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ABSTRACT
The concept of head loss coefficients K for the determination

of losses in conduit components is discussed in detail. While
so far it has mainly been applied to fully turbulent flows it is
extended here to also cover the laminar flow regime. Specific
numbers of K can be determined by integration of the entropy
generation field (second law analysis) obtained from a numerical
simulation. This general approach is discussed and illustrated for
various conduit components.
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NOMENCLATURE
Ci — constants
Dh m hydraulic diameter
f — friction factor
g m/s2 gravitational acceleration
K — head loss coefficient, equation (1)
KE — exergy loss coefficient, equa-

tion (15)
Lu,Ld m upstream/downstream length
N — number
p Pa pressure

pi m cell centre coordinate
Ploss W power loss
r m radius
R J/kgK gas constant
Re — Reynolds number
sc m centerline coordinate
ṠD W/K entropy generation rate by

dissipation
T K Temperature
u,v,w m/s velocity components
um m/s mean velocity
V m3 volume of the conduit
y m coordinate in direction of g

Greek letters
ϕ J/kg specific dissipation
ν m2/s kinematic viscosity
µ kg/ms dynamic viscosity
ρ kg/m3 density

Subscripts and superscripts
′ 1/m value per length
′′′ 1/m3 value per volume
◦ undisturbed flow

c within a component

d downstream

u upstream
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∞
ambient conditions

INTRODUCTION
It is common practice in the design of flow systems to ac-

count for losses in total head (and thus mechanical energy) by
the use of head loss coefficients K. These coefficients character-
ize single components like bends , trijunctions, nozzles, diffusors
and the like with respect to the loss of total head associated with
them.

The general definition of K is

K≡ 2ϕ

um2 (1)

with ϕ = Ploss/ṁ as specific dissipation, i.e. the power lost by
dissipation (Ploss) referred to the mass flux (ṁ). Since um

2/2 is
the specific kinetic energy (i.e. the kinetic energy per mass m),
K actually is the ratio of the dissipated and the kinetic energy in
a conduit component.

The specific dissipation ϕ12 associated with the flow be-
tween two cross sections 1 and 2 explicitly appears in the
mechanical energy equation of a one-dimensional flow model
(BERNOULLI equation). For incompressible flow this equation
reads (see e.g. [3]):

α1
u2

m1
2

+
p1

ρ
+gy1 = α2

u2
m2
2

+
p2

ρ
+gy2 +ϕ12 (2)

with

αi =
1

u3
miAi

∫
u3

i dAi (3)

Here αi takes into account how ui is distributed over the cross
section with αi = 1 for ui = um (one dimensional approximation)
and αi = 2 for a parabolic ui-profile, for example.

From equation (2) we get

ϕ12 =
p1− p2

ρ
+

α1u2
m1−α2u2

m2
2

+g(y1− y2) (4)

From equation (4) it is obvious that ϕ12 corresponds to the pres-
sure drop when α1u2

m1 = α2u2
m2 and y1 = y2, i.e. when the flow

is neither accelerated nor decelerated and when the flow is hor-
izontal so that there is no change in potential energy. Only then
(and not in general) K alternatively can be written as

K =
2∆p
ρu2

m
(only for ∆(αu2

m) = 0, ∆y = 0) (5)

So far no assumption has been made about the flow status, i.e.
whether the flow is laminar or turbulent. For fully turbulent
flows some numbers K are tabulated in almost all standard fluid
mechanics text books like [1], [2] and [3]. Comprehensive col-
lections of K-numbers can be found in [4] and [5], for exam-
ple. These data, however, are applicable for fully turbulent flows
only. In micro-flow devices the flow almost always is laminar
and a new look to the K-concept is required.

Before this is done in our study, it is illustrative to investigate
quite generally for which cases K according to its definition (1)
is a constant value and for which it is not. In a nondimensional
theory this corresponds to the question, how K depends on the
Reynolds number Re = umDh/ν.

THE K-VALUE AND ITS Re-DEPENDENCE
Instead of equation (2), which is a one-dimensional simpli-

fication (model), the NAVIER-STOKES equations are considered.
From a continuum point of view, they basically are NEWTON’s
second law applied to an infinitesimal mass dm = ρdV and thus
constitute the balance of forces with respect to dm. Forces in-
volved are inertia forces, pressure forces, buoyancy forces and
“friction forces” F , which are due to dissipation. For internal
flows these friction forces F correspond to the nominator in the
definition of K see equation (1) and equation (5), respectively.
Thus, with a constant, not fixed with respect to its specific num-
ber, K is proportional to F/u2

m, i.e.

K = const
F
u2

m
(6)

According to this equation, K is a constant only for F ∝ u2
m. In all

other cases K depends on um, which in a nondimensional theory
corresponds to a Reynolds number dependence of K.

For a general discussion of conduit components and straight
channels let us assume

F ∝ un
m with 1≤ n≤ 2 (7)

so that

K ∝ Ren−2 (8)
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Table 1. REYNOLDS NUMBER DEPENDENCE OF THE K-VALUE
DEDUCED FROM A GENERAL BALANCE OF FORCES; S: SMOOTH,

R: ROUGH

Re: low moderate high very high

co
m

p.

la
m Re−1 Ren−2 const —

co
nd

.

tu
rb — Ren−2 const const

s Re−1 Re−1 Re−1 —

la
m

r Re−1 Re−1 Ren−2 —

s — Ren−2 Ren−2 Ren−2ch
an

ne
l

tu
rb

r — Ren−2 Ren−2 const

In the common notation of the NAVIER-STOKES equations iner-
tia forces appear on the left hand side, where the only non-linear
terms are (assuming constant properties for the moment). As a
consequence, inertia forces are nonlinear forces (∝ u2

m) and the
force balance will result in in a friction force F ∝ un

m with n 6= 1
whenever forces appear in the balance that come from the left
hand side of the NAVIER-STOKES equations. In laminar flows
these are the inertia forces themselves, in turbulent flows, how-
ever, these are also all turbulent force components since the ad-
ditional turbulent terms in the equations all stem from the non-
linear terms on the left hand side.

With these considerations we can distinguish three options
for n which are all found in table 1, where Reynolds numbers are
characterized as low, moderate, high and very high with “low”
excluded for turbulent flow and “very high” for laminar flow.
Since straight channels may also be components in a system they
are included. They need, however, an extra treatment since in
channels wall roughness may have a strong influence (see [6] for
further details). The three options are:

(1) n = 1, i.e. K ∝ Re−1 :

The left hand side of the NAVIER-STOKES equations van-
ishes completely. This is the case

• for conduit components when the flow is laminar with
um→ 0, which then is a creeping flow (low Reynolds num-
ber)

• for straight channels with smooth walls when the flow is
laminar with gradum = 0, which then is a fully developed
flow, or with rough walls but only for low and moderate
Reynolds numbers.

(2) n = 2, i.e. K ∝ Re0 = const :

The inertia forces dominate and thus are effectively the only
forces in balance with F . This is the case

• for conduit components when the flow is laminar with
high Reynolds numbers or when the flow is fully turbu-
lent with high or very high Reynolds numbers

• for straight channels with rough walls and very high
Reynolds numbers when the flow is turbulent (then in-
ertia forces around the roughness elements predominate,
although the flow is fully developed in the mean).

(3) 1 < n < 2, i.e. K ∝ Ren−2 :

Inertia forces are present together with other forces. This is
the case

• for conduit components with moderate Reynolds numbers
• for straight channels with smooth walls when the flow is

turbulent at arbitrary Reynolds numbers or, with rough
walls when the flow is turbulent but at moderate or high
Reynolds numbers, or with very rough walls when the
flow is laminar at high Reynolds numbers.

The Reynolds number dependence of K for the laminar case is
the basis for the new look to the K-concept when flows are lami-
nar, see table 1.

THE K-CONCEPT FOR LAMINAR FLOWS
The first line in table 1 shows that for laminar flow in con-

duit components the Reynolds number dependence occurs with
an exponent that is -1 for low Re and increases to 0 when Re gets
larger. This corresponds to the absence of inertia forces for low
Re and their increasing importance when Re gets larger.

With these two limits, i.e.

K ∝ Re−1 for Re→ 0 ; K ∝ Re0 for Re→ ∞ (9)

we may tentatively assume that K has the general form

K≡ 2ϕ

u2
m
= C1 +C2/Re (10)

Following Churchill and Usagi [7] for a more sophisticated for-
mula that incorporates two asymptotes we may also assume

K≡ 2ϕ

u2
m
=
[
Ĉ

m
1 +(Ĉ2/Re)m

]1/m
(11)

with m = 1 reducing equation (11) to equation (10).
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In order to determine K and then find C1 and C2 or Ĉ1, Ĉ2
and m, respectively, we have to determine ϕ, which is the spe-
cific dissipation associated with the flow through the component
under consideration. It is important to note, that it is not the spe-
cific dissipation in the component, since certain amounts of ϕ

will be found in the upstream and downstream parts of the flow
field adjacent to the component itself.

Therefore we divide ϕ into three parts

ϕ≡ ∆ϕu +ϕc +∆ϕd (12)

with:

∆ϕu: additional specific dissipation upstream
ϕc: specific dissipation within a component

∆ϕd: additional specific dissipation downstream

What also is important to know is how far upstream and down-
stream the impact of a component is felt in the flowfield. This
can be expressed in terms of an upstream and downstream length
of impact. We define them as those lengths Lu and Ld within
which 95% of the additional specific dissipation occurs, i.e.:

Lu : upstream length with 0.95∆ϕu (13)
Ld : downstream length with 0.95∆ϕd (14)

With the hydraulic diameter Dh as a characteristic length, a com-
ponent can thus be characterized by the following table 2 with
respect to the details of losses in a laminar flow.

Table 2. DETAILED INFORMATION ABOUT LOSSES DUE TO A
CONDUIT COMPONENT FOR N DIFFERENT REYNOLDS NUMBERS

Re ∆ϕu/ϕ ϕc/ϕ ∆ϕd/ϕ Lu/Dh Ld/Dh K

eqn. (12) eqn. (12) eqn. (12) eqn. (13) eqn. (14) eqn. (1)

Re1 . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

ReN . . . . . . . . . . . . . . . . . .

From the values for K = K(Re) in the last column of table 2 the
constants C1 and C2 or Ĉ1, Ĉ2 and m in equation (10) and equa-
tion (11), respectively, can be determined by fitting the general
ansatz to the data of this table.

THERMODYNAMIC CONSIDERATIONS
Losses in a flow field occur due to the dissipation of mechan-

ical energy by the viscous (in the turbulent case: also turbulent)
flow. From a thermodynamic point of view this dissipation is a
conversion of mechanical energy into thermal (internal) energy.
If this happens at environmental temperature T∞ this also is a
corresponding conversion of exergy (available work) into anergy,
accompanied by the generation of entropy. On the temperature
level T∞ the loss of total head exactly corresponds to the loss of
exergy.

If dissipation ϕ happens on a temperature level T 6= T∞, how-
ever, the situation is different. For T > T∞, for example, the dis-
sipated mechanical energy is not completely lost exergy since the
(additional) internal energy now, due to T > T∞, has a certain ex-
ergy fraction. Then K according to equation (1) quantifies the
head loss, but not the exergy loss, which from a thermodynamic
point of view is the “true” loss.

Therefore, we suggest to define an exergy loss coefficient
KE which can be determined by integration of the local entropy
generation as will be demonstrated hereafter. Its definition is

KE ≡
T∞ṠD/ṁ

u2
m

(15)

with ṠD being the overall entropy generation due to the conduit
component.

For an isothermal situation at T∞, the exergy loss coefficient
KE is equal to K according to equation (1) and thus K can be
determined like KE for T = T∞.

HOW TO DETERMINE KE and K
The entropy generation in a flow field is a direct measure

of the exergy losses and therefore can be used to determine KE
according to equation (15). Assuming T = T∞ = const this also
gives K according to equation (1). For the general background
of this second law analysis (second law of thermodynamics) see
e.g. [8] and [9].

In a laminar flow field the local entropy generation rate in
cartesian coordinates is (see [10])

Ṡ′′′D =
µ
T

(
2

[(
∂u
∂x

)2

+

(
∂v
∂y

)2

+

(
∂w
∂z

)2
]

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂z

+
∂w
∂x

)2

+

(
∂v
∂z

+
∂w
∂y

)2
)

(16)

From equation (16) the overall entropy generation rate follows
by integration over the flow field volume V :
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ṠD =
∫
V

Ṡ′′′D dV (17)

and from this we immediately get KE according to equation (15)
and thus K when T is set equal to T∞.

From now on we assume T = T∞ = const, so that ϕV in the
volume V is

ϕV = T∞ṠD/ṁ (18)

With a detailed numerical solution of the flow field in a conduit
component, Ṡ′′′D and thus ϕV according to eqns. (16) to (18) can
be determined at a certain Reynolds number.

This method of determining losses can be called second law
analysis (SLA). It has been validated for the flow in pipes and
channels with rough walls by comparing the numerical results
with measurements, see [11] and [12] for details.

When Vc is the actual volume of the flow field in the compo-
nent, ϕVc corresponds to ϕc in equation (12). In order to deter-
mine the additional losses ∆ϕu and ∆ϕd, the difference between
ϕV (for the upstream and downstream sections) and those values
that hold for the undisturbed flow (no impact of the component)
must be found.

With Vu and Vd being the upstream and downstream parts
of the flow field (which encounter the influence of the conduit
component) the additional specific dissipations are

∆ϕu = ϕVu−ϕ
◦
Vu (19)

∆ϕd = ϕVd−ϕ
◦
Vd (20)

Here ϕ◦Vu and ϕ◦Vd are the specific dissipations in the upstream
and downstream volumes Vu and Vd for the undisturbed flow.

Once ϕ = ∆ϕu +ϕc +∆ϕd is known from this procedure for
a certain Reynolds number, the loss coefficient K according to
equation (1) follows. With several values of K = K(Re) the
constants in eqns. (10) and (11) can be determined. Then the
Reynolds number dependence of the loss coefficient is known
explicitely by eqns. (10) or (11) so that a certain component is
characterized by fixed numbers C1 and C2 or Ĉ1, Ĉ2 and m.

Determination of Lu and Ld is straight forward, based on
the definitions (13) and (14), respectively. Lu and Ld will be
Reynolds number dependent just like the loss coefficient K it-
self. Taking into account the flow physics for Re→ ∞ one can
expect that for large Reynolds numbers Ld/Lu > 1 will always
hold (and increase for increasing Reynolds numbers). When the

u(
x 1
,x

2)

x1 x2

Figure 1. VELOCITY PROFILE OF THE FULLY DEVELOPED
LAMINAR FLOW IN A RECTANGULAR CHANNEL NORMALIZED BY

ITS MAXIMUM VALUE

component is geometrically symmetric like a 90◦ bend, for ex-
ample, Ld/Lu = 1 can be expected for Re→ 0. Then the flow
is a creeping flow which is directional independent (the field of
streamlines being unchanged when the flow is reversed).

All these presumptions can be proved with the examples
given later in this study.

DETAILS OF THE NUMERICAL SOLUTION AND POST-
PROCESSING

All calculations described in this paper are performed us-
ing the open-source CFD-package OpenFOAM R© version 1.5. In
our approach the NAVIER-STOKES equations for incompressible
flow are solved in the finite volume notation. Since the defi-
nition of K is only valid for flow developed in time, a steady-
state solver is applied. This solver is based on the well known
SIMPLE-algorithm for pressure-velocity-coupling and is already
part of the OpenFOAM R©-release. As numerical schemes linear
differencing, interpolation, and divergence schemes for pressure,
velocity, and related expressions are used. At the inlet analytical
velocity profiles for developed laminar flow of a certain Reynolds
number are provided, see figure 1 for laminar flow in a rectangu-
lar channel. This analytical solution can be found in [5] as a
series expansion which here is truncated after a few terms.

Although the determination of losses for the conduit compo-
nents is based on the steady state solution of the velocity field, it
is yet of great interest to determine ṠD according to equation (17)
during the iteration process. Since ṠD is very sensitive to changes
in the flow field, this quantity can be used as an indicator for con-
vergence. Therefore ṠD and Ṡ′′′D are explicit results of our calcu-
lation available at each pseudo time step.
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Numerical grid
Since there are squared gradients in equation (16) it is nec-

cessary to compute the velocity field (from which the gradients
are determined) with high precision, and local values Ṡ′′′D have
to be adequately resolved to gain all information about the dis-
tribution of losses. This leads to a high number of cells used in
the computational grid. A grid with a uniform resolution would
result in a too large amount of cells and thus would be too expen-
sive. Two possible alternatives are:

• An a priori manual refinement of the grid in areas where
high values of Ṡ′′′D are expected.
• An automatic procedure of adaptive grid refinement in do-

mains with a high local entropy generation Ṡ′′′D compared to
the integral value ṠD .

All calculations in the following section use automatic grid re-
finement. Computation is started on an initially block structured
grid with nearly cubic cells which are then individually divided
into eight new cells with the same aspect ratio as the original cell
when a local value Ṡ′′′D ·dV (dV : Volume of a single cell) is larger
than a threshold value cṠD. Here c = 5 · 10−6 turns out to be
a good compromise between accuracy and computational costs.
The refinement procedure is applied several times after a fixed
number of iterations is computed following each step of refine-
ment. Refinement stops when no cells exceeding cṠD are left.
A typical number of cells for a double bend with laminar flow
is about 600 000 after the last refinement when symmetry of the
flow is assumed.

With this number of cells typical CPU-times are up to
20 hours on a single core of a XEON R©-processor, when an
algebraic multigrid solver (GAMG) for the pressure equation
is used. CPU-times with a preconditioned conjugate gradient
solver (PCG) for the pressure turn out to be even higher.

A draw back of this method of grid size minimization is that
the geometry of the component approximated by the coarsest
grid is not further refined during the calculation. Thus a 90◦-
bend remains the so called composite mitre bend prescribed by
the initial grid, i.e. a bend consisting of several linear sections.
According to [5] a slightly increased K-value for this bend could
be expected compared to the real smooth bend. This difference
can be expected to vanish, however, for a sufficiently large num-
ber of initial sections.

Determination of loss characteristics
As a major advantage of the SLA approach it is possible to

localize losses exactly at their place of generation. This feature
is later used for a simple visualization of loss distribution, see
figure 6 below. This information gained by a three dimensional
calculation for further application within a one-dimensional ap-
proach can be cast into lumped parameters like the K-value in
equation (1). In order to get the effect of the conduit component

centerline

~n

~a

~pi

sc

x

y
z

Figure 2. INTEGRATION OF Ṡ′′′D ALONG THE CENTERLINE OF A
CONDUIT COMPONENT AT A CURRENT POINT sc = a; DARK:

CELLS WITH CONTRIBUTION TO [ṠD]
a
0

(here: bend) alone, the specific dissipation rates ϕ◦Vu and ϕ◦Vd of
the fully developed flow in the upstream and downstream parts of
the piping system (here: the tangents of a bend) are subtracted.

Determining Lu and Ld also needs an integration of Ṡ′′′D along
the centerline of the conduit component in the direction of the
main flow. With sc as centerline coordinate starting at the in-
let, the integral of Ṡ′′′D over all control volumes with cell centers
fulfilling sc ≤ a represents the amount of losses which occur up-
stream of a plane including point ~a on the centerline with the
centerline coordinate sc = a. Points on a common cross section,
which is perpendicular to the centerline, have the same value sc.
The integration is done by summing up the values of Ṡ′′′D ·dV for
all control volumes i with cell centers ~pi upstream of a plane
perpendicular to the centerline in a point ~a = [ax,ay,az] on the
centerline. With~n according to figure 2 we get

[ṠD]
a
0 = ∑

I
Ṡ′′′DI ·dVI , with I = {i ∈ N|(~pi−~a) ·~n < 0} (21)

If a cutting plane intersects the centerline in more than one point,
e.g. in case of a 180◦-bend, the set I in equation (21) has to be
slightly modified for a correct integration. Integration according
to equation (21) is done for a number of points ~a in advance so
that it is possible to interpolate between these discrete values of
[ṠD]

sc
0 = ṠD(sc). Points ~a at which equation (21) is evaluated be-

long to the initial unrefined grid to ensure that no cells are divided
by the cutting plane. This limits the amount of sampling points
according to the coarsest resolution in streamwise direction, see
figure 2.

With integration up to a second point~b, it is possible to de-
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termine the losses between two distinct cross sections of the con-
duit component. With ~a at the exit of the component, e.g. at
the beginning of the downstream tangent of a bend, and ~b at a
variable location downstream of~a it is possible to compute Ld as
follows:

• In a first step~b is set to the maximum value, i.e. to the exit
of the computational domain. From [ṠD]

b
a, the value of the

entropy generation rate of an undisturbed flow in a channel
of a length equal to the distance from~a to~b is subtracted. If
the computational domain is sufficiently large this remaining
value represents the amount of additional entropy generation
caused by the component, i.e. the entropy generation rate
corresponding to ∆ϕd. The entropy generation for the undis-
turbed flow could be a value from an analytical solution or
better, for reasons of model consistency, a value extracted
from the numerical solution, see equation (22) below.
• In a second step~b is varied systematically to determine the

postition~bLd at which 95 % of the downstream losses (corre-
sponding to 0.95∆ϕd) are reached. The downstream length
Ld then is the distance between~a and~bLd.

The upstream length Lu is determined in a similar way. The ad-
ditional losses in the upstream and downstream parts of the con-
duit provide the specific dissipations ∆ϕu and ∆ϕd, respectively,
using an equation analogous to equation (18). These specific dis-
sipations, referred to the total dissipation ϕc induced by the com-
ponent, are displayed in component specific tables according to
table 2.

With ṠD(sc) known it is illustrative to compute its derivative
Ṡ′D = dṠD/dsc and thus show the distribution of losses. For a
fully developed channel flow Ṡ′D(sc) is constant. This occurs far
upstream and far downstream of the component, where this val-
ues (Ṡ′◦D) can be compared to analytical solutions for developed
laminar channel-flow to validate the calculation. Multiplication
of Ṡ′◦D with the length of the upstream or downstream tangents
and then using equation (18) yields ϕ◦Vu or ϕ◦Vd, respectively, i.e.

ϕ
◦
V(u,d) = S′◦DLV(d,u)T/ṁ (22)

Normalizing Ṡ′D(sc) with S′◦D (undisturbed flow), values of
Ṡ′D(sc)/Ṡ′◦D differing from 1 indicate the influence of the com-
ponent on the fully developed flow, see figures 5 and 6 below.

Note that dsc in the derivative is represented by the EUCLID-
IAN distance ∆sc of two adjacent points on the centerline, see fig-
ure 2 . In straight parts of the component ∆sc gives the increase
in volume ∆V = A(sc)∆sc, when A is the cross sectional area. In
curved parts of the component ∆V = A(sc)∆sc is still valid for
geometries with rectangular cross sections, due to the prismatic
shape of the additional volumes or the GULDINUS theorem in
case of a continuous approach, which computes the volume of a

solid of revolution as the product of the cross sectional area and
the path traveled by its centroid. This allows a direct comparison
of straight and curved sections for certain geometries.

For the special situation of creeping flow in a bend it turns
out that losses per length are smaller in a section of the curved ge-
ometry than in the straight sections, see figure 5. The mass flow
predominantly is near the inner parts of the bend where losses
are lesser since the effective passage length is shorter.

Empirical correlations for K
As already mentioned it is very convenient to provide the K-

value for a certain component as a function of the Reynolds num-
ber in the form of an empirical equation which is easy to use, see
the ansatz functions K(C,Re) in eqns. (10) and (11). Here the
constants (C= [C1,C2] for the simple blending or C= [Ĉ1, Ĉ2,m]
following CHURCHILL and USAGI) are computed with the help
of least squares optimization. A direct fit of K(C,Re) to the val-
ues K(Re) obtained from the numerical model would lead to an
unsatisfactory result, because the fit would be best for the high-
est values of K. High K-values are for small Reynolds numbers
where the losses are actually lower than for high Reynolds num-
bers. To increase the accuracy of the least squares fit for small
K-values at high Reynolds numbers (where the highest losses oc-
cur), we normalize the target function with the values of K. This
leads to the following equation to be solved, e.g. by MATLAB R©,
with C as solution.

∑
i

(
K(C,Rei)

K(Rei)
−1
)2

!
= min (23)

EXAMPLES
The method for determining K of a certain conduit compo-

nent is applicable to all kinds of components. Indeed there is a
large variety of components like bends, junctions, diffusors, noz-
zles, ... all with one or often more than one intrinsic geometrical
parameter like aspect ratio, radius of curvature, area ratio, ... .
Altogether there are probably hundreds of special geometries of
interest. For turbulent flows the situation is quite similar and
the large number of special geometries reflects itself in the com-
prehensive collections [4] and [5] mentioned in the introduction
already.

Since each single component affects the flow field not only
within its own geometry but leads to an upstream and down-
stream length of influence (introduced as Lu and Ld in equations
(13) and (14)) there is a special problem when a second compo-
nent follows too closely downstream. Only when the distance
between two components is larger than the sum of Ld of the first
and Lu of the second component their K-values can be added to
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describe the effect of both components together. When the dis-
tance is shorter, there are two options:

• one nevertheless takes K1 + K2 as the K-value for both com-
ponents (with the same um, c.f. equation (5)) accepting an
unknown error through this procedure.
• both components are treated as one new component for

which K is determined like for all single components.

The second option obviously is the more reliable one. It, how-
ever, increases the number of single components that have to be
treated individually considerably.

On the background of the general problem (large num-
ber of single components and unknown effects of component-
combinations) just to demonstrate the method we restrict our-
selves to four specific examples: one single 90◦ bend and three
different combinations of two such bends, all with the same as-
pect ratio and the same radius of curvature. The question, how
good the double bends are described by twice the K-value of the
single bend, is of special interest.

Single 90◦ bend
Figure 3 shows the geometry of a 90◦ bend with a quadratic

cross section A = D2
h and a curvature radius r = Dh. For the nu-

merical solutions the straight channels upstream and downstream
of the bend are long enough to determine Lu and Ld according to
equations (13) and (14) for all Reynolds numbers under consid-
eration (4 ≤ Re ≤ 512). Applying all the numerical details de-
scribed in the previous chapter we get the results in table 3 which
in its form is in accordance to the general table 2. Based on the
extended ansatz (11) for the K-value we find K90◦ for the single
90◦ bend to be

K90◦ =
[
2.202.19 +(88.98/Re)2.19]1/2.19

(24)

In figure 4 this curve is shown together with the individual points
to which it is fitted.

It is interesting to note how the entropy generation and thus
the (additional) losses are distributed in streamwise direction.
In figure 6 this distribution is shown for a small and a large
Reynolds number (Re = 4 and Re = 512).

The following aspects are worth to be mentioned:

• Losses in absolute values increase with increasing Reynolds
numbers (“though” the K-values decrease). For example ,
according to equation (1), the specific dissipation is ϕ= 3.99
m2/s2 for Re = 4 (Dh = 100µm, fluid: air with ν = 15 ·10−6

m2/s) but 6695 m2/s2 for Re = 512., i.e. about 1677 times
larger. This is reflected in the strong increase of the gray
area in figure 6(a) compared to figure 6(b).

Dh

r = Dh

L
V

u
=

5
D

h

LVd = 35Dh

Figure 3. GEOMETRICAL DETAILS OF THE 90◦ BEND OF THIS
STUDY

10
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1

10
2

K

Re

Figure 4. LOSS COEFFICIENT K FOR THE 90◦ BEND;
∗: RESULTS, TABLE 3; —: ANSATZ (24)

Table 3. DETAILED INFORMATION ABOUT LOSSES DUE TO A 90◦

BEND; CROSS SECTION: A = D2
h, CURVATURE RADIUS: r = Dh

Re ∆ϕu/ϕ ϕc/ϕ ∆ϕd/ϕ Lu/Dh Ld/Dh K

eqn. (12) eqn. (12) eqn. (12) eqn. (13) eqn. (14) eqn. (1)

4 (0.0045) 0.9954 (0.0001) (0.3320) (0.0779) 22.19

8 (0.0066) 0.9913 (0.0022) (0.4048) (0.4347) 11.25

16 0.0097 0.9727 0.0176 0.4505 0.9091 5.91

32 0.0127 0.8985 0.0888 0.5183 1.3720 3.46

64 0.0130 0.7262 0.2609 0.5724 2.1634 2.53

128 0.0104 0.5367 0.4529 0.6147 3.4676 2.26

256 0.0077 0.4029 0.5894 1.0797 8.3494 2.17

512 0.0040 0.2859 0.7101 0.3791 15.1179 2.27
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Figure 6. DISTRIBUTION OF THE CROSS-SECTIONAL ENTROPY GENERATION RATE Ṡ′D/Ṡ′◦D IN STREAMWISE DIRECTION IN A 90◦ BEND;
Ṡ′◦D : ENTROPY GENERATION RATE FOR THE FULLY DEVELOPED FLOW; DARK GRAY: ENTROPY GENERATION IN THE 90◦ BEND; LIGHT

GRAY: ENTROPY GENERATION UPSTREAM AND DOWNSTREAM OF THE 90◦ BEND
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Figure 5. DISTRIBUTION OF THE CROSS-SECTIONAL ENTROPY
GENERATION RATE Ṡ′D/Ṡ′◦D IN STREAMWISE DIRECTION FOR

CREEPING FLOW (Re = 0) IN A 90◦ BEND

• For low Reynolds numbers almost all losses occur in the 90◦

bend itself with little additional dissipation upstream and
downstream of the bend. This, however, is very different
for high Reynolds numbers, where more and more of the
losses due to the bend occur downstream. For Re = 512, for
example, 71 % are additional losses in the flow field down-
stream characterized by the downstream length Ld which is
≈ 15 times the hydraulic diameter.
• For Re→ 0 the flow field is that of a creeping flow. In a

streamwise symmetrical geometry (like the 90◦ bend) the

flow field then is symmetrical, too, with the consequence
that Lu = Ld should hold. In table 3 the values of Lu and
Ld are very different and approach each other for smaller
values of Re. Since, however, both lengths are very small for
Re→ 0 and hardly any additional dissipation occurs outside
the bend, numerical uncertainties more and more dominate
the determination of Lu and Ld (which are of no practical
importance for Re→ 0). Results for these cases are given in
brackets.
The perfect symmetry of the flow field in the limit Re→ 0

is nevertheless shown in figure 5 where Re = 0 is set for the
determination of Ṡ′D/Ṡ′◦D .

90◦ bend combinations
Figure 7 shows the geometry of three different combinations

of two 90◦ bends (described in the previous sub-chapter), to-
gether with the final results with respect to the K-values for these
combinations. All tables according to the model-table (table 2)
can be found in the appendix. Here, we only want to compare
the K-values for various Reynolds numbers. This is done in ta-
ble 4 where the K-values of the double bend combinations are
compared to 2K90◦ , i.e. twice the K-value of the single bend.

There is a clear trend: As long as losses occur predominantly
within the geometry, 2K90◦ is a good approximation to the indi-
vidual K-values of the various combinations of two 90◦ bends.
This is the case for small Reynolds numbers. If we again use a
95 % criterion (like with the determination of Lu and Ld) table
3 for the single bend shows that for Re ≤ 16 more than 95 % of
the losses occur in the bend itself. This corresponds to the fact

9 Copyright c© 2010 by ASME



0◦ double bend 180◦ double bend 90◦/90◦ double bend

K0◦ =
[
2.971.79 +( 176.86

Re )1.79
] 1

1.79 K180◦ =
[
1.921.13 +( 167.48

Re )1.13
] 1

1.13 K90◦/90◦ =
[
2.53751.22 +( 165.58

Re )1.22
] 1

1.22

Figure 7. GEOMETRY AND K-VALUES OF DOUBLE BEND COMBINATIONS; SEE FIGURE 3 FOR THE SINGLE BEND

Table 4. COMPARISON OF K-VALUES FOR THREE DIFFERENT 90◦

BEND COMBINATIONS WITH TWICE THE K-VALUE OF A SINGLE
90◦ BEND

Re 2 × 90◦ bend 0◦ double b. 180◦ double b. 90◦/90◦ double b.

4 44.38 43.76 43.76 43.51

8 22.50 22.20 22.14 22.05

16 11.82 11.67 11.57 11.59

32 6.93 6.71 6.63 6.76

64 4.51 4.35 4.31 4.60

128 4.53 3.15 3.06 3.53

256 4.34 3.06 2.31 2.90

512 4.54 3.18 2.20 2.68

that for all three 90◦-combinations and Re≤ 16 the individual K-
values are close to each other and also close to 2K90◦ . For higher
Reynolds numbers, however, K-values differ appreciably. If, for
example, the K-value for the 180◦ double bend at Re = 512 is
approximated by the corresponding value for 2K90◦ there is an
error of more than 100 %.

As a general trend K-values of the combinations are lower
than 2K90◦ since for high Reynolds numbers large parts of the
losses occur downstream of the components. This happens twice
for two single bends, but once only when two bends are com-
bined to one single component. This should carefully be taken
into account when flow systems are designed on the basis of in-
dividual K-values of standard conduit components.

DISCUSSIONS
Loss coefficients are introduced based on some explicit and

some implicit assumptions. Two important aspects, incompress-

ibility and the temperature level, will be finally discussed.

Check of the incompressibility-assumption
In equation (2) and equation (5) it was assumed that the flow

is incompressible, i. e. that ρ = const holds. For a gas, however,
there may be considerable changes in ρ when large pressure dif-
ferences ∆p occur in conduit components of micro size.

If a 5 % density change ∆ρ/ρ = 0.05 is accepted this corre-
sponds to the same amount of change in pressure when the fluid
is an ideal gas and T = const is assumed (then ρ = (RT )−1 · p
holds)

For a conduit component with um1 = um2 the total head loss
is equal to the pressure difference ∆p, so that equation (5) can be
used for K. Together with the Reynolds number we get

∆p =
KReµum

2Dh
(25)

Accepting a 5 % change in pressure (and thus density) this leads
to

∆p
p

=
KReµum

2 pDh
≤ 0.05 (26)

or with µ = ρν and the ideal gas law p/ρ = RT to

Dh ≥ 10KRe
νum

RT
(27)

From this condition the threshhold value for Dh follows, which,
however, is very small when typical numbers for Re, ν, um, R,
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and T are assumed. For example, with Re = 100, i. e. K = 4 for
a 90◦ bend, ν = 15 · 10−6 m2/s, R = 287J/kgK, um = 0.1m/s
and T = 300K the “incompressibility condition” for Dh is Dh ≥
7 · 10−8 m = 0.07µm which for all MEMS applications will be
fulfilled.

Dissipation and entropy generation
In the section ”THERMODYNAMIC CONSIDERA-

TIONS” it was shown that dissipation is completely equal to an
exergy loss only for T = T∞. At temperature levels T > T∞, for
example, the dissipated energy ṁϕV corresponds to a lost exergy
ṁϕVT∞/T only. The reason for this reduced exergy loss is, that
in the dissipation process mechanical energy is converted into
internal energy. For T > T∞, however, this internal energy has
a non-zero exergy fraction, and thus not the whole of ṁϕV is
“lost”.

From eqns. (15) - (18) it follows that for T 6= T∞ and T =
const, KE and K are linked by

K =
T
T∞

KE (28)

which clearly illustrates the influence of the temperature level
which is not accounted for by a purely fluid mechanical definition
of the head loss coefficient in equation (1).

CONCLUSIONS
Loss coefficients for conduit components (here: in the lam-

inar flow regime) can be found by determining the local entropy
generation rates due to the dissipation of mechanical energy (sec-
ond law analysis, SLA) at T = T∞. In addition to the coefficient
itself this also gives detailed information about the distribution
of losses in the flow field. Determination of the upstream and
downstream lengths of influence is important when single con-
duit components should be combined, still using loss coefficients
of the undisturbed single components. What has been shown
here for some conduit components can likewise be applied for
all other components of special or general interest, and of course
can be extended to turbulent flows.

APPENDIX: LOSS-DETAILS OF 90◦ BEND COMBINA-
TIONS

Table 5. DETAILED INFORMATION ABOUT LOSSES DUE TO A 0◦

DOUBLE BEND; CROSS SECTION: A = D2
h, CURVATURE RADIUS:

r = Dh

Re ∆ϕu/ϕ ϕc/ϕ ∆ϕd/ϕ Lu/Dh Ld/Dh K

4 (0.0018) 0.9979 (0.0003) (0.2886) (0.0895) 43.76

8 (0.0028) 0.9958 (0.0014) (0.3346) (0.5963) 22.19

16 0.0044 0.9857 0.0099 0.4323 0.9793 11.67

32 0.0060 0.9466 0.0474 0.4865 1.4757 6.71

64 0.0071 0.8895 0.1033 0.5896 2.6150 4.35

128 0.0073 0.8767 0.1160 0.7330 2.2102 3.15

256 0.0051 0.7157 0.2791 0.6414 8.8529 3.06

512 0.0034 0.5215 0.4751 0.6782 15.2465 3.18

Table 6. DETAILED INFORMATION ABOUT LOSSES DUE TO A
180◦ DOUBLE BEND; CROSS SECTION: A = D2

h, CURVATURE
RADIUS: r = Dh

Re ∆ϕu/ϕ ϕc/ϕ ∆ϕd/ϕ Lu/Dh Ld/Dh K

4 (0.0018) 0.9979 (0.0003) (0.2890) (0.0863) 43.76

8 (0.0029) 0.9959 (0.0012) (0.3355) (0.5755) 22.14

16 0.0046 0.9875 0.0079 0.4344 0.9590 11.57

32 0.0065 0.9589 0.0347 0.4872 1.3383 6.63

64 0.0077 0.9100 0.0823 0.5885 2.1063 4.31

128 0.0080 0.8634 0.1286 0.7407 3.4604 3.06

256 0.0072 0.8223 0.1705 0.6738 4.4154 2.31

512 0.0045 0.6467 0.3488 0.4234 16.2145 2.20

Table 7. DETAILED INFORMATION ABOUT LOSSES DUE TO A
90◦/90◦ DOUBLE BEND; CROSS SECTION: A = D2

h, CURVATURE
RADIUS: r = Dh

Re ∆ϕu/ϕ ϕc/ϕ ∆ϕd/ϕ Lu/Dh Ld/Dh K

4 (0.0017) 0.9982 (0.0001) (0.2531) (0.0483) 43.51

8 (0.0027) 0.9963 (0.0010) (0.3116) (0.5428) 22.05

16 0.0043 0.9871 0.0086 0.3822 0.9521 11.59

32 0.0060 0.9512 0.0429 0.4607 1.3661 6.76

64 0.0068 0.8793 0.1139 0.5633 2.2560 4.60

128 0.0066 0.8013 0.1922 0.6514 4.3956 3.53

256 0.0056 0.7347 0.2597 0.6622 9.7026 2.90

512 0.0037 0.6143 0.3819 0.4977 19.8843 2.68

11 Copyright c© 2010 by ASME



REFERENCES
[1] Munson, B., Young, D., and Okiishi, T., 2005. Fundamen-

tals of Fluid Mechanics, 5th ed. John Wiley & Sons, Inc.,
New York.

[2] White, F., 2008. Fluid Mechanics, 6th ed. McGraw-Hill,
New York.
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