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ABSTRACT
A method for determining the surface tension of solid-fluid
interfaces has been proposed. For a given temperature and fluid-
solid combination, these surface tensions are expressed in terms
of material properties that can be determined by measuring the
amount of vapor adsorbed on the solid surface as a function of
xV, the ratio of the vapor-phase pressure to the saturation-vapor
pressure. The thermodynamic concept of pressure is shown to
be in conflict with that of continuum mechanics, but is supported
experimentally. This approach leads to the prediction that the
contact angle, 0, can only exist in a narrow pressure range and
that in this pressure range, the solid-vapor surface tension is con-
stant and equal to the surface tension of the liquid-vapor inter-
face, Y. The surface tension of the solid-liquid interface, Y,
may be expressed in terms of measurable properties, Y*V and 0:
L = ¥V (1 —cos@). The value of 8 is predicted to depend on
both the pressure in the liquid at the three-phase, line x%, and the
three-phase line curvature, C.;. We examine these predictions us-
ing sessile water droplets on a polished Cu surface, maintained
in a closed, constant volume, isothermal container. The value of
0 is found to depend on the adsorption at the solid-liquid inter-
face, nt = nSL(x4,C,). The predicted value of © is compared
with that measured, and found to be in close agreement, but no
effect of line tension is found.

* Address all correspondence to this author.

INTRODUCTION

Recently a method for determining the surface tension of
solid-fluid interfaces was proposed [1]. This method is based on
the {-adsorption isotherm. It uses this isotherm to establish the
values of the material properties of a solid surface that controls
the surface tension of the solid, both in the absence of any adsorp-
tion, 7°°, and in the presence of an adsorbed vapor, °V. There
are four parameters in the {-adsorption isotherm, denoted M, c,
o and §. These parameters are determined for a particular vapor-
solid combination by comparing the isotherm expression with
measurements of the amount of vapor adsorbed as a function of
pressure, for a given temperature, 7, and determining the values
of the parameters that give the best agreement between the mea-
sured amount adsorbed and that predicted to be adsorbed [1-3].

One of the essential properties of any isotherm that is to
be used in the proposed procedure is that it does not indicate
an infinite amount is adsorbed in the limit of the vapor-phase
pressure, PV, approaching the saturation-vapor pressure, Py(T).
The {-adsorption isotherm satisfies this condition, but neither the
BET [4] nor the FHH [5-7] do. These isotherms indicate an in-
finite amount is adsorbed in this limit, and thus, could not be
used. A second condition is for the isotherm to be valid for the
pressure ratio x¥ [= PY /Py(T)] between zero and one. If these
conditions are met, the isotherm may be incorporated into Gibb-
sian thermodynamics [8] and the expression for 3V (T) predicted
as a function of xV, and the surface tension of the adsorbing fluid
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FIGURE 1. The two fluid phases of a substance enclosed in a constant
volume, isothermal system along with the predicted pressure profile are
shown.

at the liquid-vapor interface, YV (T).

The theory for determining the surface tension of a solid can
then be examined in two limits: in the low pressure limit, the
expression for 70 may be determined from the expression for
73V by taking the limit of x" going to zero. Since ¥ is a ma-
terial property of the solid surface, its value must be the same
when determined from the adsorption of different vapors [1, 2].
At pressures where a contact angle of a sessile droplet, 6, can ex-
ist, the {-isotherm may be employed to predict the value of 6 for
a sessile droplet enclosed in a constant volume, isothermal con-
tainer as a function of the number of moles of fluid present [3].
Also, the contact angle in such a system may be measured.

One of the issues raised by these results is the sensitivity of
the contact angle to the pressure in the liquid phase at the three-
phase line, xg [9,10]. Thus, it is essential that the pressure is
accurately predicted. We show that the idea of pressure in a two-
phase fluid being determined by the “weight of the fluid above”
[11] does not agree with the thermodynamic concept of pressure:
the pressure is such that there is no net molecular transport across
a horizontal plane when gravity acts normal to the plane [9, 12].

THE CONDITIONS FOR THERMODYNAMIC EQUILIB-
RIUM

When Gibbsian thermodynamics [8] is employed to deter-
mine the conditions for equilibrium in a system containing the
two fluid phases of a substance that is exposed to a gravity field
of intensity, g, such as that shown in Fig. 1, one obtains three
conditions.

1. If W denotes the molecular weight of the fluid, the gravity
field is —gi,, the chemical potentials in the liquid and va-

por phases, u*[T,P(z)] and u"[T,P(z)], respectively must
be such that there is no net molecular transport across any
horizontal plane in the fluid that is perpendicular to the di-
rection of the gravity vector. If j is equal L or V, then

W+ Wez=Cj, M

where C; is a constant.

2. The pressure in the liquid and vapor phases at the liquid-
vapor interface, PF(z) and P/ (z), must satisfy the Laplace
equation

P/ (2) =Pl (z) =y (c}" +C5Y), )

where C{‘V and C%V are the interface curvatures.

3. If the droplet is axisymmetric with the three-phase line cur-
vature C,; and the liquid-phase pressure ratio there is x%, the
Young equation gives:

PV — L =y cos0(C.y, PL). 3)

where we have neglected any effect due to line tension [13].

As these relations stand, they do not form a closed set, but
they may be closed by adding three equations of state. We ap-
proximate the vapor as an ideal gas, the liquid as incompressible,
and introduce the {-isotherm to describe the amount adsorbed at
the solid-vapor inteface, n5V. This adsorption isotherm approx-
imates the adsorbed vapor as a collection of molecular clusters,
with the clusters consisting of different numbers of molecules,
up to a maximum of ¢ in a cluster [1]. The isotherm expression
is

sv_ Meax[1— (1+§)(ax)* + E(ax”) " +¢]
(=) [1 4 (c—1ox” —c(ox?)1+¢] 7

“

where ¢ and o are temperature dependent parameters that are to
be determined along with M and { from measurements of the
amount adsorbed as a function of x. When a sessile droplet is
present, the pressure is very near P(T), and as seen in Fig. 2,
the amount adsorbed is very sensitive to pressure, for pressure
ratios near unity.

From the Gibbs adsorption equation at the solid-vapor inter-
face and the expression for n%V, the expression for ¥ may be
constructed in terms of the isotherm parameters. One finds [1]

— D1+ (c—Dax¥
i (U)o
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FIGURE 2. The measured amount of water vapor adsorbing on cop-

per at 30 °C [14]. The solid line is the amount calculated to be ad-

sorbed when §,a,c and M are assigned values of 60, 0.914, 8.59 and
5.556x10~8 kmol/m? respectively.

where we have adopted the wetting hypothesis. This hypothe-
sis assumes that in the limit of 6 approaching zero, the surface
tension at the solid-liquid interface, 3%, also goes to zero. The
Young Eq., (3) indicates %" is equal to ¥/ of the adsorbing fluid
in this limit.

THE PRESSURE PROFILE IN A TWO-PHASE SYSTEM
We first examine the predicted pressure as a function of
height that is obtained from the conditions for equilibrium for
a system such as that shown in Fig. 1. If Eq. (1) is applied at two
points in the liquid phase, say zi and Z5 where 7= > 2z, then

UE[T,P(T)] + vy [PH(z1) — P(T)] +
Wgzi = uH[T,P(T)] +
vi[PH(z2) — P(T)] + Wz, (6)

where v denotes the molar specific volume of the liquid at satu-
ration. Thus,

w
P(z5) =P<z%>+v—f<z%—z§>. 7)

The predicted pressure profile is shown in Fig. 1 [12]. As
seen there, the slope of the pressure in the liquid phase is pre-
dicted to be the same as it would have been had no vapor phase
been present. Thus, for the two systems shown in Fig. 3 where
the pressure at the top of the cylinder is P4, both the thermo-
dynamic and continuum mechanics concepts of pressure would
predict the same value for the pressure P, but they would predict
different values of the pressure Pg.
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FIGURE 3. According to thermodynamics the pressure Pg is equal to
Pc, but according to continuum mechanics Pc > Pp [12].

For the container on the left in Fig. 3, since the weight of
the fluid above the bottom of the container is less than the one on
the right, continuum mechanics would predict that

Pc > Pp. (8)

But as indicated in Fig. 1, thermodynamics leads to the predic-
tion that

Fc = Pp. 9)

This issue has important implications for wetting phenom-
ena and has been examined experimentally [9] using the device
shown schematically in Fig. 4. In this device, the pressures at
z4 in the two liquid columns have the same value. The relative
heights of the mercury columns—zp compared to zc—indicate
the relative pressures at the bottom of the water columns. In the
column on the left, water and its vapor fill the column, but only
water is present in the other column. If the thermodynamic con-
cept of pressure is valid, zz will be equal to zc when the system
comes to equilibrium, but if the concept of pressure, as defined
in continuum mechanics, is valid, the equilibrium configuration
will be that shown in Fig. 4, zp > z¢.

A series of experiments was conducted in which the length
of the vapor phase was different in each case. In one experiment,
it was 24.36 mm, and initially, the system configuration corre-
sponded with that shown in Fig. 4: the Hg-column height on
the left was 1.22 mm greater than that on the right. The evolu-
tion of the difference in the Hg-column heights. as the system
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FIGURE 4. Schematic of an apparatus used to examine the concept
of pressure in thermodynamics and in continuum mechanics.

evolved to equilibrium, is shown in Fig. 5. Note that when the
system had reached equilibrium, there was no longer any differ-
ence in the Hg-column heights. These observations are in accord
with the thermodynamic concept of pressure, but indicate that in
a confined two-phase system, the weight of a fluid above a point
in the fluid does not determine the pressure at the point.

Once the system had reached its equilibrium configuration,
a photograph was made of the system. It is shown in Fig. 6.
Not only does this photograph indicate that the thermodynamic
concept of pressure is valid, it also indicates the contact angle
depends on pressure. By measuring the meniscus height at the
upper and the lower three-phase lines, assuming the interfaces
are spherical, the contact angles may be determined. For the
system shown in Fig. 6, the contact angle at the upper three-
phase line was 8.1 and that at the lower 87.5 °. The pressure at
the lower three-phase was 238.7 Pa larger than that at the other
three-phase line.

Since two values of the contact angles were observed in
each experiment for water contacting borosilicate glass, this re-
sult suggests that the contact angle is not a material property of
a solid-liquid combination, but it is a thermodynamic property
that depends on the pressure in the liquid phase at the three-
phase line. We note that the pressure in the vapor phase is very
near Ps(T). We will discuss the mechanism by which adsorption
could produce the observed difference in contact angles after we
consider the effect of pressure on y%V.

14
12
10}x
0.8
0.6 =

04

02 \-?
(] N

10 20 30 40 50 60 70 80
Time (days)

Difference in Hg-column heights (mm)

FIGURE 5. Schematic of an apparatus used to examine the concept
of pressure in thermodynamics and in continuum mechanics.
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FIGURE 6. A photograph of a system that had a vapor-phase length
of 24.36 mm is shown after the system had come to equilibrium.

DEPENDENCE OF Y ON PRESSURE

Adsorption isotherms for N, and Ar adsorbing on -Al,O3
at 77 K have been reported [15, 16]. From these measurements,
the {-isotherm parameters have been determined [2], and used
in Eq. (5) to calculate YV as a function of x" in each case. One
finds the results shown in Fig. 7. As seen there, the value of
750 for a-Al, O3 at 77 K is predicted to be the same for all three
isotherms. Also, in references [1,2], the value of ¥ is deter-
mined for graphitized carbon at 20 °C, for titania, magnesia and
borosilicate glass at 77 K. For each solid, the value of this ma-
terial property, 1, in the absence of adsorption, is found to be
independent of the vapor used to determine its value.
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FIGURE 7. The calculated values of ¥ for a-Al,O3 as a function
of xV for two different vapors at 77 K are shown. The adsorption of N,
was measured in different laboratories [15, 16].

As seen in Fig. 4, as the value of x" is increased from zero
to unity, the predicted effect of the adsorption is to decrease 75"
relative to %9, and for a given value of x, the amount of decrease
depends on the vapor that is adsorbing.

The thickness of the vertical line near x" equal unity in Fig.
7 indicates the pressure range where the contact angle can exist.
The inset figure indicates that in this pressure range, y°V is re-
duced to the surface tension of the adsorbing fluid, y*V. Thus, if
xV approaches unity

v = (10)

Thus, in this pressure range the Young equation, Eq. (3), is pre-
dicted to simplify to

YL = ¥V[1 —cos 6 (x5, Cy)]. 1D

This is an important simplification because both YV and 6 can
be directly measured, and Eq. (11) may be readily applied to de-
termine YL, We examine this prediction experimentally below.
Since increasing the pressure in the liquid-phase at the three-
phase line has been seen to increase the contact angle (see Fig.
6), Eq. (11) and the results in Fig. 7 indicate the mechanism
is adsorption at the solid-liquid interface. But in contrast to the
effect of adsorption at the solid-vapor interface, the effect of ad-
sorption at the solid-liquid interface is to increase y°~. If the ad-
sorption at the solid-liquid interface is denoted 75" and x% is the
pressure in the liquid at the three-phase line, the Gibbs adsorption
equation at the solid-liquid interface may be written [8, 10, 12]:

dy*"t = —n*tv Pk, (12)

For y** to increase as xL is increased, Eq. (12) indicates nSE must
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FIGURE 8. Constant volume chamber in which a water droplet could
be placed on a polished Cu surface (roughness 53 nm), maintained
isothermal at 30 °C, and the number of moles changed.

be negative. The meaning of negative adsorption has been pre-
viously investigated and found to mean physically that the fluid
concentration within the interphase is less than that in the bulk
liquid phase [10].

PREDICTED AND OBSERVED CONTACT ANGLE OF
A SESSILE-WATER DROPLET ON A COPPER SUB-
STRATE

The low pressure limit of the expression for %V given in
Eq. (5) is strongly supported by the type of results shown in Fig.
7 [1,2]. We now want to examine the expressions for 7°" and
7L, when the pressure is near Py (7).

For a sessile droplet, there is the possibility of tension ex-
isting in the three-phase line [8] that could affect the value of
6. However, estimates of the magnitude of the line tension indi-
cates the actual value of the line tension would have to be several
orders of magnitude larger than the theoretical value [13].

Nonetheless, several experimental investigations have indi-
cated that the contact angle depends on the three-phase-line cur-
vature. A recent investigation of the source of this dependence,
for a spherical sessile droplet, indicated the source could be ad-
sorption at the solid-liquid interface [17], rather than tension in
the three-phase line.

We examined this issue further using sessile water droplets
on a copper substrate. Each droplet was enclosed in the apparatus
shown schematically in Fig. 8. A droplet could be observed
both from above and from the side. The observation from the
top allowed the curvature of the three-phase line, C.;, and that
from the side allowed the droplet height on the centerline zg — z;,
to be measured. From these measurements, the conditions for
equilibrium may be used to determine both 6 and xj§. At the
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FIGURE 9. The thermodynamic potential for the system is the
Helmholtz function. Two calculated Helmholtz functions correspond-
ing to different total numbers of fluid moles are shown. A predicted
contact angle corresponds to the minimum in the Helmholtz function.

apex of the axisymmetric droplet
T Ph(z0)) = 1V [T, PY (20)]. (13)

Equation (2) may be combined with Eq. (13) to calculate 0, xé,
and the curvature of the droplet at the appex, C5V [1,2]. We view
the contact angle determined in this way as a measurement, since
there is little doubt about the validity of the Laplace equation or
Eq. (13).

If x’6 is known, then the pressure at the three-phase line of
the droplet may be calculated from Eq. (7):

= xb+ (z0 —2p)- (14)

The adsorption at the solid-liquid interface may then be obtained
from Eqgs. (11) and (12)

\%4
o= ¥ (acoi(’) . (15)
vePs \ 0x; T.C,

A numerical procedure may be used to obtain the value of the
partial differential in this equation [2, 10].

The constraints on the system are such that the Helmholtz
function acts as the thermodynamic potential. If the contact an-
gle is known, then the number of moles of the fluid component
in the system may be determined by determining the condition
under which the Helmholtz function is a minimum. This process
is illustrated in Fig. 9. In one case, the measured value of the
contact angle was 69.2°, but the number of moles in the system
was unknown. When the Helmholtz function was plotted for a
different number of moles, it was found that the Helmholtz func-
tion calculated for 2.96 mmol had a minimum corresponding to
the known contact angle, 69.2°.

0

Measured contact angle (degrees)

30 L L L L
30 40 50 60 70 80

Predicted contact angle (degrees)

FIGURE 10. The values of the measured and predicted contact angles
in a series of experiments are shown.

FIGURE 11. Three-dimensional plot of the predicted contact angle as
a function of x% and C,; for experiments described in Table 1.

Once the number of moles in the system was known, a vac-
uum system was used to change the number of moles by a mea-
sured amount. For the cases illustrated in Fig. 9, the number of
moles was reduced to 2.87 mmol. Then the Helmholtz function
could be plotted with the number of moles known, 2.87 mmol.
The predicted contact angle was then that corresponding to the
minimum in the Helmholtz function, 64.6°. In this second state,
the contact angle could also be measured and was 65.0 ° in this
case. In Fig. 10, the measured and predicted values of the contact
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TABLE 1.

Summary of Experiments with Water Droplets on Cu Conducted at 30 °C [2]

Expt.|z0 — 25 (mm)|Coy (m™ 1) |CE'(m V| ¥V (kgrsd) | x5 ¥V ke/s?)| 0¢°) |ySL(kg/s?)|nSE(mol/m?)
Elb 0.95 0333 | 170.3 | 0.07119 | 1.00777 | 0.07112 |37.4| 0.01456 | -107.427
+0.01 | 40.006 40.000005|+0.00002| 40.002 |+0.4| +0.0023 +1
E2b 1.19 0.501 | 373.5 | 0.07119 | 1.01519 | 0.07116 |61.1] 0.03675 | -201.119
+0.01 | +0.004 4+0.00001 {£0.00002| +0.002 |+0.4| £0.0025 | +0.9
E3b 1.58 0.435 | 3543 | 0.07120 | 1.01543 | 0.07107 |71.9] 0.04894 | -211.268
+0.01 | +0.005 4+0.00001 {£0.00002| +0.002 |+0.4| £0.0025 | +0.8
E4b 1.38 0.402 | 2954 | 0.07119 | 1.01299 | 0.07097 |60.4| 0.0358 | -177.646
+0.01 | +0.008 +0.000005|4+0.00002| +0.002 |+0.4| £0.0035 +1
E5b 1.64 0357 | 264.6 | 0.07119 | 1.01265 | 0.07115 |65.0| 0.04106 | -178.162
+0.01 +0.005 +0.000005|4+0.00002| +0.002 |+0.4| £0.0025 | =+0.8

angle obtained using this procedure in a series of experiments are
shown (see Table 1). Note the close agreement between the pre-
dicted and measured contact angles [3].

Discussion and Conclusion
In Table 1, the results obtained in the sessile-water-droplet
experiments are listed. The experimental control variables were
the droplet height, zo — z;, the curvature of the three-phase line,
C,;, and the temperature. These variables were measured in each
experiment. From them, the values of x% and 6 may be predicted.
In Fig. 11, a three-dimensional plot of cos 6 as a function of x§
and C,; is shown, indicating 6 has as its independent variables
x% and C,;. We emphasize that line tension plays no role in the
predicted dependence of 6 on Cy.
From the equality of the chemical potentials, x" may be ex-
pressed in terms of x*

(@) = exp[L (5" () 1), (16)

8

and one finds that xV is very near unity. When these values of xV
are used in Eq. (5) to calculate ¥5Y, one finds the values listed
in Table 1. These calculated values of ¥V may be compared
with the values yLV, also listed there. As may be seen in Table
1, they were not measurably different. Thus, Eq. (11) is a valid
approximation in all of these experiments [3].

While the surface tension y°" (x) was very nearly constant
and equal to ¥*, the measured values of 8 were between 37.4
and 71.9°. The surface tension Y3 varied by more than a factor
of three. Thus, it appears it is the change in ¢ with the ex-
perimental variables that is responsible for changing the contact
angle.

The mechanism by which y5" is changed may be inves-
tigated by considering the adsorption at the solid-liquid inter-
face. Equation (12) indicates the change in ¥ is proportional
to nStdxk. In Fig. 12, we show a plot of n5L as a function of x§
and C.. Note that the dependence of n5" on these variables is
very similar to the dependence of cos 8 on them. This suggests a
relation between 0 and nS%; thus, we consider the ratio, A:

e(xévccl)

A= .
nSL(x%,Cy)

a7

From the data in Table 1, one finds that

A= 0344001 228
mol /m?2
Thus, it appears that for the system considered, it is adsorption
at the solid-liquid interface that controls the contact angle, and
therefore y3* (see Eq. (11)).

For the results shown in Fig. 6, C; is fixed, but 0 is seen
to depend strongly on x% In Fig. 13 a sketch of a droplet on
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FIGURE 12. Three-dimensional plot #°" as a function of x% and C,
for experiments described in Table 1.

an inclined solid surface in a gravity field is shown. It had been
conventional to say that the contact angle hysteresis (6, > 0,) re-
sulted from surface roughness and surface heterogeneity under-
neath a droplet [18-21], until Gao and McCarthy [22] showed
that contact angle hysteresis results from conditions at the three-
phase line rather than from the conditions underneath the droplet.
The results in this study give a mechanism supporting the con-
clusions of Gao and McCarthy [22].

Since 0 has been found to depend on the properties at the
three-phase line, x% and C,;, and because the magnitude of solid-
liquid adsorption increases as x’g is increased, the results of this
study indicate it is the conditions at different positions on the
three-phase line that causes contact angle hysteresis for a droplet
such as that shown in Fig. 13. And we may add that even on an
absolutely smooth and homogeneous surface, the pressure in the
liquid phase at the lower portion of the three-phase line would be
greater than that at the higher portion. This pressure difference
would give rise to contact angle hysteresis because x% would be
greater at the lower portion than at the upper portion of the three-
phase line.
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