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ABSTRACT 
In this study the flow patterns of air- water two phase flows 

have been investigated experimentally in a vertical mini pipe. 
The flow regimes observed by 1200 fps high speed video 
recorder in the pipe with diameters of 2, 3 and 4 mm having the 
length of 27, 31 and 25cm, respectively. The comprehensive 
visualization of air water two phase flow in a vertical mini pipe 
has been performed to realize the physics of such two phase 
flow. Different flow patterns of air–water flow were observed 
simultaneously in the mini pipe at different values of air and 
water flow rates. Consequently the flow pattern map proposed 
for flow in mini- pipe in terms of superficial velocities of liquid 
and gas phases. The resulted flow pattern map is compared with 
those of other researchers in the existing literatures. 

INTRODUCTION 
Gas- liquid two phase flow in micro structures has an 

enormous role in several industrial and medical applications 
such as micro heat exchangers, Lab-on-chips, bio-MEMS and 
micro cooling electronics. Physical perception of micro flows is 
critical in order to optimize and develop the design of such 
devices. Two-phase flows in mini and micro scales have 
recently attracted scientists attention as a result of its wide 
usage in advanced science and technology; namely  micro-
electro-mechanical systems (MEMS), chemical engineering, 
bioengineering, medical devises, micro cooling systems, micro 
structures in the computers, etc. The literature survey on this 
issue has been categorized into adiabatic and phase change 
works which has been summarized in the following. 

Adiabatic works 
The works of Suo and Griffith [1] were among the first 

studies made in the field of flow patterns in microchannels. 
They detected three different flow patterns, namely 
bubbly/slug, slug and annular flow in their studies using 
channels with the width of range 0.514–0.795 mm. Sadatomi et 
al. [2] proposed flow regime maps in vertical rectangular 
channel and indicated that channel geometries have little 
influence in noncircular channels with the large hydraulic 
diameter greater than 10 mm. Xu et al. [3] investigated 
concurrent vertical two phase flow in vertical rectangular 
channel with narrow gap experimentally. They reported that 
with the decrease of the channel gap, the transition from one 
flow regime to another occurs at smaller gas flow rates. Also 
they developed a new criterion to predict the transition from 
annular flow. Hestroni et al. [4] performed experiments for air–
water and steam–water flow in parallel triangular micro-
channels and developed a practical modeling approach for two-
phase micro-channel heat sinks and considered the discrepancy 
between flow patterns of air–water and steam–water flow in 
parallel micro-channels. Fukagata et al. [5] simulated an air- 
water two phase flow in 20µm ID tube numerically with a 
focus upon the flow and heat transfer characteristics in the 
bubble train flows. He and Kasagi [6] simulated numerically 
adiabatic air water slug flow in micro tube. They focused on the 
pressure drop characteristics and its modeling. Also they found 
that the total pressure drop of a slug flow can be decomposed 
into the frictional pressure drop and pressure drop over the 
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bubble itself. Carlson et al. [7] investigated characteristics of 
multiphase dynamics, especially two-phase gas-liquid flow by 
means of advanced numerical simulations. They compared two 
Computational Multi–Fluid Dynamics (CMFD) codes, Fluent 
and TransAT, and reported a prediction of recirculating flow in 
the bubbly flow case by TransAT, meanwhile significant 
recirculation not observed in the solution with Fluent. Saison 
and wongwises [8] performed series of experiments in a 
horizontal circular micro channel with inner diameter of 0.15 
mm. They presented a flow pattern map in terms of the phase 
superficial velocities. They proposed a new pressure drop 
correlation for practical application.  

Phase change works 
The pool boiling heat transfer in vertical narrow annular 

with closed bottoms was observed through the transparent 
quartz shroud by Yao and Chang [9] and the stages of evolving 
the boiling phenomena with increase of heat flux were reported. 
Some researchers observed three basic flow patterns by them 
namely; bubbly, slug and annular flow in the mini pipe and 
channel. For example, Damianides and Westwater [10] 
performed experiments with 1 mm tube, Mertz et al. [11] and 
Kasza et al. [12] studied on the flow visualization of water 
nucleation in the single rectangular channel of 2.5 mm by 6 
mm, and Lin et al.  [13] used a single round tube of 2.1 mm 
inside diameter for their experiments and compared the flow 
transitions with those predicted by Bernea et al. [14], Sheng 
and Palm [15] did their experiments with 1–4 mm diameter 
tubes. Cornwell and Kew [16] found three different flow 
patterns for R-113 namely isolated bubbles, confined bubbles, 
and slug/annular flow in rectangular channels with the cross 
sectional area of 1.2- 0.9 mm and 3.5- 1.1 mm. Ory et al., [17] 
considered the effects of capillary, inertia, friction and gravity 
forces on the velocity distribution and temperature field along a 
single capillary two-phase flow in a heated micro-channel. A 
research dealing with gas–liquid two-phase flow in micro-
channels in situations where the fluid inertia was significant in 
comparison with surface tension was reviewed by Ghiaasiaan 
and Abdel-Khalik [18]. Jiang et al. [19] studied boiling of water 
in triangular micro- channels with width of 50 and 100 µm. 
They observed the individual bubbles at low heat fluxes and an 
abrupt change in the flow pattern to an unstable slug flow with 
increasing heat flux. Chedester and Ghiaasiaan [20] addressed 
the hydrodynamically controlled onset of significant void 
(OSV) in heated microtubes. A simple semi- empirical 
correlation for the radius of departing bubbles at the OSV point 
was derived by them to show the accuracy of their hypothesis. 
Some experimental studies have been reported on gas liquid 
two phase flow in mini and micro conduit by kandlikar [21], 
Lee and Mudawar [22] and Serizawa et al. [23]. The three zone 
boiling heat transfer model was developed by Thome et al. [24]. 
Revellin and Thome [25] used an optical measurement method 
for two phase characteristics of R-134a and R-245fa in 0.5 mm 
and 0.8 mm diameter channels to determine the frequency of 
bubbles existing in microevaporator. They detected four flow 
patterns namely, bubbly, slug, semi- annular and annular flow 

which their transitions were not well compatible with 
macroscale map of refrigerants nor microscale map of air-water 
flows. Sobierska et al. [26] experimentally investigated the 
water boiling phenomena in a vertical rectangular microchannel 
with the hydraulic diameter of 0.48 mm. They observed three 
main flow patterns namely; bubbly, slug and annular flow.   

Because of the effects of surface tension, the two phase 
flows in mini and micro scale have different behavior in 
comparison with macro scale. The aim of the present work is to 
visualize flow regimes in air–water two phase flows and 
propose a flow regime map for such flow in vertical mini pipes. 
The neural network technique is implemented to recognize and 
predict gas liquid two phase flow pattern in mini tube with 
diameters of 2, 3 and 4 mm. Also the image processing method 
can be used to calculate the void fraction and bubble velocity in 
the pipe. 

EXPERIMENTAL SETUP 
This study is carried out by the experimental apparatus 

which is schematically shown in Fig. 1. The air and water are 
used as the gas and liquid phases in the experiments. The water 
flow rates are regulated by the needle valves and are measured 
by the calibrated rotameter. Air and water are mixed together in 
the mixer which is made of acrylic glass and placed at the 
bottom of the riser pipe. The compressed air is fed by the 
compressor via air injector which is schematically depicted in 
Fig. 2. The water flows from the center hole of the mixer with 
diameter of 2 mm while air is injected into the holes around the 
center with 1 mm diameters. The air flow rates are set by the 
regulator and continuously are measured by the calibrated Gas 
rotameter. The overall height and inside diameter of the riser 
pipe are summarized in Table 1. In order to have the capability 
of visual observation of the two phase flow patterns, the riser 
pipe was made of a transparent glass. The water was flowed 
upward with air trough the riser and separated in the separation 
tank at the top of the riser and the air was disgorged to the 
atmosphere. Different flow regime images were captured by the 
digital high speed camera with the frame rate of 1200 fps [F1-
CASIO,]. The superficial air and water velocity are 0.5-10 m/s 
and 0.05-1 m/s, respectively. 
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Fig. 1 schematic of test apparatuses 
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area or shape of objects. Opening operation removes small 
objects and smoothes boundaries. Borders removed by erosion 
are restored by dilation, but small objects that were absorbed 
during erosion do not reappear after dilation. Closing operation 
was used to fill tiny holes and smoothes boundaries. Objects 
were expanded by dilation and then reduced by erosion, so 
borders were smoothed and holes were filled. After all these 
operation, the result of image processing is shown in Fig. 5. 
Bubble images of two-phase flow were clear by the above 
image processing, and it prepared bubbles for the quantitative 
analysis such as measuring the area, perimeter and diameter. 

 
Fig. 5 final image of two phase flow in the mini pipe 

Velocity and void fraction of air bubbles can be determined by 
image analysis technique. 

Flow pattern map 
In the experimental procedure while varying gas or liquid 

mass flow rate, 10 sec film was recorded from the flow regime 
in speed of 1200 fps. The recorded film was replayed in slow 
motion speed for recognition of flow regimes. Each film 
converted to the separate frames in a picture format via Adobe 
Premiere software. Achieved pictures were used as inputs of 
image processing techniques. The final binary pictures were 
used for the mentioned post processing procedure such as; flow 
regime detection, void fraction and bubble velocity calculation, 
etc. Figure 6 shows the typical flow regimes which were 
observed in the vertical co- current air- water two phase flow in 
the 3 mm mini pipe. Four basic flow patterns, namely bubbly, 
slug, churn and annular accompanied by its transitions are 
illustrated in these figures. The visualization shows that air 
water two phase flows in mini pipe do not have three 
dimensional behaviors especially in bubbly and slug flows. 
Figures 7-9 show the flow pattern map for vertical round tube 
with inner diameters of 2, 3 and 4 mm, respectively. The 
proposed maps are in terms of superficial velocities of phases 
and the four main flow patterns are depicted in these maps. In 
Fig. 10 the achieved flow pattern for the pipe with 2 mm ID 
was compared by the work of Ide et al. [28]. The solid line 
shows the work of Ide et al. They divided the flow pattern map 
into the four main regions namely, dispersed bubble flow, 
intermittent flow, churn flow and annular flow. 

 
a) bubbly b) bubbly-slug  c) slug 

 
d) messy slug e) churn  f) wispy annular 

 
g) ring h) wavy annular i) annular 

Fig. 6 the photos of flow pattern in vertical pipe with 2 mm diameter 
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The comparison shows that the bubbly and annular flows 
in the present work are not in well accordance with Ide ones. In 
the present work the dispersed bubble was not seen because the 
injector of air bubbles had not very thin holes. As a result the 
created bubbles mostly have diameters in range of pipe 
diameter. Also the comparison of flow patterns shows that the 
slug, messy slug and semi annular flow in the proposed map are 
accordance with the intermittent flow of Ide. 

 
Fig. 7 flow pattern for 2mm inner diameter 

 

 
Fig. 8 flow pattern for 3mm inner diameter 

 

 
Fig. 9 flow pattern for 4mm inner diameter 

 
Fig. 10 comparison between the achieved flow patterns with the work 

of Ide et al. [28] for pipe with diameter of 2 mm 

In the present study a noticeable difference between the 
flow pattern maps for vertical pipe with various diameters of 2, 
3 and 4mm is not seen. Combination of these three flow pattern 
results in new flow pattern map which is illustrated in Fig. 11. 
The solid lines in the figures show the transition region of the 
flow patterns. This Figure shows the achieved flow map for 
mini pipe with diameters in the range of 2-4 mm. 
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Fig. 11 proposed two phase vertical upward flow pattern map  

CONCLUSION 
In this paper air- water two phase flow regimes pattern were 
investigated experimentally for mini pipe with diameters of 2, 3 
and 4 mm. the obtained flow pattern reveals that there is not 
any noticeable difference between two phase upward flow 
pattern in this range of diameters. A new flow pattern map was 
achieved for vertical mini pipe due to comparison of flow 
pattern of these three diameters of the pipe. The proposed map 
was compared with works of Ide et al. the comparison shows 
that the flow patterns of slug, messy slug and semi annular in 
the present work are compatible with intermittent flow pattern 
of Ide et al. But in the present study the annular flow is seen in 
lower superficial air velocity than the works of Ide et al. Also in 
this paper an image processing techniques was used for 
detection of flow patterns from the pictures which were derived 
from the films that were recorded with high speed camcorder. 
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