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ABSTRACT 
 

 NUREG/CR-5249 “Quantifying Reactor Safety Margins 
Application of Code Scaling, Applicability, and Uncertainty 
Evaluation Methodology to a Large Break, Loss-of-Coolant Accident” 
provides the general methodologies to be used in the development of 
realistic loss of coolant safety analyses. The objective of this paper is 
to start with NUREG/CR-5249 and develop a modified methodology. 
The modified approach will include a response surface, model 
adequacy checks, and development of the 95/95% confidence peak 
clad temperature cumulative distributions function. The response 
surface model will then be used to develop simulated results and 
conclusions about the order statistics best estimate approach. All work 
is conducted using a verified safety analysis input deck and RELAP as 
the thermal hydraulic best estimate analysis code.  
 

The objective of the order statistics comparison is to investigate 
the number of cases in which the maximum PCT, in a simulated order 
statistics approach, falls below the 95th percentile value of the 
distribution and to assess the standard deviation in the maximum peak 
clad temperature of order statistics sets.  
 

Although order statistics may be a more economic approach to 
satisfying regulatory requirements, response surface models have 
several benefits that can complement the use of order statistics. The 
primary benefit is the insight gained into which parameters are most 
important in determining the peak clad temperature. This is of 
particular value to the licensee in convincing the regulator that its 
analysis is robust. The disadvantage is the number of runs required to 
develop the models. If we examine the main effects, the most 
significant input parameter is pipe break size. In support of a proposed 
modification to 10CFR50.46, the U.S. Nuclear Regulatory 
Commission undertook an expert elicitation to assess the change in 
frequency of pipe break accidents as a function of break size.  The 
result of that elicitation was a probability density function that 
decreases approximately as (pipe diameter)-1.5 in the region of large 
pipe diameters. Because break diameter is shown to be such a large 

contributor to PCT by the response surface, it is evident that calculated 
PCT could be substantially reduced if credit were given for this form 
of the uncertainty distribution rather than for the flat distribution used 
in the analysis (and industry). 

 
INTRODUCTION 

 
 Loss of Coolant Accidents (LOCAs) are design basis accidents 
which must be analyzed to obtain an operating license for nuclear 
power plants.  Reanalysis is also required whenever a major change is 
made to the plant, such as a new fuel design.  The objective of this 
paper is to use statistical techniques to develop a response surface 
model.  A response surface model is an empirical model, typically a 
polynomial, which is used to approximate an unknown function given 
a range of inputs. The fit of the response surface model will be 
assessed. Once the adequacy of the fit is determined, the model will be 
used to analyze the applicability of the order statistics approach to 
LOCA analyses. The order statistics approach is a non parametric best 
estimate approach currently used by Westinghouse and AREVA.  
Finally, future modeling techniques will be recommended. 

 
BACKGROUND 

 
10 CFR 50 “Domestic Licensing of Production and Utilization 

Facilities” [1] provides the framework for which nuclear power plants 
are regulated by the United States government.  Section 50.46 
“Acceptance Criteria for Emergency Core Cooling Systems for Light-
Water Nuclear Power Reactors,” provides the specific regulatory 
guidelines for a loss of coolant accident, a design basis accident.  
Appendix K “ECCS Evaluation Modules,” of 10 CFR 50, provides the 
required features of a loss of coolant evaluation model as well as the 
required documentation.  At the time of the development of these 
sections of 10 CFR 50, computing power and research on loss of 
coolant accidents were limited.  As a result, the methodologies 
developed and analyses were treated conservatively.  The requirements 
and guidelines were subsequently modified to allow for a realistic or 
best estimate analysis with consideration of uncertainties.  The 
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treatment of uncertainties is performed in a manner such that the 
results have a high degree of confidence that the acceptance criteria 
set forth in Section 50.46 are not violated.  Currently, two major 
pressurized water reactor vendors in the United States, Westinghouse 
and AREVA, apply both the conservative (commonly referred to as 
Appendix K calculations) and best estimate or realistic methodologies.  
The percent difference in PCT between the realistic methodology and 
Appendix K methodology can be on the order of 45% difference. The 
conservative Appendix K calculations, in many cases, are the limiting 
accident analysis, meaning that the LOCA analysis can dictate fuel 
designs, cycle time and operating power, ultimately having an impact 
on profitability of the plant. 

 
NUREG/CR-5249 “Quantifying Reactor Safety Margins 

Application of Code Scaling, Applicability, and Uncertainty 
Evaluation Methodology to a Large Break, Loss-of-Coolant Accident” 
[2] provides the general methodologies to be used in the development 
of a realistic loss of coolant safety analysis.  NUREG/CR-5249 also 
provides a sample methodology and analysis of a realistic loss of 
coolant accident. 

 
REVIEW OF CURRENT (ORDER STATISTICS) 
LBLOCA METHODOLOGY 

 
NUREG/CR-5249 provides the building blocks on which today’s 

RLBLOCA methodologies are based.  In practice, the capabilities and 
assessment and ranging of parameters sections of the CSAU 
methodology are still followed in the development of current 
RLBLOCA methodologies. However, the response surface 
methodology presented in NUREG/CR-5249 is not the preferred 
methodology in use by the reactor vendors. Both AREVA’s and 
Westinghouse’s current methodologies for RLBLOCA are non-
parametric, order statistics, based methodologies [3,4]. 

 
Order statistics are, as the name implies, an ordering of random 

variables from independent and identical distributions where each 
random variable has a probability density and a cumulative 
distribution function. For example, in LBLOCA the PCT is the 
primary safety criterion reported.  Assume “n” sets of parameters are 
developed by randomly selecting values from each of the uncertainty 
distributions.  The “n” LOCA cases are then run with the RELAP code 
resulting in “n” PCTs. These “n” PCT results are then ordered smallest 
to largest.  The smallest PCT value would be the first order statistic, 
PCT(1), and the largest PCT value would be, PCT(n).  Let the smallest 
order statistic be V and the largest be U while values in between are 
the Kth order statistics (remember the PCT order statistic are random 
variables).  Order statistics can be used to answer the following 
questions: 

     
 What are the CDF and PDF of V? 
 What are the CDF and PDF of K? 
 

Before describing how order statistics are applied, a basic 
understanding of current RLBLOCA methodologies is required.  
AREVA and Westinghouse have similar methodologies.  Both 
methodologies follow the steps prescribed by the CSAU methodology 
(frozen code, nodalization analysis, PIRT, etc.).  Rather than using a 
response surface along with a Monte Carlo sampling to derive the bias 
and uncertainties associated with code scaling, code limitations and 
operating condition as recommended in the CSAU methodology, 
AREVA and Westinghouse use order statistics. In the order statistics 

approach input parameters are randomly sampled from known and 
bounding ranges. Then the frozen code, with the sampled input 
parameters, is run resulting in a PCT. If one were to sample and run 
the frozen code several thousand times, this would be a direct Monte 
Carlo analysis resulting in a CDF of the PCTs. In the case of the 
CSAU methodology, a response surface model would be developed.  
Because the response surface model can be run very quickly on a 
computer, the input parameters could be sampled for several hundred 
thousand cases resulting in a CDF of PCTs that has very little 
statistical variability. The objective of the order statistics method is not 
to approximate the CDF of the PCT. The objective is to develop a 
tolerance level where the result states that you are 95% confident that 
one of the cases is in the 95th percentile of PCTs for an unknown CDF 
of PCTs. Thus, when the licensee submits the value of the PCT to the 
regulator, they are not stating that the value quoted is the 95th 
percentile value but that they are 95% confident that the 95th 
percentile value is smaller than the value submitted. Put another way if 
one samples a set of inputs and determines a PCT and repeats this 
process at some point, you could ask the question “how confident am I 
that a PCT in the 95% is included in this set of PCTs?”  The question 
then is how many cases are required using the order statistics method? 
The answer to this question was presented by Wilks where a simplified 
summery of Wilks work is presented by Frepoli [3] as: 

 
 

(1 )N                               (1) 
 

Where 
β = confidence level input 
γ = percentile input 
N= number of trials 

 
 
For β= 1-0.95= 0.05 (95% confidence level) and γ= 1-0.95= 0.05 

(95th percentile PCT) then the required number of cases N is 59. 59 
cases was the number of cases required in the AREVA methodology.  
Westinghouse requires 124 samples. The reason for the difference is 
that there are actually three different criteria (PCT, local oxidation, 
and core wide oxidation) that must be satisfied in the analysis. 
 

Given that order statistics analyses and best estimate approaches 
are fairly new to the regulator, the reporting requirements are 
sometimes satisfied by the licensee by submitting results similar in 
format to parametric Appendix K analyses.  For example, the regulator 
often requires that the peak case (case with the highest PCT) and the 
associated inputs with the peak case must be submitted.  Historically 
parametric calculations determine the limiting input condition for each 
input and each input is reported.  However, this is not appropriate for 
order statistics based analyses as each input parameter is randomly 
sampled from a predetermined and bounding range (typically a 
uniform distribution).  Thus no conclusions should be drawn from one 
case alone.  In general, the only conclusion that can be drawn from an 
order statistics analysis is that one is 95% confident that the largest 
PCT obtained in a set of 59 cases is greater than the 95th percentile 
value. 

 
 

METHODOLOGY 
 



 3 Copyright © 2010 by ASME 

The methodology used to develop the response surface is a 
derivative of the CSAU methodology and current realistic LOCA 
methodologies. 

 
A response surface model is an empirical model developed to 

approximate an unknown function.  In our case, the function being 
approximated is PCT as calculated by the RELAP computer code.  
There are 14 input parameters that are treated as having uncertainty 
distributions. A response surface model is typically a linear or 
polynomial function. Equation 2 represents a second order polynomial 
with cross term effects. Response surfaces are typically developed 
based on results from experiments in a lab or a manufacturing process. 
Since it is impractical to run physical LOCA experiments over a 
variety of conditions in an operating reactor, the response surface 
developed is a meta-model. A meta-model is a model developed from 
a computer simulation, where the computer simulation is designed to 
represent a physical process.  In our case the meta-model is a model of 
a LOCA event run using RELAP. The motivation for developing the 
model is to be able to run a large number of cases quickly.   
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The first step in the development of the response surface model is 

to select input parameters that will be included in the response surface 
model.  The goal is to select parameters that have the largest impact on 
PCT.  Table 1 presents the 14 parameters that were selected based on 
engineering judgment and considerations related to ease of execution.  
After a response surface model is developed it can be examined to 
determine which parameters have the largest significant impact on 
PCT. If parameters are shown to have a very small impact they should 
be removed from the model and the model should be developed again.  
This iterative screening process was not possible due to the logistics of 
running a large set of cases multiple times.  For this reason the 14 
parameters selected (see Table 1) are all included in the response 
surface models.  

  
Once the input parameters are selected a design matrix must be 

developed.  The design matrix (X) is used to solve for the coefficients 
(βs) in the regression model. The coefficients are obtained using 
classic linear regression techniques.  The linear regression is 
preformed using the built-in functions regress and regstats in Matlab 
(Matlab R2006b).  

 
The biggest challenge in obtaining a response surface that 

represents the unknown function (PCT) accurately, in the region of 
interest, is in the choice of the design input matrix.  In typical response 
surface applications a small set of parameters is varied.  With a limited 
number of parameters factorial designs are commonly used. With 14 
parameters, a full factorial design would require 16,384 cases. Partial 
factorial designs and various other designs are also frequently used 
when the performance of a full factorial design is impractical. 
However, a latin hypercube design, also called a space filling design, 
was selected to develop the input matrix. The concept of the latin 
hypercube design is to evenly cover the range of each input parameter 
and evenly fill the operating space. The latin hypercube design is 
developed using the Matlab function lhsdesign. Finally, the number of 
cases to be run in RELAP is dictated by the response surface model 

that is to be fit: linear, second order, second order with cross effects, 
etc. Solving for the regression coefficients requires the design matrix 
be over defined (more cases than regression coefficients). In the cases 
of the second order polynomial fit with cross effects 150 total cases 
were run. In addition to the 150 cases a set of 24 additional cases were 
run to test the model accuracy.  
 

 

x1 Assembly Burnup 

x2 Peaking Factor, Fq 

x3 Axial Sku (bottom,top) 

x4 Radial Peaking Factor A 

x5 Radial Peaking Factors B 

x6 One-Sided Break Size 

x7 Decay Heat Coefficient 

x8 Pressurizer Critical Flow Coefficient 

x9 Film Boiling Heat Transfer Coefficient 

x10 Biasi  CHF 

x11 Initial Stored Energy 

x12 Condensation Interphase HTC 

x13 Accumulator Pressure 

x14 Accumulator Volume 

 
Table 1: 

Input Parameters 
 

 
ANALYSIS APPROACH 
 

Once the response surface model is developed the models are 
checked for fit and accuracy. A limiting PCT is determined from the 
CDF derived from the response surface model. Finally, sets of 59 and 
124 cases are run and comparisons are made to the order statistics 
approach. 

 
Since RELAP is a deterministic code (the same results will be 

repeated given the same inputs, no random error) the only error 
associated with deterministic models is a bias term.  For this reason 
many classic statistic tests, for example F-tests and t-tests, are not 
applicable [5]. Simpson [6] recommends model adequacy be based on 
R-squared tests, residuals and validation though additional data points.  
Because R-squared values always improve with additional parameters, 
R-squared adjusted values will be reported [5]. Residual plots for the 
base set of runs, plus residual plots including a set of 24 additional 
cases that were not used in the development of the response surface, 
are used to determine the adequacy of fit. 

 
A limiting PCT is determined based on CDFs that are generated 

from multiple runs of the response surface model. Inputs to the 
response surface models are generated using Monte Carlo sampling. 
The model is then run resulting in one PCT.  This sampling process is 
repeated 1,000 times and the results are ordered. This results in an 
ordered array of 1,000 PCTs. The plot of ordered PCTs produces an 
approximation to the CDF of the response surface model. The 
development of the CDF process is repeated again 1,000 times and 
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1,000 CDFs are plotted on the same graph. The 95th percentile value 
for each of the CDFs is then plotted in a histogram and a set of 1,000 
of the 95th percentile PCTs is plotted. The result is an approximation of 
the PDF (histogram) and CDF of the 95th percentile PCTs. The 
limiting PCT is reported as the 95th percentile point from the 95th 
percentile CDF. The result provides 95 percent confidence that the 95th 
percentile PCT is less than or equal to the value quoted. Thus 
1,000,000 simulated LOCA cases total are run with the response 
surface model. 

 
To test the ability of order statistics to reliably bound the 95th 

percentile PCT, 1,000 sets of 59 cases and 124 cases are run. Two 
results are derived from these sets of cases. First the standard 
deviation of the peak PCT is reported. Second, a CDF is developed 
from the response surface by running 100,000 trials. This CDF is 
assumed to approximate the actual CDF. To verify the validity of the 
order statistics approach one can compare the number of times the 
peak case from the sets of 1,000 runs of 59 and 124 cases falls below 
the 95th percentile PCT of the approximated CDF. The peak PCT value 
in the sets of 59 and 124 would be expected to be greater than the 95th 
percentile value predicted by the approximated CDF 952 out of the 
1,000 sets of runs for the 59 cases and 998 out of 1,000 sets for the 
124 case runs. 

RESULTS OF THE SECOND ORDER RESPONSE 
SURFACE MODEL 
 

The linear regression coefficients of the response surface model 
provides insight into what parameters are the most significant in the 
resulting PCT.  A linear model, which is not presented here, indicated 
that break size was, by a large margin, the most statistically important 
input parameter to PCT during a large break LOCA. Similar results 
were seen in the coefficients of the second order model.  In addition to 
break size, power peaking factor, axial skew, and decay heat 
coefficient were shown to be some of the most statistically important 
inputs when calculating PCT. 

 
The response surface model must be checked for adequacy of fit 

to both the input data and a set of points that were not used in the 
development of the response surface. The model has an R squared 
adjusted value of 0.94, indicating that the quadratic model matched the 
design matrix point fairly well. Figure 1 is a plot of the residuals from 
the linear regression modeling. The quadratic models residuals are 
approximately +/- 150 oF. From Figure 2 the residuals based on cases 
which were not part of the design matrix are larger than those shown 
in Figure 1, +/- approximately 225 oF. This is not unexpected but is an 
indication that the response surface does not capture the complete 
behavior of the RELAP5 analysis. In a regulatory application, a 
characteristic value for the residual would be added to the 95/95 PCT 
for conservatism. In practice, these residuals and the fit of the models 
would have to be improved. To do this an iterative screening and 
modeling process could be done. The residuals of the cases that were 
not part of the screening might indicate that more data points are 
needed.    
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Figure 1: 
Residual vs. PCT Scatter Plot, Experimental Cases 
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Figure 2: 
Residual vs. PCT Scatter Plot, Sample Cases 

 
 
 
 
 
 
Figure 3 is a plot of the 1,000 sets of CDFs developed by running 

the response surface model (each CDF line contains 1,000 PCT 
points). A histogram approximating the PDF of the 95th percentile PCT 
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is then developed and the accompanying CDF is plotted in Figure 5. 
The mean 95th percentile PCT was found to be 1820 oF. The 95th 
percentile PCT of the CDF of the 95th percentile PCTs is found to be 
1846 oF.   
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Figure 3: 
CDF for 1,000 Trials 
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Figure 4:  
PDF for 95th Percentile PCT Values 
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Figure 5:  
CDF for 95th Percentile PCT Values 

 

RESULTS OF THE ORDER STATISTICS COMPARISON 
 

Although the response surface developed for PCT is not a precise 
representation of the RELAP5 analysis of PCT, it has the complexity 
and characteristics of the RELAP5 analysis. Thus, it provides a 
suitable surrogate for demonstrating that order statistics predicts the 
95th percentile PCT with the required confidence and for indicating 
how large the deviation might be for those cases in which by chance 
the licensee’s calculated maximum PCT actually does not fall within 
the 95% confidence interval. The objective of the order statistics 
comparison is to compare the number of cases in which the maximum 
PCT in a set of runs falls below the 95th percentile value of the 
distribution and to assess the standard deviation in the maximum PCT 
for 1,000 sets of 59 and 124 cases. An accurate CDF is developed by 
running 100,000 trials. The results can be seen in Figure 5.  The 95th 
percentile PCT from this CDF is 1821 oF. To verify that the confidence 
level is met, this 95% value is compared to the peak point in each set 
of 59 and 124 cases. If the peak PCT in a set is below 1821 oF, it is 
considered a failure.  1,000 sets of 59 cases were run.  Using the Wilks 
formula, one would expect 48 sets to fail.  The CDFs for 1,000 sets of 
59 cases are shown in Figure 6.  The number of sets in which the 
maximum PCT was found to be less than 1821 oF is 37, which is in 
reasonable agreement with the 48 cases expected. Similarly for 1,000 
sets of 124 cases, the Wilks formula indicates that 2 sets would be 
expected to have a maximum PCT less than 1821 oF. The CDFs are 
shown in Figure 7. The number of sets in which the maximum PCT 
was found to be less than 1821 oF is 4, which is in reasonable 
agreement with the 2 cases expected. 

 
For the regulator, a natural question is “Suppose by chance the 

licensee’s analysis falls outside the 95% confidence level (i.e. the 
maximum PCT from the set is less than the 95th percentile of the true 
CDF), how large might the error be?”  One standard deviation is 
approximately 90 oF. Of the 1,000 trials with 59 cases, the lowest 
value of maximum PCT obtained was 1735 oF, which represents a 
deviation from the true 95th percentile value of approximately 86 oF.  
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Similarly, for the 124 cases, the lowest value of maximum PCT 
obtained was 1796 oF, which represents a deviation from the true 95th 
percentile value of 25 oF.   
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Figure 5:  
CDF for 100,000 Trials 

 
 
 
 
 
 

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PCT Temperature (F)

C
D

F

 
 
 

Figure 6:  
CDF for 1,000 Trials of 59 Cases 
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Figure 7:  
CDF for 1,000 Trials of 124 Cases 

 
 

CONCLUSION 
 

Because the response surface is not a perfect fit to the RELAP5 
PCT results, it would be necessary to include a bias term in the 
maximum PCT.  Given a 95th percentile PCT of 1821 oF and adding a 
bias based on the residuals of approximately 225 oF will result in a 
PCT of 2046 oF. Attempts should be made to reduce this bias by 
improving the fit of the response surface to the RELAP5 results. A 
required step to improve the model fit would be an iterative process 
eliminating parameters that are not statistically important. Alternate 
modeling techniques could be used in an attempt to improve model 
accuracy.  Simpson [6] recommends neural networks as a possible 
modeling technique. 

 
Although order statistics may be a more economic approach to 

satisfying regulatory requirements, response surface models have 
several benefits that can complement the use of order statistics.  The 
primary benefit is the insight gained into which parameters are most 
important in determining the peak clad temperature.  This is of 
particular value to the licensee in convincing the regulator that its 
analysis is robust.  The disadvantage is the number of runs required to 
develop the models.  

  
If we examine the main effects in the response surface, the main 

effect is pipe break size. In support of a proposed modification to 
10CFR50.46, the U.S. Nuclear Regulatory Commission undertook an 
expert elicitation to assess the change in frequency of pipe break 
accidents as a function of break size.  The result of that elicitation [7] 
was a probability density function that decreases approximately as 
(pipe diameter)-1.5 in the region of large pipe diameters. Because break 
diameter is shown to be such a large contributor to PCT by the 
response surface, it is evident that the calculated PCT could be 
substantially reduced if credit were given for this form of the 
uncertainty distribution rather than for the flat distribution used in the 
analysis (and industry).  The second largest term is radial peaking 
factor.  The power level in the highest power fuel pin is directly 



 7 Copyright © 2010 by ASME 

proportional to this term.  Not surprisingly, the cross terms for these 
two variables are typically large.   

  
Based on 1,000 sets of simulated order statistics analyses with 59 

case and 124 case approaches (using the response surface model 
developed), it was demonstrated that the order statistics approach can 
be used to estimate 95th percentile PCT with a predictable high degree 
of confidence.  In addition, these analyses showed that, in the event 
the analyst happened to select a set of inputs that were outside the 
confidence range (i.e. produced a maximum PCT that was less than 
the true 95th percentile), the resulting under-estimate of maximum PCT 
is likely to be small. 

 

NOMENCLATURE 
 

CFR  Code of Federal Regulation 
NRC  Nuclear Regulatory Commission 
LOCA  Loss of Coolant Accident 
LBLOCA  Large Break Loss of Coolant Accident 
ECCS  Emergency Core Cooling System 
PCT  Peak Clad Temperature 
MSE  Mean Squared Error 
CDF  Cumulative Distribution Function 
PDF  Probability Density Function 
SER  Safety Evaluation Report 
RLBLOCA Realistic Large Break Loss of Coolant Accident 
β   Confidence level 
γ   Percentile 
N   Number of cases required 
β0, …, β14  Response surface coefficients 
X1, …, X14  Reponses surface input parameters 
PCT   Peak clad temperature from the response surface 
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