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ABSTRACT
Electrokinetic transport phenomena, such as electroosmo-

sis, streaming potential, electrophoresis, and sedimentation po-
tential, are central to many micro- and nano-channel flows. Dur-
ing continuum modeling of such phenomena, incorporation of
the electrical body force term can make the fluid momentum con-
servation equation highly non-linear. This non-linearity is of-
ten ignored in small-scale electrokinetic flow modeling because
of our implicit reliance on the linearity of the Stokes equations
for low Reynolds number flows. In this paper, ramifications of
this non-linear Stokes equation in electrokinetic flows will be de-
scribed with examples of our recent studies on pressure driven
flows through porous media for electrokinetic power generation,
electroosmotic flow of charged entities in nanochannels, and flow
of DNA through self-assembled porous media under pulsed elec-
tric fields.

INTRODUCTION
The rigorous analysis of various electrokinetic transport

phenomena requires a coupled solution of the governing equa-
tions for fluid flow (Navier-Stokes and continuity), electrostat-
ics (Poisson), and ion transport (ion mass conservation equations
with the ionic fluxes described through the Nernst-Planck equa-
tions). As the term electrokinetic suggests, the fluid motion in
these types of processes are partially or entirely engendered by
the interaction between electric charges and fields. Most sur-

∗Address all correspondence to this author.

faces acquire electric charges when immersed into a polar fluid
containing ions. An external electric field applied parallel to the
charged surface induces a relative motion between the surface
and the fluid. Two types of relative motion between the charged
surface and the electrolyte can be caused by this imposed field. If
the surface is fixed in space with the fluid flowing parallel to the
surface, we obtain electroosmotic flow (EOF). If the charged sur-
face moves relative to the stationary electrolyte, we obtain elec-
trophoresis (EP).

This paper will mainly focus on EOF and EP. Classical
electrokinetic theory [1, 2] took practically identical approaches
to analyze both phenomena. For a thin electrical double layer
and low surface potential, the solutions for electroosmotic ve-
locity past a plane charged surface and electrophoretic mobil-
ity of a charged particle in a stationary fluid are identical and
are expressed by the same mathematical relationship known as
the Helmholtz-Smoluchowski equation. At a more general level
of analysis, complexity of the coupled equations in their native
forms led to methods of solving these equations employing per-
turbation approach. The electrophoretic mobility, η , of a charged
spherical particle of radius, a, in an unbounded electrolyte solu-
tion, subjected to an external electric field, E∞, is generally ex-
pressed as [1],

η =
Up

E∞
=

2εψp

3µ
f (κa) (1)

where Up is the particle velocity, ψp is the particle surface po-
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tential, µ is the viscosity, ε is the dielectric permittivity of the
medium, and κ is the inverse Debye length. The function f (κa),
generally referred to as Henry’s function, ranges between 1 for
κa → 0 and 1.5 for κa → ∞. The limiting forms of Eq. (1) for
κa → 0 and 1 for κa → ∞ are generally referred to as the Debye-
Hückel [2] and Smoluchowski [3] results, respectively.

In deriving Eq. (1), Henry assumed the electric field near
the particle to arise from a superposition of the applied field onto
the field due to the equilibrium electric double layer around the
particle. However, as the particle moves through the ionic solu-
tion due to electromigration and convection, the double layer sur-
rounding the particle tends to distort. Overbeek [4] and Booth [5]
used perturbation calculations to account for the effect of the dis-
torted double layer by expressing the electrophoretic mobility as
power series of particle surface potential or surface charge. Fol-
lowing the same trend, Wiersema et al. [6] used an iterative tech-
nique to obtain the mobility of the particle over a wider range of
particle surface potentials and double layer thicknesses. O’Brien
and White [7] provided a numerical solution for high particle sur-
face potentials based on the perturbation approach. The solutions
based on higher order perturbations [5–7] include the effects of
hydrodynamic retardation and convective relaxation of the elec-
tric double layer, which were not accounted for in Henry’s [1]
original expression. Teubner [8] took a different approach by
neglecting convective effect in the Nernst-Planck equations, and
derived the same results as others.

All previous mobility calculations, particularly those based
on perturbation analysis, made a critical assumption about the
system. These studies assumed that the steady motion of a
charged particle with velocity, Up, in a quiescent fluid yields the
same stress at the interface as caused by the fluid with a uniform
far field velocity −Up flowing past a stationary particle. Such an
assumption is common in creeping flow, owing to the linearity of
the Stokes equation. Utilizing this assumption, the electrophore-
sis problem has usually been formulated on a particle fixed ref-
erence frame, whereby the governing equations were solved as-
suming the particle to be stationary. In this context, the objective
of this paper is to investigate the validity of such an assumption
when solving the general equations of electrophoresis. In other
words, we investigate whether the solutions for electrophoretic
mobility obtained assuming the particle fixed reference frame
correctly represent the electrophoretic mobility of the particle.

To address the above question, this paper revisits the general
formulation of the electrophoresis problem in a globally fixed
(with particle moving) and a particle fixed reference frame. The
governing equations are written by sequentially relaxing vari-
ous assumptions that are commonly made regarding the cou-
pling of the fluid flow with the ion transport equations. Nu-
merical solution of the equations in the globally fixed reference
frame was obtained employing an arbitrary Lagrangian-Eulerian
(ALE) framework, whereas in the particle fixed reference frame,
the problem was solved by a straightforward finite element algo-

rithm. We observe that including the retardation and relaxation
effects of the double layer in a globally fixed reference frame
results in a deviation of the electrophoretic mobility compared
to the values predicted on the basis of a particle fixed reference
frame. This result has considerable impact on interpretation of
experimental results of electrophoresis in micro-capillaries, or
motion of charged particles in porous media.

THEORETICAL CONSIDERATIONS
Governing Equations for Electrophoresis

In electrokinetic problems, the Naiver-Stokes equation mod-
ified by an electrical body force term, ρ f E, and continuity equa-
tion provide pressure and fluid flow fields. [9, 10]

ρ
∂u
∂ t

+ρu ·∇u =−∇p+µ∇ ·
(
∇u+∇uT)+ρ f E (2)

∇ ·u = 0 (3)

where ρ and µ are the fluid density and viscosity, respectively,
p is the pressure, u is the fluid velocity, ρ f is the space charge
density, E(=−∇ψ) is the electric field, with ψ being the elec-
trical potential. The potential distribution is obtained by solving
Poisson equation,

−ε∇2ψ = ρ f = e∑zini (4)

where ε is the dielectric permittivity of the medium, e is the el-
ementary charge, ni is the ionic concentration of the ith species,
and zi is the valence of the ith ionic species. The ion conservation
equation gives ionic concentration ni,

∂ni

∂ t
=−∇ · Ji (5)

The ionic fluxes, Ji, are given by the Nernst-Planck equations,

Ji = uni −Di∇ni −
zie
kT

ni∇ψ (6)

where Di is the diffusion coefficient of the ith ionic species, k is
the Boltzmann constant, and T is the temperature.

The above equations provide the basic description of the
physics of electrophoresis or electroosmotic flow, and are inde-
pendent of the coordinate frame chosen. The boundary condi-
tions of these equations, however, are written differently depend-
ing on the coordinate reference frame used. In all subsequent
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analysis, the particle is considered to be non-conducting, imper-
meable, and having a constant surface charge, qp.

The boundary conditions defined in a stationary global refer-
ence frame are presented first. In this case, the particle is moving
with an electrophoretic velocity Up at steady state. Consequently,
the boundary conditions on the particle surface are:

u = Up

−ε∇ψ ·n = qp (7)
Ji ·n = 0

where n is the outward unit normal. Equilibrium potential distri-
bution for an isolated stationary particle is obtained with a con-
stant surface potential (ψp) boundary condition and the corre-
sponding surface charge, qp, is employed as a boundary condi-
tion in Eq. (7).

In the globally fixed reference frame, far from the particle,
the fluid is stationary with no stress, the electric field equals
the external (applied) field, E∞, and the ionic concentrations ap-
proach their bulk values ni∞.

−pI+µ(∇u+∇uT ) = 0
−∇ψ ·n = E∞ (8)

ni = ni∞

Strictly speaking, the first condition in the above equation should
be that the fluid is stationary far from the particle, or u= 0. How-
ever, this is valid only at infinite distance from the particle. In nu-
merical calculations where a finite computational domain needs
to be considered, one generally employs a weaker boundary con-
dition, which imposes zero hydrodynamic stress at a sufficiently
large distance from the particle, as has been done here.

In a particle fixed reference frame, one formulates the
boundary conditions on the particle surface as

u = 0
−ε∇ψ ·n = qp (9)

Ji ·n = 0

whereas the far field conditions are

−pI+µ(∇u+∇uT ) = 0
−∇ψ ·n = E∞ (10)

ni = ni∞

Note that the only difference between the governing equations
for electrophoresis formulated in a globally fixed or a particle

fixed reference frame will be the fluid velocity condition imposed
on the particle surface. The remaining boundary conditions are
identical in both formulations.

Influence of Coordinate System on Convective Effects
The key influence of the coordinate reference frame on the

governing equations for electrophoresis are manifested through
the convective flux term, uni, in the Nernst-Planck equations
(Eq. 6). Considering the convection term for ionic species i, after
incorporating Eq. 6 in Eq. 5, we find

∇ · (uni) = ni(∇ ·u)+u · (∇ni) = u · (∇ni) (11)

where the final form arises due to the continuity, Eq. (3). When
formulated in a particle fixed reference frame, since the particle
surface is assumed stationary, this convective term will be zero
at the particle surface even though ∇ni ̸= 0. In contrast, when
we consider a finite particle velocity in a globally stationary ref-
erence frame, the convection term is not necessarily zero at the
particle surface.

The approximate forms of the governing equations, particu-
larly those employed in perturbation analysis, can be generally
classified as: (i) Poisson-Boltzmann Navier-Stokes (PB-NS),
where the convection terms in the Nernst-Planck equations are
completely neglected, and (ii) the Poisson-Nernst-Planck Navier-
Stokes (PNP-NS), where the convective effects are considered.
In the PB-NS formulation, the electric body force term, ρ f E, in
the NS equations does not depend on the fluid velocity, and there-
fore, the NS equation still remains linear. Furthermore, if one
linearizes the Poisson-Boltzmann equation assuming low poten-
tials, even the electrostatics can be treated as a linear equation.
This was done in Henry’s solution, and hence, at this linearized
PB-NS level, there was no consequence of altering the coordinate
framework from a globally fixed to a particle fixed reference. In
the PNP-NS framework, however, the ion concentration distribu-
tions are obtained by considering convection, and consequently,
all the governing equations become non-linear. In this case, one
cannot expect that the solution of the coupled PNP-NS equations
will be independent of the coordinate frame chosen.

Let us consider a linear differential operator L applied to a
velocity field u,

L (u) = G (w) (12)

where G (w) is a function. If we substitute u = v+v′, where v is
another velocity field and v′ is a constant,

L
(
v+ v′

)
= G (w)

⇒ L (v)+L
(
v′
)
= G (w) (13)

⇒ L (v) = G (w)
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If the source term G (w) is constant or independent of u, then we
can say that L (u) = L (v). This is condition of linear superpo-
sition. Use of a Poisson-Boltzmann type expression for poten-
tial distribution that does not depend on convection or velocity
u with Stokes equation is an example of such case. However,
if G (w) depends on u, then L (u) ̸= L (v). Which implies that
use of Poisson equation with ionic transport equation restricts the
Stokes type velocity boundary transfer from the particle surface
to the far field.

We now describe how this discrepancy can influence the
electrophoretic mobility predictions under different levels of ap-
proximation. It is straightforward to deduce from the forego-
ing discussion that if one does not consider convective relax-
ation of the double layer, and solves the electrophoresis prob-
lem at the Poisson-Boltzmann level, there will be no discrepancy
between the mobility obtained from solving the equations un-
der either particle fixed or globally fixed reference frames. This
is owing to the neglect of the convective term altogether in the
Poisson-Nernst-Planck equations. However, for any solution of
the governing equations that explicitly consider convection, one
can expect a discrepancy arising from the choice of the coordi-
nate framework.

Mobility Calculation
Forces acting on the particle are calculated by integrating

the stress tensors over the particle surface. The forces that con-
tribute to the motion of the particle include the hydrodynamic
force, Fh, and the electrical force, Fe. Integration of the total hy-
drodynamic stress tensor over the particle surface gives the total
hydrodynamic force, Fh, as

Fh =
∫
S

[
−p

=
I +µ

(
∇u+∇uT)] ·n dS (14)

where
=
I is the identity tensor and S indicates the surface of the

particle. Electrostatic contribution, Fe, composed of electrostatic
attraction and relaxation effect is given by,

Fe =
∫
S

ε
[

EE− 1
2

E ·E
=
I
]
·n dS (15)

Upon the application of the external electric field, the par-
ticle accelerates and attains a steady velocity almost instanta-
neously. In an unsteady force field, the motion of the accelerating
particle is calculated by,

mp
∂Up

∂ t
= Fh +Fe (16)

where mp is the particle mass. In steady motion, as the particle
attains a steady velocity, the mobility is determined by equating
the hydrodynamic and electrical forces.

Particle Motion in ALE Kinematics
The key reason for incorporating a particle fixed reference

frame in solving the governing equations for electrophoresis is
the manner in which such a formulation enables facile compu-
tation of the forces, and consequently, the mobility. Calcula-
tion of mobility in a globally fixed reference frame inevitably
requires solution of a transient problem, which necessitates a La-
grangian approach lo track the particle. In this paper, we imple-
ment the Arbitrary Lagrangian Eulerian (ALE) method [11, 12]
to solve electrophoretic mobility of a charged particle in the glob-
ally fixed reference frame. In ALE kinematic approach, the mo-
tion of the particle is calculated with respect to its initial configu-
ration as in Lagrangian fashion and the deformation or motion is
transformed to the Eulerian spatial frame to solve the continuum
equations. In ALE kinematics, the two frames of reference are
connected by the mapping,

r (R,Z, t) , z(R,Z, t) (R,Z) ∈ Ω f , (r,z) ∈ Ωm, t ∈ R+ (17)

where the upper case letters correspond to the Lagrangian ref-
erence frame, Ω f , the lower case letters represent the moving
mesh Eulerian frame, Ωm, and t represents time. All govern-
ing equations are non-dimensionalized. kT/ze is considered as
the scaling parameter for potential and the particle radius, a, is
chosen as the length scale. Other scaling parameters are derived
from these two, and given in Table 1. In ALE kinematics, the
non-dimensionalized governing equations take the form,

Re∗
∂u∗

∂τ
+Re∗ (u∗−ϕm) ·∇∗u∗ =

−∇∗p∗+∇∗ ·
(
∇∗u∗+∇∗u∗T) − 0.5(κa)2 (n∗p −n∗n

)
∇∗Ψ

(18)

∇∗ ·u∗ = 0 (19)

−∇∗2Ψ = 0.5 (κa)2 (n∗p −n∗n
)

(20)

∂n∗i
∂τ

=−∇∗ ·
[
(u∗−ϕm)n∗i −

1
Pe∗

∇∗n∗i −
1

Pe∗
zin∗i ∇∗Ψ

]
(21)
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TABLE 1. NON-DIMENSIONAL PARAMETERS USED IN
FORMULATION OF THE SCALED POISSON-NERNST-PLANCK
NAVIER-STOKES ARBITRARY LAGRANGIAN EULERIAN
(PNP-NS-ALE) MODEL

Variable Scaling

Potential Ψ
ze
kT

ψ

Electric Field β
aze
kT

E

Surface Charge q∗
aze
εkT

q

Concentration n∗i
ni

ni∞

Stress σ∗ 1
ε

(aze
kT

)2
σ

Velocity u∗
µa
ε

( ze
kT

)2
u

Mobility η∗ µ
εψ

η

Time τ
ε

µa2

(
kT
ze

)2

t

Force F∗
b

1
ε

( ze
kT

)2
Fb

Reynolds Number Re∗
ερ
µ2

(
kT
ze

)2

Peclet Number Pe∗
ε

µD

(
kT
ze

)2

∇ operator ∇∗ a∇

where ϕm is the mesh velocity. Mesh adjacent to the particle
surface moves with the particle velocity. Outer boundaries of
the domain are kept stationary. The mesh velocities of the com-
putational domain are gradually smoothed out from the particle
surface to the outer boundaries. Mesh velocity, ϕm, are obtained
by solving two elliptic equations for mesh velocities.

∇2ϕmr = 0 (22)

∇2ϕmz = 0 (23)

dr = r−R =
∫ t

0
ϕmrdt (24)

dz = z−Z =
∫ t

0
ϕmzdt (25)

where dr and dz are the mesh displacements, and ϕmr and ϕmz are
mesh velocities in r and z directions, respectively.

Numerical Solution Methodology
A finite element model containing the set of equations de-

scribed in the previous sections has been developed. An axisym-
metric model is considered for the current analysis. A detail of
the analysis technique is described in our previous work [12].
Due to the nonlinearity of the ionic concentration distribution
near the particle, specially for higher κa, a very fine mesh was
used. Mesh sensitivity analysis was performed to obtain an opti-
mum number of elements for the desired accuracy.

The model was developed and solved by using COMSOL3.3
and COMSOL Script 1.1 environment. Quad core AMD Opteron
processor 4× 2.80GHz speed with 32GB RAM machines were
used to obtain the solution having number of element between
25,000 to 40,000.

RESULTS AND DISCUSSION
In this section, we present solutions of the electrophoretic

mobility of a particle obtained in a particle fixed and a glob-
ally fixed reference frame at different levels of approximation of
the governing equations. All numerical solutions are compared
against Henry’s solution.

PB-NS Model
The solution of the Poisson-Boltzmann equation coupled

with the Navier-Stokes and continuity equations was obtained in
both the particle fixed and globally fixed reference frames. Fig-
ure 1 shows the electrophoretic mobility predicted using these
two models. In all calculations, the scaled particle surface poten-
tial was Ψp =−1.0, which is considered to be sufficiently low to
render the assumption of linearity in Henry’s solution valid. Our
numerical solutions in both the references frames are identical
(open and solid circles), and both predictions virtually superim-
pose with Henry’s predictions (solid line). This comparison also
establishes the accuracy of the ALE formulation in the globally
fixed reference frame. Furthermore, it is established that at the
PB-NS level, the electrophoretic mobility prediction is indepen-
dent of the coordinate reference frame chosen.
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FIGURE 1. COMPARISON OF ELECTROPHORETIC MOBILITY
OF A CHARGED SPHERICAL PARTICLE SUBJECTED TO AN
EXTERNAL FIELD. ELECTROPHORETIC MOBILITY IS CAL-
CULATED FOR A POSITIVELY CHARGED PARTICLE, ψp = 1.
PB-NS MODEL CONSIDERS EQUILIBRIUM POTENTIAL DIS-
TRIBUTION AROUND THE PARTICLE SHOWS VERY GOOD
AGREEMENT WITH HENRY’S SOLUTION. THE RESULTS OB-
TAINED FROM PNP-NS MODEL IS CONSISTENT WITH THE
NUMERICAL RESULTS OF WIERSEMA [6]. BOTH THE MOD-
ELS ARE SOLVED USING PARTICLE-FIXED CONFIGURATION,
AS DOES THE COMPARED ONES. OUR PNP-NS-ALE MODEL
SHOWS THAT THE ELECTROPHORETIC MOBILITY IS OVER-
PREDICTED IN A PARTICLE FIXED REFERENCE FRAME.

PNP-NS Model
In this case, we obtain the solution of the Poisson, Nernst-

Planck, and Navier-Stokes equations in the particle fixed and
globally fixed reference frames. The coupled solution of these
equations, along with the inclusion of the convective effects
in the Nernst-Planck equations, results in consideration of the
convective relaxation effects. The numerical predictions are
compared with two well-known perturbation solutions of elec-
trophoretic mobility, namely, the results of Wiersema et al. (tri-
angle) and O’Brien and White (inverted triangle). It is evident
from Figure 1 that in a particle fixed reference frame, the elec-
trophoretic mobility predicted by our numerical method (open
squares) is identical to the predictions of the above mentioned
perturbation approaches. However, our ALE kinematics based
predictions of the electrophoretic mobility in the globally fixed
reference frame (solid squares) are considerably lower. In the

range 1 < κa < 50, where we obtained our numerical results,
we observe a systematically lower mobility in the globally fixed
reference frame. The deviation between the PNP-NS level pre-
dictions of the mobility in the two reference frames appear to
increase with κa.

Comparison with Existing Solutions
Electrophoretic mobility calculated from the four models are

compared with the existing analytical and numerical results for a
positively charged particle (Ψp = 1), as shown in Figure. 1. Re-
sults shown in solid line is Henry’s solution [1] where the scaled
mobility is varying from 1.0 to 1.5 as κa goes from 0 to ∞. Both
the PB-NS and PB-NS-ALE models that have similar assump-
tions like Henry’s solution fall on top of the solid line. Numeri-
cal solution obtained by Wiersema et al [6] and O’Brien [7] using
perturbation technique are also plotted. Their results show that
Henry’s solution overestimated the scaled mobility as it does not
account for ionic relaxation effect. Our PNP-NS model that is
also solved in particle fixed configuration is in good agreement
with their results. However, the calculated scaled mobility by the
current PNP-NS-ALE model is lower than other models, spe-
cially in the higher κa range.

CONCLUDING REMARKS
It was demonstrated that prediction of the electrophoretic

mobility at the complete Poisson-Nernst-Planck Navier-Stokes
level differ when the governing equations are solved in a glob-
ally fixed and a particle fixed reference frame. This difference
arises from the fact that the non-linear governing equations in the
particle fixed and globally fixed reference frames do not provide
an identical description of the physics of electrophoresis. The
convective relaxation of the double layer and the hydrodynamic
retardation effects appear to be more dominant in the globally
fixed reference frame. In light of these observations, one might
wonder what would be the implications of these results in the
Debye-Hückel (κa → 0) and Smoluchowski limits (κa → ∞).
Clearly, the influence of the coordinate system choice will not
be relevant at the Debye-Huckel limit, where ionic transport is
not considered, and the governing electrostatic equation is the
linear Laplace equation. In the Smoluchowski limit, the double
layer is infinitesimally thin, and hence, ∇ni → ∞. Consequently,
the finite velocity at the particle surface will be immaterial in
defining ionic convection. Thus, the Smoluchowski limit is also
unaffected by the choice of the reference frame.

However, for all intermediate values of κa, the discrepancy
in the mobility prediction will be encountered depending on the
choice of the coordinate reference frame. The problem is defi-
nitely worth further exploration in context of electrophoresis of
charged particles in charged confining media (such as capillar-
ies and porous media). In such systems, imposing an external
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electric field to engender electrophoresis of the charged particles
concurrently sets up an electroosmotic flow of the electrolyte.
Analysis of these types of problems should be attempted with
caution.
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