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ABSTRACT 

Kinetic theory of gases, as described by the Boltzmann or 
model kinetic equations, provides a solid theoretical approach 
for solving microscale transport phenomena in gases. Due to 
significant advancement in computational kinetic theory and 
due to the availability of high speed parallel computers, kinetic 
equations may be solved numerically with modest 
computational effort. In this framework, recently developed 
upgraded discrete velocity algorithms for solving linear and 
nonlinear kinetic equations are presented. In addition, their 
applicability in simulating efficiently and accurately 
multidimensional micro flow and heat transfer problems is 
demonstrated. Analysis and results are valid in the whole range 
of the Knudsen number. 
 
INTRODUCTION 
 Gaseous microflows is a significant chapter in the 
emerging field of microfluidics [1, 2]. In general, these flows 
do not have local equilibrium and they are described by 
different length and time scales associated with different laws 
of physics. As it is demonstrated in the present work mesoscale 
approaches based on kinetic theory [3, 4] are capable of 
handling such problems in a unified manner. The parameter, 
which quantifies the departure of the gas from local or global 
equilibrium flow conditions, is the Knudsen number, which is 
defined as the ratio of the mean free path λ  (i.e. the distance 
that particles travel between collisions) over a characteristic 
macroscopic length  of the problem (L /Kn Lλ= ) [1].  
 When the Knudsen number is much less than one, the 
mean free path is so small that the gas may be considered as a 
continuum medium and the well-known Navier-Stokes 
equations can be applied to model the flow. This flow regime is 
known as the hydrodynamic regime and the solution of the 
governing equations can be obtained very efficiently 
implementing advanced numerical approaches. 
 Although the validity of the Navier-Stokes equations 
breaks down for , it is possible to extend their 

applicability by substituting the no slip with suitable slip 
boundary conditions [1]. It has been found that in the so-called 
slip regime, defined by , the Navier-Stokes 
equations subject to the velocity slip and temperature jump 
boundary conditions may provide reliable results. Also, by 
introducing more advanced high-order slip boundary 
conditions the validity of the continuum equations may be 
extended to a wider range of the Knudsen number. However, it 
is important to note that the implementation of advanced 
reliable slip boundary conditions depends on the accurate 
estimation of the slip coefficients, which are obtained only 
through kinetic theory. Other attempts to facilitate and extend 
the implementation of macroscopic conservation equations are 
based on the application of more complicated constitutive laws 
yielding a set of generalized hydrodynamic equations [1, 5]. It 
is obvious however, that all this effort is limited by the 
hydrodynamic assumption and can not be valid in the whole 
range of the Knudsen number. However, it is fully justified by 
the fact that there is a lot of knowledge and experience on the 
numerical solution of nonlinear hydrodynamic equations and 
whenever applicable the gain in computational effort is 
significant. 

310Kn −>

310 0.1Kn− ≤ ≤

 At the other end, when the Knudsen number is much 
greater than one, and more specifically for , the mean 
free path is so large that collisions between molecules and 
boundaries occur more often than collisions between 
molecules. This flow regime is known as the free molecular 
regime and in this case it may be considered that each particle 
travels independently of each other, ignoring the intermolecular 
collisions. Due to this simplification it is possible following the 
particle paths and based on the method of characteristics to 
yield closed form solutions for simple flow configurations. In 
more complex geometry the Test Particle Monte Carlo (TPMC) 
method is applied with great success [6].  

10Kn ≥

 Finally, when the Knudsen number has intermediate values 
( 0.1 10Kn< < ) the gas may not be considered as a continuum 
medium, neither as a medium consisting of individual particles. 
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This flow regime is known as the transition regime and it may 
be modeled by kinetic theory as it is described by the 
Boltzmann equation or alternatively by simplified kinetic 
model equations, where the primary unknown is the particle 
distribution function [3, 4, 7]. Then, the macroscopic quantities 
of practical interest are easily obtained by taking moments of 
the distribution function. This is a mesoscale approach since it 
is characterized by phase space volumes and times, which are 
small compared to the spatial and time scales on which 
macroscopic quantities vary but large enough to contain a 
sufficient number of molecules to allow a statistical 
description. A kinetic description is self-contained providing 
that the laws of intermolecular interaction are specified. 
Traditionally, the computational solution of the kinetic 
equations is much more demanding and complicated than the 
solution of the hydrodynamic equations. It is important to note 
that in the transition and free molecular regimes new transport 
phenomena, known as cross effects, arise and then they 
diminish gradually in the slip and hydrodynamic regimes. In 
gaseous micro devices the Knudsen number may rise due to 
small length scales or due to low pressures, while all flow 
regimes may occur in the same micro system.  
 A typical way to circumvent, when needed, the numerical 
solution of the kinetic equations, is the implementation of the 
Direct Simulation Monte Carlo method [6]. The DSMC method 
is a statistical computational approach where the region of the 
gas flow is divided into a large number of cells having 
dimensions such that the change in flow properties across each 
cell is small. Then, the evolution in space and time of a large 
number of randomly selected and statistically representative 
molecules in each cell is considered. The computational 
molecules, each of which represents a huge number of real 
molecules move, interact with solid boundaries and collide to 
each other following basic kinetic principals, so as to 
statistically mimic the behavior of real molecules. The DSMC 
method due to its simplicity has attracted considerable attention 
and although, in general, it requires large computer memory 
and long CPU time, is by far the most widely used approach 
when the flow is in the whole range of the Knudsen number. 
However, in low speed microflows as well as in high frequency 
unsteady microflows, both of which are quite common in 
microfluidics, despite the significant improvements and 
upgrades which have been achieved [8], the DSMC method 
requires considerably increased computation effort due to 
statistical noise. Therefore, it is always reasonable to search for 
reliable alternatives capable of solving any microflow 
configuration in an accurate and computationally efficient 
manner.   
 Such an alternative methodology may be the fully 
deterministic solution of suitable kinetic model equations [9]. 
This approach is well developed and advanced in the field of 
rarefied gas dynamics and can be applied in a straight forward 
manned in microflows due to the fact that a gas microflow may 
be considered as a rarefied gas flow. Of course, fully 
deterministic numerical solutions of kinetic equations, 

consisting of the discretization of the distribution function in 
the physical and molecular velocity spaces, are complicated. 
However nowadays, due to the availability of high speed 
parallel computers and due to the significant advancement in 
computational kinetic theory made during the last years, kinetic 
equations may be solved numerically in an efficient manner. In 
the case of multi dimensional configurations deterministic 
numerical schemes include variational, integro-moment and 
discrete velocity methods [10].  
 Over the years the discrete velocity method (DVM) [11, 
12, 13, 14] and its recently introduced accelerated version [15, 
16] have shown to be very efficient numerical algorithms 
providing accurate results with modest computational effort. 
They have been applied in a series of linear problems including 
pressure, temperature and concentration driven fully developed 
flows of single gases and gaseous mixtures through long 
channels of various cross sections. Most of this work is based 
on the BGK [17], Shakhov [10] and McCormack [18, 19] 
kinetic models, although the numerical solution of the 
Boltzmann equation in several occasions has been achieved 
[20, 21, 22]. It may be stated that in the case of low Mach 
number microflows the implementation of linearized kinetic 
theory is the most computationally efficient approach. Fully 
deterministic algorithms based on the discrete velocity method 
have been also applied in the case of nonlinear configurations 
including the cylindrical Couette flow [23, 24], flow in a cavity 
due to discontinuous wall temperature [25] and half space 
evaporation and condensation [26]. Very recently a 
methodology has been proposed to upgrade the computational 
efficiency of the nonlinear DVM solvers [27] in order to be 
more competitive with respect to the DSMC method even at 
high speed flows. 
 Within this framework, in this paper, recently developed 
upgraded discrete velocity algorithms for solving linear and 
nonlinear kinetic equations are presented. In addition, their 
applicability in simulating efficiently and accurately micro 
transport phenomena is demonstrated by reviewing recent 
results of rarefied gas flows through channels and heat transfer 
through rarefied gases confined between cylinders. Analysis 
and results are valid in the whole range of the Knudsen 
number. In Section 2 the fundamental kinetic equations with 
the associated boundary conditions are provided. In Section 3 
the basic and the accelerated discrete velocity algorithms are 
described. Results for the specific problems under 
consideration with the relative discussion are given in Section 
4, followed by brief concluding remarks in Section 5. 

GOVERNING EQUATIONS 
At the kinetic (or mesoscale) level the state of a 

monoatomic gas is described by the distribution function 
( ), ,f t r ξ , defined such that ( ), ,f t d dr ξ r ξ  is the number of 

molecules which, at time  have positions lying within the 
volume  about  and velocities lying within a velocity-
element  about .  The evolution of the distribution function  

,t
dr r
dξ ξ
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obeys the Boltzmann transport equation (BE) [3] 

( )f Q ff
t m
∂ ∂ ∂⎛ ⎞+ ⋅ + ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

Fξ
r ξ

  (1) 

where the left-hand side represents the streaming motion of the 
molecules of mass  along the trajectories associated with the 
force field 

,m
F  and  represents the effect of 

intermolecular (two-body) collisions taking molecules in and 
out from the streaming trajectory. Each of the macroscopic 
quantities is deduced by taking the corresponding moment of 
the distribution function, while the equation of state is valid for 
any non-equilibrium state of the gas. 

( )Q ff

The solution of the BE is a very complicated task and in 
most occasions simplified collision models are implemented 
instead. In general, a kinetic collision model must satisfy all 
three collision invariants, obey the H-theorem and when it is 
solved by the Chapman-Enskog procedure it should deduce the 
same expressions for the transport coefficients with the ones 
obtained by the BE. The most simple and widely used model, 
providing reliable results in isothermal flows, is the BGK 
model, where the collision term is written as 

( ) ( ) ( ), , , ,M
BGKQ f f n T f n Tν ⎡= −⎣ u ⎤⎦u . (2) 

Here, the collision frequency ν  is assumed as independent 
of the molecular velocity,  

( ) ( ) ( )
( )( )
( )

23/2
,

, , , exp
2 , 2 ,

M m tmf n T n t
kT t kT tπ

⎡ ⎤−⎛ ⎞
⎢= −⎜ ⎟⎜ ⎟ ⎢⎝ ⎠ ⎣

ξ u r
u r

r
⎥
⎥⎦

r

)

  (3) 

is the local equilibrium Maxwellian function, while ,   and 
 denote the local number density, velocity and temperature 

respectively. A shortcoming of this model is that it does not 
produce the right expressions for both viscocity and heat 
conductivity coefficients simultaneously and as a result the 
right Prandtl number.  

n u
T

The simplest advance on the BGK model is the ellipsoidal 
statistical (ES) model introduced by Holway [28, 3] where 

( ) ( ES
ESQ f f fν= −   (4) 

while 

( )(
3

3/2
, 1

det expES
ij i i j j

i j

n )f A uα ξ ξ
π =

⎡
= − −⎢ ⎥

⎣ ⎦
∑ u

⎤
−  (5) 

is a local anisotropic 3D Gaussian. The elements ijα  of matrix 
A  are obtained by requiring the model to yield the correct 

Prandtl number and conservation properties. This model 
provides simultaneously the correct expressions for both 
viscocity and conductivity, while by setting  it yields the 
BGK model. It has been found recently that the ES model 
fulfills the H-theorem [29]. Another model, which is 
recommended for non-isothermal problems, is the Shakhov (S) 
model, where its collision term is given by [10] 

Pr 1=

( )
( )

( ) ( )2

2

2 ˆ1
2 215

M
S

mP mQ f f f
kTn kTμ

⎧ ⎡ ⎛ ⎞−⎪ ⎢ ⎜ ⎟= + ⋅ − − −⎨ ⎜ ⎟⎢⎪ ⎝ ⎠⎣⎩

ξ u
q ξ u

This model yields the correct Prandtl number for monoatomic 
gases but one cannot prove or disapprove the H-theorem. 

In a number of interesting situations, particularly those 
involving low-speed flows, the distribution function may still 
be nearly Maxwellian and linearization of the BE or of the 
model equations may be appropriate. However, the deviation of 
the Maxwellian is not of the Chapman-Enskog type. 
Introducing the perturbed distribution according to 

( )0 1f f h= + , 1h <  (7) 
where 

( )3/ 2 2
0

0 0
0 0

exp
2 2

mmf n
kT kTπ

⎡ ⎤−⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦

ξ u
. (8) 

is the absolute Maxwellian the linearized version of the BGK 
and S models are 

( ) ( )
2

0
0

3 , ,
2 2BGK

m mL h h t
kT kT

ν ρ τ
⎧ ⎫⎛ ⎞⎪ ⎪= + ⋅ + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

ξξ u r ξ  (9) 

and 

( )

( )
( ) ( )

2
0

0 0

2

2
00 0

3
2 2

2 5 , ,
15 2 2

S
P m mL h

kT kT

m m h t
kTn kT

ρ τ
μ

⎧ ⎛ ⎞⎪= + ⋅ + −⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩

⎫⎛ ⎞ ⎪+ ⋅ − − − ⎬⎜ ⎟
⎝ ⎠ ⎪⎭

ξξ u

ξq ξ u r ξ

 (10) 

where ρ , τ  and  are the perturbed macroscopic quantities 
of number density, temperature and heat flow vector. 

q

In the case of gaseous mixtures with  components one 
has to consider  distribution functions 

N
N ( ), ,if t r ξ , 1 ,i N≤ ≤  

satisfying the system of  Boltzmann transport equations [3] N

( )
1

N

i ij i jf

5 ⎫⎤ ⎪⎥ ⎬
⎥ ⎪⎦ ⎭

.(6) 

ji

Q f f
t m =

⎛ ⎞∂ ∂ ∂
+ ⋅ + ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

∑Fξ
r ξ

,i N, 1 ≤  (11) ≤

where ( )ij i jQ f f  is the collision term describing the interaction 
between particles i  and  Several simplifications may be 
introduced at the two limits of the Knudsen number. In the 
hydrodynamic regime the gaseous mixture may be considered 
as a gas with particles of one species with density   

and molecular mass  and tackle 
the problem using the monoatomic transport theory. In the free 
molecular regime it may be considered that the various species 
of the mixture do not interact to each other and apply again the 
monoatomic transport theory for each component of the 
mixture and then estimate the overall macroscopic quantities as 
a summation of the corresponding quantities of each 
component. However, in the transition regime these 
simplifications are not valid and the coupled system of the 
Boltzmann equations must be solved. To simplify things several 
kinetic models have been proposed [3]. A linearized kinetic 
model for binary mixtures, which is fulfils all requirements, is 
the McCormack model [17, 18]. Following a detailed 
comparison with results obtained by the solution of the 

.j

1

N
ii

n
=

= ∑ n n
1

/N
i ii

m n m
=

= ∑
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Boltzmann equation, it has been shown that the McCormack 
model may provide very reliable results with significantly 
reduced computational effort. In addition, realistic 
intermolecular potentials can be implemented in the simulation, 
while the solutions of the BE are based, so far, only on the hard 
sphere model.  

Turning now to the boundary conditions, it is needed to 
relate the distribution of the incident particles ( )f −  with the 

distribution of the particles ( )f +  leaving the boundary surface. 
A model, which is widely used, is the Mawell specular-diffuse 
boundary condition given by [3] 

( )1M
Wf fα α+ = + − f −  (13) 

where M
Wf  is the local Maxwellian distribution defined by the 

macroscopic properties of the wall (i.e. velocity and 
temperature) and [ ]0,1α ∈  is the well known tangential 
momentum accommodation coefficient indicating the portion 
of the particles which are emitted diffusively from the wall. The 
Maxwellian gas-surface interaction model contains only one 
free accommodation parameter without clear physical meaning. 
For example, momentum and energy accommodation are 
different and this can not be fulfilled with the Maxwell 
boundary model. In addition, this model contradicts some 
experimental results on the thermo-molecular pressure 
difference effect. Another popular boundary models is the one 
proposed by Cercignani and Lampis (CL), which provides a 
more physical description of the gas-surface interaction [30]. 
This model contains two parameters [ ]0, 2ta ∈  and [ ]0,1na ∈ , 
which are known as the tangential momentum and energy 
accommodation coefficients. The combination 0t na a= =    
corresponds to purely specular reflection, while the 
combination  corresponds to purely diffuse 
reflection. Therefore, it is possible to distinguish the 
momentum and energy accommodation and also to consider 
back scattering, which may exist at rough surfaces. 

1t na a= =

Obtaining a kinetic solution of a microflow problem it 
would require the numerical solution of a kinetic model 
equation (BGK, S, ES) or of the BE, accordingly adjusted to 
the flow under consideration, subject to corresponding 
Maxwell or CL boundary conditions. Such algorithms based on 
the DVM are presented in the next section. 

UPGRADED DISCRETE VELOCITY ALGORITHMS 
Typical discrete velocity algorithms are based on a simple 

iteration scheme between the distribution function defined by 
the kinetic equation and the macroscopic quantities obtained as 
moments of the distribution function. However, it is well 
known to researchers involved in discrete velocity 
computations that while the convergence of the iteration 
scheme works well in the free molecular regime, it degrades as 
into the transition regime and becomes unacceptably slow in 
the slip and continuum regimes. Due to this computational 

pitfall in many occasions the applicability of the kinetic 
methodology has been limited up to certain gas rarefaction. 
This is a serious drawback since the main advantage of 
mesoscale kinetic approaches is their ability to deduce results 
valid in the whole range of the gas rarefaction. 

Here two methodologies, one for linear and one for 
nonlinear kinetic equations, are presented to speed up the slow 
convergence of the iterative scheme related to discrete velocity 
algorithms. For clarity purposes these methodologies are 
demonstrated by their implementation in the solution of two 
specific well known problems. In particular, linear (fully 
developed) flow of a gas through a rectangular microchannel 
and nonlinear heat transfer through a stationary gas confined 
between two microcylinders are considered. 

 
Linear accelerated discrete velocity algorithm 

The pressure driven fully developed flow of a gas through 
a rectangular microchannel may be described by the 
dimensionless linearized BGK model equation [11] 

( ) ( )
( ) ( )

1/2 1/2
1/2

00
1cos sin
2

t t
t tF

x y
Φ Φζ θ θ δΦ δ

+ +
+⎡ ⎤∂ ∂

+ + =⎢ ⎥
∂ ∂⎣ ⎦

− , (14) 

where ( ), , ,x yΦ Φ ζ θ=  is the unknown reduced distribution 
function, with ,x y  denoting the spatial variables and ,ζ θ  the 
magnitude and the polar angle of the molecular velocity vector, 

[ )0,δ ∈ ∞  is the rarefaction parameter (proportional to the 

inverse of the Knudsen number) and ( )00 ,F x y  is the 
macroscopic velocity defined by the zeroth moment of Φ  
according to 

( ) ( )
2

1 1/2 2
00

0 0

1 expt tF d d
π

Φ ζ ζ ζ θ
π

∞
+ + ⎡ ⎤= −⎣ ⎦∫ ∫ . (15) 

The integro-differential system defined by Eqs. (14) and 
(15), is solved in an iterative manner as indicated by the 
iteration index . In particular, at the beginning of each 
iteration, one introduces an old estimate 

t
( )

00
tF  in the right hand 

side of Eq. (14). Using this estimate Eq. (14) is solved to obtain 
an estimate for ( )1/ 2tΦ + , which is introduced into Eq. (15) to 
obtain the new estimate ( )1

00
tF + . This iteration process, which is 

named "kinetic iteration" is repeated until the difference 
between successive estimates of ( )

00
tF  is less than a pre-

assigned convergence criterion. It has been shown that the 
above described iteration process converges fast for small 
values of δ  and unacceptably slow for large values of δ  [15, 
16, 31]. This situation is remedied by the fast iteration scheme 
introduced in the following acceleration scheme. 

The rapidly convergent iteration scheme involves, in each 
iteration, an additional step. In particular, following the 
calculated value of ( )1/ 2tΦ +  from Eq. (14), the updated velocity 

( )1
00

tF +  instead of applying Eq. (15), is obtained by solving the 
diffusion equation  
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2 ( 1) 2 ( 1) 2 ( 1/2) 2 ( 1/2)2 ( 1/2)
00 00 20 0211

2 2 2 2

1 1
2

t t t tF F F FF
x yx y x y

+ + + +∂ ∂ ∂ ∂∂
+ =− − −

∂ ∂∂ ∂ ∂ ∂2

t+

(16) 

where at the right hand side of Eq. (16) the higher-order 
moments 20F , 11F  and 02F  are defined by 

( ) ( ) ( ) ( )
( ) ( ) ( )

21 2

0 0

1 2 2

1t /
mn m n

t /

F x,y H cos H sin

x,y, , exp d d

π
ζ θ ζ θ

π
Φ ζ θ ζ ζ ζ θ

∞+

+

=

× −

∫ ∫ . (17) 

Equation (16) has been derived by taking the zeroth- and first-
order moments of Eq. (1) and manipulating accordingly the 
resulting moment equations. In Eq. (17), mH  and  nH  are 
Hermite polynomials of m -th and -th order respectively [15]. n

The iteration process, which now consists of two stages, is 
defined as follows. In the first stage of the iteration, since ( )

00
tF  

is known from the previous iteration, Eq. (14) is solved to yield 
( )1/ 2tΦ +  and then the higher-order moments are calculated from 

Eq. (17). In the second stage of an iteration, Eq. (16) is solved 
for the updated velocity . The iteration process, which is 
named "synthetic iteration", is terminated when the pre-
assigned convergence criterion is fulfilled. It is obvious that a 
synthetic compared to a kinetic iteration is more costly. 
However, it has been shown, that the number of required 
iterations in the synthetic scheme is significantly reduced and 
therefore, the overall efficiency of the scheme is increased. 

( )1
00

tF +

The spectral radius of the typical and accelerated iteration 
schemes has been estimated theoretically by applying a Fourier 
mode stability analysis and they have been equal to one and 
0.32 respectively [15]. These theoretical findings have been 
also confirmed by numerical investigation where by applying 
the upgraded scheme the number of iterations is significantly 
reduced. Detailed results are presented in the Section 4. 

 
Nonlinear accelerated discrete velocity algorithm 

The problem of heat transfer through a rarefied gas, 
confined between coaxial cylindrical surfaces at different 
temperatures may be described by the dimensionless coupled 
nonlinear Shakhov kinetic equations 

( ) ( )
( )

1/2 1/2
1/2 ( )sincos

t t
t t

Sr r
φ ζ θ φζ θ δρ τφ δρ τφ

θ

+ +
+∂ ∂

− + =
∂ ∂

 (18) 

( ) ( )
( ) ( )

1/2 1/2
1/2sincos

t t
t t

Sr r
ψ ζ θ ψζ θ δρ τψ δρ τψ

θ

+ +
+∂ ∂

− + =
∂ ∂

 (19) 

where ( , ,r )φ φ ζ θ=  and ( , ,r )ψ ψ ζ θ=  are the unknown 
reduced distribution functions,  is the spatial variable, r ,ζ θ  
and δ  the same quantities as previously defined, while  

( ) ( )
2

1 1/2

0 0

t t d d
π

ρ φ ζ ζ θ
∞

+ += ∫ ∫  (20) 

and  
( )

( )
( ) ( )( )

2
1 1/2 1/22

0 0

2
3

t t t d d
r

π

τ ζ φ ψ ζ ζ θ
ρ

∞
+ + += +∫ ∫  (21) 

are the macroscopic distributions of number density and 
temperature respectively. Also, the functions  

2

2

4 11 cos
15

M
S q ζφ φ ζ θ

τρτ
2

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜

⎝ ⎠
⎟

⎣ ⎦
 (22) 

and   
2

2

4 11 cos
15

M
S q ζψ ψ ζ θ

τρτ
1

⎡ ⎤⎛
= + −

⎞
⎢ ⎥⎜

⎝ ⎠
⎟

⎣ ⎦
, (23) 

while 

( )2exp /M ρφ ζ τ
πτ

= −  and ( 2exp /
2

M ρ )ψ ζ τ
π

= −    (24) 

are the local Maxwellians. Equations (18-24), along with the 
associated boundary conditions, constitute the basic set of 
equations to be solved in an iterative manner. 

It is important to note that the synthetic algorithm 
implemented in Section 3.1 for linearized equations is not 
applicable in the case of nonlinear kinetic equations. Nonlinear 
accelerated algorithms are needed. Therefore, the typical 
iteration algorithm, which is identical as in the linear problem 
has been upgraded by implementing the Romberg integration 
rule and the Wynn-epsilon ( )Wε  acceleration algorithm [32, 
33]. In particular, the Romberg rule provides very accurate 
estimates of integration in the macroscopic quantities, even 
when coarse angle and spatial grids are used, while the Wε 
algorithm speeds up the slow convergence of the typical 
iteration scheme. Both methodologies result to a significant 
reduction of CPU time. 

The Romberg integration rule is carried out by the 
expression  

( ) ( ) ( ) ( )1 14 2 / 4 1 ,kk
k k kT m T m T m− −⎡ ⎤− −⎣ ⎦ 1,2,3...k = , (25) =

where ( )kT m  denotes the estimation of an integral with m  

intervals after  integration steps, while k ( )0T m  is the original 
trapezoidal rule with  intervals. This treatment can be 
implemented in both the spatial and angular domains and the 
resulting accuracy is of 

m

( )2 2 2 2,k kO r θ+ +Δ Δ . The Romberg rule 
is applied at the macroscopic quantities (20-21), where the 
computation is performed initially on a coarse spatial and 
angular grid and, after convergence has been reached, it is 
repeated in a refined mesh, where the grid parameters have 
been doubled. This refinement is repeated 1k −  times and the 
results are combined according to Eq. (25) at each spatial point 
until the final number of total discrete angles and space nodes 
is reached. It is also noted that in each grid refinement the 
results of the previous grid have been used as an initial 
condition to speed up convergence. This procedure has lead to 
an accurate solution with a moderately dense grid.  

The Wε acceleration is a strongly nonlinear sequence 
accelerator that can exhibit spectacular acceleration for some 
sequences and has been described as the most elegant of all 
convergence acceleration methods [34]. The convergence of a 
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series jS , , can be accelerated by forming a tableau 
whose even columns are estimations of the sequence limit 

1,...,j = J

⎤
⎦

( ) ( ) ( ) ( ) 11 1
1 1
j j j j

l l l lε ε ε ε
−+ +

+ −
⎡= + −⎣ , (26) 

with ( )
1 0jε− =  and ( )

0
j

jSε = . This algorithm is imposed inside 
the typical iteration loop on the macroscopic quantities. Thus, a 
value of each sequence is stored in regular intervals between 
the iterations and a transitional stage is allowed before each 
application of the algorithm.  

Comparing the computational efficiency of the typical and 
the upgraded algorithms it has been found that while keeping 
the same accuracy in the results, the CPU time of the latter ones 
is reduced by at least one order of magnitude. Furthermore, 
both Romberg and Wε schemes are easily applied in both 
linearized and non-linear kinetic problems. Finally, it is noted 
that for more demanding problems the upgraded algorithm can 
be further improved by extending and optimizing the 
implementation of the Romberg rule. 

RESULTS AND DISCUSSION 
Using linearized kinetic theory, fully developed flows 

through long channels of various cross sections have been 
investigated. Following the early results of flows through 
circular tubes [10], solutions have been obtained for flows 
through rectangular [11], triangular [14] ellipsoidal [35], 
annular [36] and trapezoidal [37] cross sections. Very good 
agreement with corresponding experimental results has been 
demonstrated [37, 38]. Some indicative results for the 
dimensionless flow rate in terms of the rarefaction parameter 
covering all flow regimes are shown in Fig. 1. In all cases the 
hydraulic diameter has been used as the characteristic length.   

All these flow configurations have been solved using 
discrete velocity algorithms involving the typical kinetic 
iteration, while the cases of rectangular and triangular cross 
sections have been also solved using the upgraded synthetic 
iteration [15, 16]. To demonstrate the efficiency of the synthetic 
algorithm a comparison on the computational performance of 
two algorithms is provided for the case of flow through 
rectangular cross section. The problem has been solved based 
on the formulation described in Section 3.1. In Fig. 2 the 
required number of iterations to satisfy the convergence 
criterion in the computed results is plotted as a function of the 
convergence criterion for 10δ =  (slip regime) and 100δ =  
(hydrodynamic regime). It is seen that in both cases the 
required number of iterations in the kinetic scheme is 
significantly larger than the corresponding one in the synthetic 
scheme. More specifically for a relative convergence criterion 
of about 10-4 the required iterations for the synthetic with 
regard to the kinetic scheme are reduced roughly by a factor of 
10 for the case of 10δ =  and by a factor of 103 for the case of  

100δ = . It is also noted that the required number of synthetic 
iterations for 10δ =  (slip regime) and 100δ =  remains 
actually constant even when very strict convergence criteria are 
applied, while the corresponding ones in the kinetic scheme are 

increased by at least one order of magnitude. In Fig. 3 the 
required CPU time to satisfy the convergence criterion in the 
computed results is plotted in terms of the convergence 
criterion for the most computationally demanding case of 

100δ = . It is seen that the reduction in the overall 
computational time is of the same order of magnitude with the 
reduction in the required number of iterations. This is easily 
explained by the fact that the additional computational effort 
per iteration is insignificant compared to the computational 
gain due to the small number of iterations required. In the same 
figure the corresponding results in the case of the S model are 
shown and they are very similar with those of the BGK model. 
This is an interesting fact indicating that the effectiveness of 
the acceleration algorithm is computationally independent of 
the complexity of the kinetic model. Overall, it is clearly seen 
that, by implementing the synthetic discrete velocity algorithm, 
this type of problems described by linearized kinetic equations 
may be numerically solved in a few minutes of CPU time. 

Using the nonlinear formulation of Section 4.2, the heat 
transfer problem through a gas between two concentric 
cylinders with radii  and AR BR  ( ) maintained at 
different temperatures  and 

AR R< B

AT BT  ( ) may be solved. The 
three parameters governing this heat transfer problem are the 
temperature difference between the cylindrical walls 

AT T> B

( ) /A B BT T Tβ = − , the ratio of the two cylindrical radii 
/A BR Rγ =  and the rarefaction parameter 0δ . Typical results for 

the behaviour of the radial heat flow (q r )γ= , in terms of 0δ  
is shown in Fig. 4 for 0.1γ = , 0.2, 0.5 and 0.1β = , 10. The 
nonlinear kinetic solution covers the whole range of 
rarefaction, several ratios of cylindrical radii with practical 
interest and more important large temperature differences 
which are not covered by the corresponding linearized solution. 
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Figure 1: Dimensionless flow rates in long channels of various 
cross sections, based on the hydraulic diameter as the 
characteristic length. 
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Figure 2: Comparison between the kinetic and synthetic schemes in terms of required number of iterations for solving the 2D flow 

through a rectangular channel. 
 

    
Figure 3: Comparison between the kinetic and synthetic schemes in terms of required CPU time for solving the 2D flow through a 

rectangular channel. 
 
This nonlinear problem has been solved using discrete 

velocity algorithms based on the typical iteration scheme as 
well as on the upgraded one involving the Romberg integration 
rule and the Wynn-epsilon ( )Wε  acceleration algorithm. As 
seen in Fig. 5, the required CPU time is significantly reduced in 
comparison to the typical scheme for any convergence criterion 
and rarefaction parameter. It has been found that the 
implementation of the upgraded scheme is particularly 
beneficial for high values of the rarefaction parameter, reducing 
the computational time by at least an order of magnitude 
(values up to 0 650δ =  have been considered).  

   
 
 

CONCLUDING REMARKS 
A brief review on basic kinetic modeling and associated 

discrete velocity algorithms has been provided. By simulating a 
linear flow and a nonlinear heat transfer problem it has been 
demonstrated that kinetic modeling is a powerful approach in 
gas microflows and it is capable of providing reliable results in 
the whole range of the Knudsen number with modest 
computational effort. Overall, the development of advanced 
highly parallelized kinetic algorithms capable of handling non-
equilibrium phenomena in complex geometry and boundaries is 
an interesting and demanding research field with a lot of 
potential. 
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Figure 4: Dimensionless radial heat flow  at q r γ=  in terms of δ  for various γ , with 0.1β =  (left) and 10β =  (right). 

 

   
 
Figure 5: Comparison between the typical and upgraded schemes in terms of required CPU time for solving the cylindrical heat 

transfer problem, with 0.5γ = . 
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