π3

λ 1/(
√

2π n̄d2
m)

a κ+2
κ2 ξ̃ ′′

i ξ ′′
i
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