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ABSTRACT 
Micro-Electro-Mechanical Systems (MEMS) technology 

can be integrated with microfluidic functionality to enable the 
generation of microdrops with unprecedented throughput and 
precise control of drop volume, speed, and placement. The most 
prominent examples of microdrop generators are in the field of 
inkjet printing where printheads with thousands of nozzles 
produce steady streams of microdrops at kilohertz repetition 
rates. In this paper, we discuss a proposed MEMS-based 
microfluidic drop generator that operates on the basis of a 
thermally induced Marangoni effect. We describe the physics of 
droplet generation and discuss operating performance relative 
to the fluid rheology, thermal modulation, and wavelength 
dependencies.  

 
INTRODUCTION 

Microfluidics deals with the behavior, precise control, and 
manipulation of fluids that are geometrically constrained to a 
small, typically submillimeter scale. It is a multidisciplinary 
field that intersects engineering, physics, chemistry, 
microtechnology, and biotechnology, with practical applications 
that involve systems in which such small volumes of fluids are 
used. Microfluidics emerged in the beginning of the 1980s and 
is used in the development of inkjet printheads, DNA chips, lab-
on-a-chip technology, micro propulsion, and micro thermal 
technologies. Over the past few years, microfluidics devices 

have enjoyed success in certain niche applications, notably 
inkjet printers and lab-on-a-chip assays.  

Advances in microfluidics technology are revolutionizing 
molecular biology procedures for enzymatic analysis (e.g., 
glucose and lactate assays), DNA analysis (e.g., polymerase 
chain reaction and high-throughput sequencing), and 
proteomics. The basic idea of microfluidic biochips is to 
integrate assay operations such as detection, as well as sample 
pre-treatment and sample preparation on one chip. An emerging 
application area for biochips is clinical pathology, especially the 
immediate point-of-care diagnosis of diseases. In addition, 
microfluidics-based devices, capable of continuous sampling 
and real-time testing of air/water samples for biochemical 
toxins and other dangerous pathogens, can serve as an always-
on "bio-smoke alarm" for early warning. 

Inkjet printing for consumer applications has 
revolutionized desktop printing of documents, including high-
quality color images. The two currently commercialized 
printhead technologies, thermal and piezo drop-on-demand 
(DOD) technologies, contribute substantially to the revenues 
attributed to MEMS devices. These technologies have been 
slow to penetrate commercial applications because the printing 
speed of consumer devices is far less than that typically 
associated with technologies such as offset lithography. Of 
course, the speed of offset printing derives from the fact that 
identical images are produced without variable data content. 
The desirability to print variable data at the speed and cost of 
offset printing has long been recognized but not yet achieved. 
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We believe that the continuous inkjet (CIJ) technology 
proposed and described here offers a practical path for such 
offset class digital printing. This new CIJ technology benefits 
from the convergence of new principles of device operation, the 
availability of integrated electronic/fluidic device 
manufacturing, as well as new developments in ink and media 
formulations. 

Figure 1 illustrates schematically a new type of silicon-
based CIJ printhead based on thermally stimulated drop 
formation. Ink in the reservoir is pressurized and jets through 
the nozzles in the form of fluid columns that propagate and 
eventually break up into drops. Figure 2 shows a cross-section 
of a CIJ device of the thermal stimulation type, which is made 
by integrated complementary metal-oxide semiconductor 
(CMOS)-MEMS processing using deep reactive ion etching to 
form the ink reservoirs as channels through the silicon wafer. 
The nozzle bores are etched through all of the various dielectric 
layers of the CMOS process and are typically 10 µm in 
diameter and located on 20−40 µm centers. The choice of 
silicon as a material technology is an important one, both 
because silicon-based materials have historical precedence for 
their compatibility with liquid inks, and because the ability to 
integrate electronic logic for nozzle addressing greatly 
simplifies the already complex fluidic packaging of devices 
with thousands of nozzles. 

 
 

 
 
Figure 1. A schematic view of a microfluidic inkjet printhead that is based on 
thermally induced drop generation from an array of continuously jetted fluid 
streams. 
 
 

In contrast to DOD printheads, the energy supplied to eject 
fluids in CIJ technology is not local to the nozzles. For 
example, the reservoir in Figure 1 contains fluid pressurized by 
a pump external to the printhead. Due to the strength of silicon 
materials and the fact that the drop generation energy does not 
have to be supplied by microactuators integrated with each 
nozzle, it is possible to eject a very wide variety of fluids by 
continuously maintaining many atmospheres of pressure in the 

reservoir. Because the pressure is constant in CIJ technology, 
rather than being pulsed as in DOD technology, the duty cycle 
for fluid ejection is 100% and the velocity of the jets can be 
varied over a wide range, for example 10−40 m/s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Cross-section of CMOS-MEMS integrated printhead. 
 
 

Figure 2 is a schematic showing a cross-section of the 
material layers in a single CIJ nozzle. Figure 3 is a scanning 
electron microscope (SEM) micrograph of a nozzle bore 
formed in a CMOS interlayer dielectric stack and of the 
associated embedded heater formed in first gate polysilicon, in 
accordance with the schematic illustration of Figure 2. The 
heater ring closely surrounding the bore in Figure 3 cannot be 
seen on the surface of the membrane through which the bore is 
formed due to the planarity of the fabrication process. The 
rectangular structures in Figure 3 are metal traces connecting 
the CMOS driver to the heater. The use of very-large-scale 
integration (VLSI) processing results in very precise geometries 
for the jet exit orifice and for the heater. This precision is 
important to ensure accurate jet directionality. The membrane 
surrounding the 10 µm diameter nozzle bore is less than 2 µm in 
thickness.  

 
 

 
 
 
Figure 3. Silicon nozzle; the bore diameter is about 8 µm. The 1 µm width thin-
film heater is buried in the dielectric layers adjacent the opening. 
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PHYSICS OF DROP FORMATION AND CONTROL 
The capillary instability of liquid jets has been the subject 

of numerous studies since the19th century when Lord Rayleigh 
considered the breakup of an inviscid cylindrical jet into drops 
[1, 2]. However, the subject has been far from exhausted after 
more than several centuries of scientific research, which in fact 
has gained considerable momentum in recently years. This is 
due partially to the fact that modern developments in the design 
and utilization of microfluidic devices for fluid transport have 
found many applications such as drug design and diagnostic 
devices in biomedicine and microdrop generators for image 
printing. Furthermore, the new development of nonlinear 
dynamics of the droplet has created a new paradigm of scaling 
and jet breakup that opened a new approach to this classic 
phenomenon. Currently, there is a considerable amount of 
literature available on Newtonian liquid jet instability. Some of 
the related references are reviewed in Gao [3]. However, the 
situation is more difficult for non-Newtonian jets caused by the 
complex nature of the constitutive behavior of such a liquid. 
Axisymmetric instability of non-Newtonian jets was studied by 
Sterling and Sleicher [4]; Lin and Lian [5]; Lin and Ibrahim [6]; 
Brenn et al. [7]; and Liu and Liu [8]. Liu and Liu [8] extended 
the work on Newtonian jets done by Li [9] to investigate the 
mechanisms of temporal instability of viscoelastic liquid jets 
with both axisymmetric and asymmetric disturbances, and to 
explore the differences between the instabilities of 
axisymmetric and asymmetric disturbances, concentrating on 
the wind-induced regime. Yildirim and Basaran [10] studied the 
deformation and breakup of bridges of Newtonian and non-
Newtonian fluids held captive between two disks that are 
separated from one another at a constant speed. Nevertheless, 
relatively few authors have studied jet instability caused by 
spatial variations of surface tension, despite the practical 
relevance of this phenomenon [3, 12-13]. 

To modulate a jet of the inkjet printhead shown in Figures 
1-3, a periodic voltage is applied to the heater, which causes a 
periodic diffusion of thermal energy from the heater into the 
fluid near the orifice (Figure 4). Thus, the temperature of fluid, 
and hence the temperature-dependent fluid properties, density, 
viscosity, and surface tension, are modulated near the orifice. 
The dominant cause of jet instability is the modulation of 
surface tension. To first order, the temperature dependence of 
σ  is given by 

0 0( ) ( )T T Tσ σ β= − − , where ( )σ T  and 0σ  are 

the surface tension at temperatures T and 0T , respectively. The 
pulsed heating modulates σ  at a wavelength λ = v0τ, where v0 
is the jet velocity and τ is the period of the heat pulse as shown 
in Figure 4. The down-stream advection of thermal energy gives 
rise to a spatial variation (gradient) of surface tension along the 
jet. This produces a shear stress at the free-surface, which is 
balanced by inertial forces in the fluid, thereby inducing a 
Marangoni flow toward regions of higher surface tension (from 
warmer regions toward cooler regions). This causes a 
deformation of the free-surface (slight necking in the warmer 

regions and ballooning in the cooler regions) that ultimately 
leads to instability and drop formation [3, 12-13]. The drop 
volume can be adjusted on demand by varying τ, i.e., 

2
drop 0V vorπ= τ . Thus, longer pulses produce larger drops, 

shorter pulses produce smaller drops, and different sized drops 
can be produced from each orifice as desired.  

The governing equations for a jet of incompressible fluid, 
Figure 4, are the continuity equation and the momentum 
equation (ignoring gravity)  
 
 

0∇ ⋅ =V      (1) 

t
ρ

∂ + ⋅∇ = ∇ ⋅ ∂ 
V V T    (2) 

 
where t is time, V  is the jet velocity vector, T is the total stress 
tensor given as p= − +τT I , where p is the pressure of the 
liquid, τ is the stress tensor of the liquid, and I is the unit tensor. 
Also, ( , )u v=V  is the velocity, where u  and v denote the 
radial and axial velocities, respectively. The stress tensor, which 
is given by ( )[ ( ) ]Tp µ γ= − + ∇ + ∇&T I V V , where ( )µ γ&  
is the apparent viscosity function. The Carreau-Yasuda model 
describing the deformation rate-dependent viscosity function is  
 

( )
1

0( ) ( ) 1
n

α αµ γ µ µ λγ µ
−

∞ ∞= − + +& &   (3) 

 
where 

1/ 22 2 2

2 2u u v v
r z r z

γ
 ∂ ∂ ∂ ∂     = + + +      ∂ ∂ ∂ ∂       

&  (4) 

 
is the second invariant of rate-of-deformation tensor, and n is a 
power law exponent.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Illustration showing a single nozzle with an integrated heater at the 
orifice, and a thermal modulation pulse used to induce Marangoni instability 
and drop formation. 
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The Carreau-Yasuda model is one of the models used for 
describing the viscosity of a non-Newtonian fluid. Typically, 
based on the number of parameters, this is classified into three, 
four, and five parameter types, wherein the parameters µ∞ , λ , 

and n are material coefficients, where, µ∞   is the limiting 

viscosity at high shear stress, λ  is a time constant calculated 
from the reciprocal of the strain rate at which the zero strain 
rate component and the power-law component of the flow curve 
intersect, and n is called Thixotropic index. The Thixotropic 
index is a ratio of a material’s viscosity at two different speeds, 
generally different by a factor of ten. This index indicates the 
material’s ability to hold its shape. The three-parameter model 
is called the Bird-Carreau model and the five-parameter model 
is the Carreau-Yasuda model. The power law model represents 
a deformation-rate-thinning fluid when n < 1, a deformation 
rate- thickening fluid when n > 1, and a Newtonian fluid when 
n = 1. The Carreau-Yasuda model describes pseudoplastic flow 
with asymptotic viscosities at zero 0( )µ  and infinite ( )µ∞  
shear rates, and with no yield stress. The parameter λ is a 
constant with units of time, where 1/λ is the critical shear rate at 
which viscosity begins to decrease. The power law slope is (n – 
1) and the parameter α represents the width of the transition 
region between 0µ and the power law region. If 0µ and µ∞ are 
not known independently from experiment, these quantities may 
be treated as additional adjustable parameters. 

Equations (1) and (2) are solved subject to stress balance 
condition and kinematic condition. The traction boundary 
condition for normal stress and shear stress can be written as, 
respectively, 
 
 
( ) 2n n Hσ⋅ ⋅ = −
r rT     (5) 

( )
2

1
1

n t
zh
σ∂

⋅ ⋅ =
∂′+

rrT    (6) 

where 
 

2 2 3

1 1
2 1 (1 )

hH
h h h

 ′′
 = −
 ′ ′+ + 

  (7) 

2 2

1
1 1

hn r z
h h

′
= −

′ ′+ +

r r r
   (8) 

2 2

1
1 1

ht r z
h h
′

= +
′ ′+ +

r r r
   (9) 

 
 

In these equations, h(z, t) defines the radial position of the 

jet’s free surface, and 
hh
z

∂′ =
∂

, and ),( tzσσ = is the surface 

tension, 
z

tz
z ∂

∂
=

∂
∂ ),(σσ

. 

 
For slender microjets, Equations (1) and (2) can be 

simplified using a perturbation expansion in r  for the unknown 
variables h , T andν , and retaining the lowest order terms [5]. 
This leads to the following 1-D slender jet equations:  
 
 

20 0 0
0 2

1 2 3(2 ) ( , )v v vv H h z t
t z z h z h z z

σ
σ µ

ρ ρ ρ
∂ ∂ ∂∂ ∂ ∂  + = − + +  ∂ ∂ ∂ ∂ ∂ ∂ 
      (10) 

z
v

h
z
hv

t
h

O ∂
∂

−=
∂
∂

+
∂
∂ 0

2
1

   (11) 

 
 
When we restrict to an analysis the purely temporal instability 
behavior of the jet (i.e., we do not consider traveling waves on 
the jet) and introduce a new variable 0z V tη = − , Equations 
(10) and (11) can be considered as two Partial Differential 
Equation (PDE) for variables η and t, subjected to periodic 
boundary conditions and zero initial conditions  
 

( , 0) 0,  and ( , 0) 0 for all .t t
t
δ

δ η η η
∂

= = = =
∂

 

 
where V0 is the unperturbed velocity of the jet. 

When a constitutive law for viscosity ),( tηµ  is specified, 
Equations (10) and (11) can be solved to determine the jet 
profile, h, as a function of time. The deformation rate defined in 
Equation (4) can be further simplified as keeping only the 
leading term in r, 
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Therefore, for the Carreau-Yasuda model shown in Equation 
(3), we have 
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The jet breakup is driven by the gradient of surface 
tension )(1 ησ . The surface tension can be modulated by 
thermal simulation to the surface of the jet as it exits the orifice, 
and can take different forms [12-13]. One way to simplify the 
mathematics involved is to select cosine wave, i.e., 
 

)](1[
2

)(
0

1 r
kCos ησ

ησ +
∆

−= .   (13) 

 
In many applications, such as inkjet applications shown in 
Figure 4, the cosine wave may not be optimal. In such a case, 
the temperature profile, as well as the surface tension of the 
fluid, is represented as a function 
 
 

)1()( /
1

1 λητσησ −−∆−= e    1ηη <  
λτηηλητσησ /)(/

1
211 )1()( −−−−∆−= ee   1ηη ≥  

      (14) 
 
where 1τ  and 2τ  are parameters that indicate how fast the 
temperature reaches its plateau level, and how fast it decays 
from the plateau level to zero, respectively. This ratio of 
actuation pulse time to the total period (actuation pulse time 
plus delay time) is known within the art as duty cycle. 
Generally, a high frequency of activation of heater results in 
small-volume droplets, while a low frequency of activation of 
heater results in large volume droplets. 

RESULTS AND DISCUSSION 
We demonstrate the model via application to a microjet of 

poly-Nisopropylacrylamide (poly-NIPAM) microgel solution. 
The properties are ρ = 1000 kgm−3, 0r  = 5 μm, 0v = 10 ms−1, 

0σ  = 0.073 N m−1. Other parameters depend on the 
concentration of the microgel.  

The Partial Differential Equation (PDE) for the 
perturbation of the radius of the microjet, Equations (10) and 
(11), with periodic boundary conditions and zero initial 
conditions, is solved by the method of lines [11]. The initial 
condition for the system of Ordinary Differential Equation 
(ODE) is y = 0. We implement this numerical scheme in 
MATLAB and use its ODE solver ode15s to solve the system of 
ODE. 

Figure 5 shows the breakup time in 10^(-5) seconds of a 
Newtonian fluid due to the cosine modulation, Equation (13) 
and exponential modulation, Equation (14), respectively, for 

three values of 1τ  and 2τ . The parameters are 0µ  = 0.01 N sm-

2, 1η   = 30%λ, where λ = 2πr/k (r – radius of the jet, k – wave 

number). The parameter 21 τττ ==  represents the rate of 
surface temperature increase and decrease of the jet. A higher 
τ  means a fast ramping up of the temperature when the heater 
is turned on, while a higher τ  means a fast ramping down of 
the temperature when the heater is turned off. It is shown in 
Figure 5 that when the value ofτ  is equal to 1, the exponential 
modulation produces a lower breakup time than that of the 
cosine modulation, only when at small wave number k (k < 
0.45). When the wave number k is larger than 0.45, the 
exponential wave form gives a slightly higher breakup time in 
comparison with that from the cosine modulation. The two 
modulations have the same area under the curves to ensure that 
they have the same thermal modulation power. When the value 
ofτ is increased from 1 to 10 and to 20, Figure 5, the curve for 
the exponential modulation moves down slightly. Although the 
breakup time for τ equal to 10 and 20 are always lower for the 
exponential modulation regardless the wave number, the 
difference between the two curves (exponential and cosine) are 
only substantial at the wave number lower than 0.45. When the 
value of τ  is equal to 20, the exponential modulation is very 
close to a square modulation with sharp increase and decrease 
of the surface tension. It is believed that in comparison with the 
cosine wave, square wave is more effective at breaking up a jet 
since the square wave focuses its thermal energy to a smaller 
portion of the jet. However, it is shown from Figure 5 that this 
is true only for a smaller value wave number. The results for 
non-Newtonian fluid represented by the Carreau-Yasuda model 
are shown in Figure 6. Again the effect of the exponential 
modulation is significant only when the wave number is small.  

 

 
 
Figure 5. The breakup time in 10^(-5) seconds of a Newtonian fluid due to the 
cosine modulation and exponential modulation, respectively,. The parameters 

are 0µ  = 0.001 N sm-2, 1η   = 30%λ, where λ = 2πr/k (r – radius of the jet, k 

– wave number). 
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Figure 6. The breakup time in 10^(-4) seconds of a Carreau fluid due to the 
cosine modulation, Eqn. (28) and exponential modulation, Eqn. (29), 

respectively,. The parameters are  n = 0.64, 0µ = 0.026 N sm-2, ∞µ = 0.008 

N sm-2, λ  = 0.2 s-1, α = 1.4. The surface tension and surface tension variation 

are 0σ  = 0.073 N m−1 and σ∆ =1% 0σ , respectively.  

 
 

 
 
Figure 7. The comparisons of breakup time in 10^(-4) seconds for Carreau 
liquids under sinusoidal modulation and exponential modulation with various 

values of duty cycle. The coefficients 1τ  and 2τ  of the exponential 
modulation have the value of 20.  

 
 
 
 
 
 
 

The comparisons of break time for Carreau liquids under 
sinusoidal modulation and exponential modulation with various 
values of duty cycle are shown in Figure 7. The coefficient 

21 τττ ==  of the exponential modulation has the value of 20. 
Other parameters are λ    = 0.2 s-1, α  = 1.4. The surface tension 
and surface tension variation are 0σ  = 0.073 N m−1 and 

σ∆ =1% 0σ , respectively. 
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