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Abstract

The results of a study of the frequency response of a
pneumatic system designed to provide pulsed flow for flow
control applications are presented. The system consists of a
high pressure air source, a high-frequency solenoid valve, a
length of tube and a minor loss. The experiment mimics the
pneumatic drive for our Coanda-Assisted Spray Manipula-
tion actuator and applies to many flow control applications
involving pulsed flow. Square wave signals of various fre-
quency were fed to the solenoid valve. The flow at the exit
of the flow system was measured with a single hot wire and
compared to steady flow through the same geometry. The
effect of the inlet pressure, tube length and the size and po-
sition of the minor loss were tested. These data are modeled
using a Transmission Matrix Model in

1 Introduction

Gas flowing in tubes driven by solenoid valves are used
in many control systems. A solenoid valve is an electrome-
chanical device that opens to allow fluid flow when an elec-
trical signal is provided. Typically, a solenoid valve is “bi-
nary,” meaning that it is open or closed. The frequency
response of a solenoid system is a complex function of
the components, fluid properties, and operating conditions.
Various factors affect the response, such as supply pres-
sure, tube length, and minor losses, but there has been little
research on the specific effects of these parameters on the
overall response.

Research has been done on the flow inside solenoid
valves by Szente and Vad [1]. Their experiments used
semi-empirical models to predict loss coefficients through
a valve with a Borda-type orifice given the seat angle of the
valve. A Borda-type orifice is an orifice with an entrance
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region that extends upstream in the flow. The seat angle
interface between the Borda-type orifice and the valve seal
varies. However, their interest was how the seat angle in the
valve affected the magnitude of the minor loss through the
valve, and the effect that this minor loss on the frequency
response at the exit was not presented.

Braud et al. [2] showed that velocities up to two times
higher than the steady state velocity through the same tubes
can be obtained when pressure pulses are applied. The ef-
fect of waves traveling in the tube were modeled, including
their effect on the settling time. They presented a model
for the flow at the exit of a gas filled tube in both the con-
tinuous and transient cases, but the effects of pressure, and
frequency were not presented, and their tube did not have
minor losses near its termination. In the current experi-
ment, the effects of the characteristics of the tube are stud-
ied further with minor losses on each end.

Oscillating gas flow in a tube is known to act analo-
gously to a spring-mass-damper or electrical system. This
system can be modeled as an equivalent electrical circuit
composed of resistors, an inductor, and capacitor in series
provided the device dimensions are small compared to the
acoustic wavelength. The air between the two ends behaves
as a mass, moving back and forth in response to a forc-
ing function. The air also acts as a spring as it compresses
and expands due to a changes in pressure. Viscous friction
damps the system. At low frequencies, the system is well
described by an electrical circuit consisting of an in line re-
sistor, an inductor in line, and a capacitor and resistor in
parallel going to ground [3]. The volume flow rate of the
gas is analogous to current, and pressure is analogous to
voltage. This circuit is shown in Fig. 1.

The compressibility of the gas is analogous to a capac-
itance, and is described by the equation C = V

γp where V is
the volume of the gas, γ is the ratio of specific heats, and
p is pressure. The inertia of the gas is analogous to induc-
tance, described by L = ρ∆x

A where ρ is the gas density, ∆x is
the length of tube, and A is the cross sectional area [3]. The
frequency response of this system is of particular interest
in determining limits to control systems. In the experiment
presented, however, the flow is not oscillatory. It is pulsed
or steady flow, but the principles of the circuit in Fig. 1 still
help predict the behavior of gas flowing through a tube.

The present experiments investigate the variation of
magnitude response and wave shape for a gas filled tube as
a function of frequency, mean input pressure, tube length,

Figure 1. Theoretical circuit for a gas filled tube. Compressibility is rep-

resented by the capacitor, momentum by the inductor, and losses by the

resistances. RC is associated with losses in the capacitor and RL is as-

sociated with losses in the inductor. Volume flow rate is the mechanical

equivalent to current and p is the equivalent to voltage.

and minor loss

KL =
∆p

ρ0U2
/

2
, (1)

and will help provide limits for control systems. The ex-
perimental facility and measurements will be described fol-
lowed by results and conclusions.

2 Experimental Facility
A picture of the test setup is shown in Fig. 2. Com-

pressed air was supplied to a pressure regulator which was
controlled using an analog signal from a DAQ board from
National Instruments and LabVIEW software. A pressure
transducer from Omega was placed at the output of the
pressure regulator and its analog output was sampled us-
ing the same board. The software set the time-averaged
pressure to the desired value. The air was then fed through
5/32-inch inner diameter tubes into a solenoid valve from
FESTO. Another tube connects the valve to a block con-
taining a high-speed pressure sensor and a flow passage of
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Figure 2. Experimental setup for a system with 3.5 inches of tube length.

Dimensions are given in inches. The probe is positioned at the exit plane

using a camera with microscope optics above the exit. The 2-inch exit

block holds the tube to allow a hot film probe to be safely placed at the

exit. The minor loss holder is located at 3.5 inches, and the pressure

sensor is at 5.8 inches. The solenoid valve is at the right hand side of the

image. For longer tube lengths, the tube between the minor loss and the

exit block is changed.

the same ID as the tube to the variable minor loss. The
length of the tube between the valve and minor loss was
varied.

The hot film probe was connected to a constant temper-
ature anemometer from TSI and its output was read by the
DAQ board. The probe was calibrated using a calibration
unit on site. Air properties were measured at calibration
time and velocities were calculated using Bernoulli’s equa-
tion. A curve fit was applied to compute the velocity from
the hot film voltage.

The voltage to the solenoid valve was controlled by
a solid state relay, model number HFS33, driven by the
DAQ board. Square waves of various frequencies were sent
through the relay to create pulses in the gas-filled tube.

In all cases, the frequency response is compared to
steady flow through the same system. Sonic flow is sus-
pected at points in the tube for some operating conditions,
and choking through the minor loss is probable, especially
in the cases with the highest loss. Steady flow was mea-
sured at various source pressures to observe general trends
in the behavior of the average velocity, U (the velocity val-
ues are divided by 2 to allow comparison to a square wave
as described below). In Fig. 3 the trend in the data appears
to follow a power law and looks similar to the data of [2].

Figure 3. Graph showing a power law trend between pressure and stan-

dard deviation of velocity with a loss factor value of KL = 1.135. L = 1
in (◦), L = 10 in (�), L = 30 in (�), L = 100 in (4)

This was the case for all but the largest KL value, which
is shown in Fig. 4. It is believed that the change in be-
havior is due to choking. The pressure does not scale with
ρU2 in most cases, which is likely due to compressible ef-
fects. With the pressure regulator available to us, the low-
est supply pressure we could maintain was 2 psig, and even
for lower pressures the relation did not help in normalizing
steady state velocities.

The minor loss was varied by placing disks with dif-
ferent sized sharp-edged holes drilled through their center
inside an orifice holder. Losses were modeled as a sud-
den contraction and a sudden expansion. Losses were com-
puted for an expansion using KL = α(1−d2/D2) [4]. Val-
ues for KL for a sudden contraction were taken from [4]. A
sketch of the orifice holder is shown in Fig. 5.

The solenoid valve was driven by a 50% duty cycle
square wave at various frequencies. Sampling rates were
varied to provide independent samples and to capture a
fixed number of periods for each non-steady case. All cases
captured 10,000 data points. Rates and sampling times are
given in Table 1. Parameters varied in the experiment are
shown in Table 3.

The solid state relay was checked to determine its in-
fluence on the response. The signal from the DAQ board
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Figure 4. Steady flow velocity (divided by 2) as a function of source

pressure for a minor loss value of 1.454. L = 1in (◦), L = 10in (�),

L = 30in (�), L = 100in (4)

Figure 5. Minor loss element. Discs with varying center holes are held

between the two pieces to create a sudden contraction and expansion.

Table 1. Sampling Parameters

Signal Frequency Sampling Frequency Sampling Period

f [Hz] fs [Hz] T [sec]

0 400 25

10 400 25

50 2000 5

100 4000 2.5

200 8000 1.25

Table 2. Relay Response

f [Hz] φon [Deg] φo f f [Deg]

10 0 0

50 9 18

100 18 28.8

200 21.6 50.4

Table 3. Experiment Variables

f [Hz] KL Tube Length [in] Pressure [psi]

10 0.346 1 2

50 0.815 10 10

100 1.135 30 50

200 1.454 100

was compared to the output from the relay. These signals
were viewed on an oscilloscope and sampled with the DAQ
board. As can be seen in Table 2, the relay did contribute to
a phase lag for the response of the system, but the magni-
tude was not attenuated. The phase angle delay for turning
on was less than for turning off.

3 Uncertainty Analysis
The hot film probe was aligned in the calibrator man-

ually. Care was taken to place the probe as closely in the
center of the opening as possible and at the exit plane. To
assure that the human error in placing the probe was negli-
gible, the probe was removed and replaced in the calibrator
facility several times for a low and high pressure. The volt-
age from the hot film probe was recorded each time. At
a set pressure there was no significant difference between
trials. The pressure sensor used has a resolution of 0.0001
mm Hg. Atmospheric pressure was read from a barometer
with a resolution of 0.1 mm Hg. The calibration data were
fit to a 3rd order polynomial and the the error between the
calibration points and the curve was computed. These er-
rors were kept below 5% of the velocity. The curve fit was
often split in 2 or 3 sections to keep error small across the
broad range of velocities needed. For high pressure, very
large velocities were experienced, but the ability to accu-
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Figure 6. Phase-averaged dimensionless velocity vs. t/T for several

frequencies. As frequency increases the phase angle increases and the

signal approaches a flat line. The dashed lines are the signal from the

solid state relay. A tube length of 3.5 inches, KL = 0.815, and an input

pressure of 2 psig was used.

rately report low velocities was still required because the
valve was shut for part of the cycle.

To collect data the probe was again aligned manually,
but a traverse was available to make placing the probe right
at the exit plane much easier and more accurate. The veloc-
ities were then phase averaged to produce one characteris-
tic period. The precision uncertainty for each point on the
wave is given by 1.96∗σ/

√
N with 95% confidence, where

σ is the standard deviation of the phase-averaged data. Pre-
cision uncertainty was kept within 5% of the mean by in-
creasing N to 10,000 for all cases.

4 Results
Examples of how the signal frequency and tube length

influence the output velocity waveform are shown in Fig. 6
and Fig. 7. The effect of the magnitude of the minor loss
placed before the diffuser is shown in Fig. 8. In each of
the plots, v/v∗ is the phase-averaged velocity normalized
by the mean steady velocity (note that U = v∗/2) and t/T
is time normalized by the cycle period.

For most flow control applications, including the one
of interest here [5], pneumatic control relies on both the

Figure 7. Phase-averaged dimensionless velocity vs. t/T for several

lengths. An increase in tube length increases the capacitance of the sys-

tem, which causes the signal to flatten out. A minor loss of 1.135, an input

pressure of 10 psi, and frequency of 10 Hz was used.

Figure 8. Phase-averaged dimensionless velocity vs. t/T for several

minor loss values. The minor loss has a large impact on the magnitude of

the response. The loss also contributes to a slow discharge time, which

flattens the signal. A tube length of 10 inches, an input pressure of 50 psi,

and frequency of 10 Hz was used.
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largest and smallest velocity. In other words, achieving a
large velocity at the exit is of little use if the velocity does
not also reduce to near zero. After trying several other mea-
sures of the pulse “robustness,” we have settled on using
the standard deviation of the velocity signal as a measure,
since it is sensitive to both the maximum and minimum ve-
locity. The standard deviation of the velocity signal is used
to help measure how close to a square wave the velocity
signal was. If the velocity fails to return to a zero veloc-
ity between pulses, or if the peak velocity is attenuated, the
standard deviation decreases.

The standard deviations of the velocities are normal-
ized by half the steady flow (0 Hz, corresponding to when
the valve is open) value since the standard deviation for a
square wave with a duty cycle of 50% that goes from 0
to A is A/2. By normalizing the standard deviation of the
phase-averaged velocity (U) by half the steady flow veloc-
ity in the same system (U0), a perfect square wave output
will result in a value of unity while steady flow would result
in 0. Therefore, in general, 0 < U/U0 < 1.

Data were first acquired with no minor loss and a 1-
inch tube to examine the response of the valve. The data
are shown in Fig. 9. The manufacturer specifies the nomi-
nal time for the valve to open and close as 1.9 ms and 1.7
ms respectively. Given these values and backed by earlier
experiments, the cutoff frequency for the valve is about 278
Hz. The on and off times do produce phase lag, but it is
about the same on both ends. For low pressure, the system
was more sensitive to frequency. As pressure is reduced,
the capacitance is increased, which causes lower frequen-
cies to be attenuated more.

Measurements were made for all 240 combinations of
variables. The velocity response data for all cases are
shown below in Fig. 10, Fig. 11, Fig. 12, and Fig. 13 for
tubes of 3.5, 10, 50, 30 and 100 inches, respectively. The
standard deviation of the velocity normalized by the steady
flow value divided by 2, U/Uo is graphed along the y axis.
This represents the standard deviation of the velocity nor-
malized by the standard deviation of a square wave with
an amplitude equal to the steady flow velocity through the
same system. The response generally drops off with fre-
quency as expected, although, in some cases, it increases.
This is especially true for the longer tubes which have reso-
nant frequencies in the range of the excitation frequencies.
Generally, as the frequency increases, the pulses becomes
less distinct until it deteriorates to a steady state velocity.

Figure 9. The frequency response for a system with no minor loss and

minimal tubing.

Any value reported below about 0.6 is deemed not useful
for control.

Some other trends are noted:

1. While a larger input pressure results in larger velocity
at the exit for steady flow, larger pressures result in re-
duced performance for pulsed flow.

2. This becomes more true for longer tubes. For the
longest tube studied here, a 50 psig supply case could
not be successfully pulsed even at 10 Hz.

3. The minor loss has a similar effect as the tube length.

5 Transmission Matrix Model
Flow through a solenoid valve introduces oscillations

to the mean flow. Such steady-oscillatory flow in a pip-
ing system can be analyzed either in the time domain or
in the frequency domain. The transfer matrix method has
been an effective tool to determine the frequency response
of piping system [6]. The present piping system, illustrated
at Fig. 14, consists of duct (pipe) and orifice. The transfer
matrix (TM) representation can be deduced once the TM of
each component is derived. Since this model assumes in-
compressible flow, the model will be compared to only the
smallest inlet pressure data.
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Figure 10. Normalized standard deviation for 3.5-inch length.

5.1 Duct
The TM of duct component, such as pipe 1, 2, 3 and 4

in Fig. 14, is given by [7] as

[
p′

u′

]
pout

= e jMkcL

·

[
cos(kcL) − jρ0c0ηsin(kcL)
− j

ρ0c0η
sin(kcL) cos(kcL)

][
p′

u′

]
pin

(2)

where L is the length of the pipe, M = U/c0 << 1 is the
Mach number of mean flow, ()′ denotes the perturbation of
the mean flow at the entrance and exit of the pipe, which

Figure 11. Normalized standard deviation for 10-inch length. Legend

shown in Fig. 10.

Figure 12. Normalized standard deviation for 30-inch length. Legend is

shown in Fig. 10.

is assumed to be small in comparison with its mean flow
counterparts. The air density and isentropic speed of sound
in air are denoted ρ0 and c0 respectively, and

η
.= 1+

α+ζM
k0

− j
α+ζM

k0
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Figure 13. Normalized standard deviation for 100-inch length. Legend

is shown in Fig. 10.

Figure 14. Illustration of a piping system used for the TM model.

kc = [k0− j(α+ζM)]/(1−M2). (3)

The coefficients α and ζ account for the visco-thermal loss,
and are given by

α =
1
a

√
ωµ

2ρ0c2
0
(1+

γ−1√
Pr

). (4)

and

ζ = ψ/2D, (5)

where Pr is the Prandtl number, 2a = D is the hydraulic
diameter of the pipe, γ is the ratio of specific heats, ψ =

4τ̄w/
(
1/2ρ0U2

)
is the pipe friction factor (assumed to have

a value of 0.0072) , τ̄w is the average wall shear stress, and
ω = k0C is the angular frequency of the oscillation. The
solenoid valve is excited by a non-sinusoidal periodic sig-
nal, in this case a pulse. For this reason, the periodic oscil-
lation is decomposed into Fourier series (harmonics), and
the system response is the summation of the response to
each harmonic.

5.2 Orifice
The TM of an orifice is given by [8] as[

p′

u′

]
Oout

=
[

1 −ρ0c0MKL

0 1

][
p′

u′

]
Oin

(6)

where the coefficient KL represents the combination of the
effect of the geometry and the vena contracta of the orifice.
The coefficient K depends on the orifice geometry and ori-
fice Reynolds number. Typical values of coefficient K as
function of Reynolds number are published in [9].

Hence, the TM of the piping system shown in Fig. 14
is

[
p′2
u′2

]
=
[
TMpipe4

][
TMpipe3

]
[TMorifice][

TMpipe2
][

TMpipe1
][ p′1

u′1

] (7)

Moreover, because the exit of the piping system is an
unflanged open-end of a duct of radius r0 with a flow of
Mach number M, the radiation flow impedance of the ori-
fice is given by [10, 11, 12],

p′2
u′2

= Zr (M) = Rr (M)+ jXr (M)
Rr (M)≈ Rr (0)−1.1Mρ0c0
Xr (M)≈ Xr (0)
Zr (0) = Rr (0)+ jXr (0) = ρ0c0

1+ℜ

1−ℜ

(8)

where the reflection coefficient ℜ at the orifice is

ℜ = |ℜ|e j(π−2k0δ),

|ℜ| ≈ 1+0.01336k0r0−0.59079(k0r0)
2

+0.33756(k0r0)
3−0.06432(k0r0)

4
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Figure 15. Comparison between the TM prediction and experimental

data for the standard deviation of velocity at the exit for KL = 0.346

for k0r0 ≤ 1.5, where δ is the end correction which is given
by

δ =
[
0.6133−0.1168(k0r0)

2
]

r0 k0r0 ≤ 0.5

= [0.6393−0.1104k0r0]r0 0.5 < k0r0 < 2.

Thus, from Eq. (7) and (8), once one of variables (p′1,
u′1,p′2, and u′2 ) is known, other variables can be resolved.
For all cases, the pressure after the solenoid valve and mean
flow velocity at the exit are known. Figure 15 and 16 show
the comparison between the TM prediction and experimen-
tal data for the velocity (rms) at the exit with different
length of pipe 1 and KL = 0.346 and 1.135, respectively.
The results show the TM predictions match the trends and
are near the magnitude of the experimental data, with the
exception of low frequencies for the larger loss.

CONCLUSIONS
Experiments on the response of a pneumatic system

consisting of a pressure source, a solenoid valve, and a a
minor loss, have been presented. As expected, it was found
that the response of the system decays with increases in the
tube length, the minor loss, and the frequency. A transfer

Figure 16. Comparison between the TM prediction and experimental

data for the standard deviation of velocity at the exit for KL = 1.135

matrix model was compared with the data for one case, and
it was found that the model predicts the same trends with
frequency and similar velocity fluctuations as found in the
experiments.
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