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ABSTRACT 
In this study, the representation of discretization error 

using Taylor series in finite difference solutions is investigated 
as well as the behavior of the exact solutions to the finite 
difference equations as a function of the grid size and grid 
refinement factor. The results are compared to the classical 
Richardson Extrapolation method whereby the numerical 
solution (or the error) is explicitly expressed as a Taylor series 
expansion. The exact finite difference solutions are used to 
demonstrate that oscillatory convergence is a common 
occurrence. The expansion of the numerical solutions in Taylor 
series is based on the exact finite difference solutions that are 
obtained using different discretization schemes. It is shown that 
in some cases the numerical solution exhibited a singular 
behavior which can not be remedied easily. Some exact finite 
difference solutions also exhibited oscillatory behavior which 
was not due to the use of mixed order terms as is usually 
believed by the Computational Fluid Dynamics community. 
Moreover, representation of the numerical solution using 
Taylor series is not always satisfactory even in case of 
relatively simple one-dimensional problems. 

 
INTRODUCTION 

Grid convergence studies in applications of CFD 
(Computational Fluid Dynamics) requires estimation of 
discretization and modeling errors along with associated 
uncertainty limits on both. This is commonly done using the 
classical Richardson extrapolation (RE) technique [1-3]. In this 
approach a minimum of three substantially different grid sets 
are needed to determine the three unknowns, namely, the 
apparent order of the scheme, p, the value of the independent 
variable extrapolated to zero mesh size, 0φ , and the constant of 

proportionality in . Examining the difference 

between the solutions 
0

p
num Chφ φ− =

12 1 2E φ φ= − , and 23 2 3E φ φ= −  on 

consecutively refined meshes, , respectively,  and  
their ratio denoted by 

1 2h h h< < 3

12 32/R E E=  three possibilities are 
identified, (1) 0.0 1.0R< < , monotonic convergence,  (2) 

 monotonic divergence,  and (3) 1.0R > 0.0R <  oscillatory 
behavior (undetermined convergence behavior). In the case of 
oscillatory behavior it is fair to say that some ad hoc criteria is 
used to determine whether the behavior can be considered a 
convergent and or divergent case (see for examples [4-7]). In 
view of the fact that the apparent oscillatory convergence 
occurs often [5, 8, 9], the present authors find the practice used 
in the literature unsatisfactory. Hence, in the current study the 
convergence behaviors of some simple finite difference 
schemes are examined in the whole spectrum of meshes using 
exact analytical solutions to the finite difference equations 
(FDEs). The objective is to investigate mechanisms by which 
oscillatory behavior can be realized and to determine whether 
such convergence behavior is acceptable or not. 
 

Another essential assumption used in Richardson 
extrapolation is that the numerical solution can be expanded 
into a Taylor expansion having the mesh size as the expansion 
parameter. To best of our knowledge, this basic assumption in 
RE has never been questioned or challenged. Since we had the 
exact numerical solutions to the FDEs it was possible to 
construct their Taylor series counterparts and examined the 
behavior of the series approximation versus the exact solutions. 
This also made it possible to study asymptotic behavior of the 
numerical solutions in the context of extrapolating them to zero 
mesh size. The objective here was to see under what conditions 
Taylor series can be used as a good approximation to the exact 
finite difference solution.  

 

NOMENCLATURE 
a  constant 
C proportionality constant 
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E approximate error 
f function 
h grid size 
p apparent order 
x x-coordinate 
  

Greek symbols 
φ  scalar 

0φ  boundary value of the scalar 

  
Subscripts 
num numerical 

1 solution on the fine grid 
2 solution on the medium grid 
3 solution on the coarse grid 

 

METHODOLOGY 
Solutions of governing equations where complicated 

source terms are applied are commonly found in CFD 
applications as is the case of the non-linear dissipation rate 
equation used in the ε−k  turbulence model. The model 
equation (Eq.(1)) studied in this work can be considered a 
simplified version of the ε -equation since it is written in one 
dimension and the temporal and diffusion terms are not 
considered. 
 

The equation to be solved is 
2

21 φφφ aa
dx
d

−=    (1)  

 
where  and the equation is subject to the boundary 
condition 

10 ≤≤ x

( ) oφφ =0     (2) 
 
The non-linear problem represented by Eq. (1) is one of 

the two cases considered in this study and the second one is a 
linear case where . 2 0a =

 
The exact solution to Eq. (1) is given by 

( ) ( )xaaaa
a

oo

o

1212

1

exp −−+
=

φφ
φ

φ  (3) 

 
and for the particular linear case where , the exact 
solution reduces to  

2 0a =

( 1expo a xφ φ= )

0

    (4) 

  
For both cases, the linear and non-linear one dimensional 

equations, the numerical solutions are obtained using different 
discretization schemes as well as different grid densities. 

 

 

RESULTS 
Linear case 

The first part of this section will focus on the solution of 
the linear one-dimensional equation where the selected 
parameter  is set to -25 and . 1a 2 0a =
 

Discretization of the governing equation (1) using first 
order forward differencing results in the following exact 
numerical solution 

( )11 i
i a hφ φ= +     (5) 

where  is the grid size and h 0φ  is the boundary value at x=0. 
The exact numerical solution at x=1 as a function of the 

grid size is as shown in Figure 1. 
 

 
Figure 1 Numerical solution at x=1.0 as a function of the 

grid size 
 

A naturally occurring oscillatory convergence is observed 
especially when coarse grids are used i.e. when 11 0a h+ < . 
Richardson extrapolation requires at least three sets of grids 
[10]. Therefore, when performing a grid convergence study, the 
conclusions arrived at will depend on which grid triplets are 
used to obtain the numerical solutions. As shown in Figure 2, 
the conclusions could lead to monotonic convergence, 
monotonic divergence or oscillatory convergence depending on 
the selected grids. 
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Figure 2 Representation of apparent trends in grid 

convergence studies depending on the selected grids, 
 1110388.1 −= xexactφ

 
As mentioned above, oscillatory convergence is observed 

on coarse grids with about 10 nodes or less. However, with this 
number of grids, the numerical solutions are not acceptable 
since they are not close to the exact solution and they are not 
physical solutions considering that the value at the boundary is 
1.0 ( 0φ ) and there is a source term (sink) in the domain, 
therefore the numerical solution should be between 1.0 and 0.0. 
The numerical solution using 10 nodes along with the exact 
solution are shown in Figure 3. Acceptable solutions are 
obtained when more than 25 nodes are used in the numerical 
simulations as shown in Figure 4. The challenging problem in 
grid convergence studies in CFD application is that the exact 
solution is not known a priori, and the source term can change 
sign and magnitude almost arbitrarily during the course of 
iterative solutions. 
 

 
     Figure 3 Numerical solution using 10 nodes 

 

 
Figure 4 Numerical solution using 30 nodes 

 
Considering numerical solutions with more than 30 grids 

( 11 a h 0+ > ), the oscillations at x=1.0 shown in Figure 1 are no 
longer apparent as shown in Figure 5. From the same figure, at 
first glance it could be thought that the numerical solution at 
that point is diverging as the grid is refined since an asymptotic 
trend is not observed as is usually expected to determine that a 
solution is becoming grid independent. However, this is not the 
case because, in fact, the solution is converging to the exact 
value (1.388x10-11). 
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Figure 5 Numerical solution at x=1.0 as a function of the 

grid size with hmax=1/30 
 
As examples of oscillatory behavior when the linear equation is 
discretized using first order forward differencing schemes for 
different values of the parameter a1 in Eq. (1) are shown in 
Figure 6. As is demonstrated with Figures 1 and 6, the 
oscillatory convergence is present as long as 1+a1h<0. 
 

 
(a) 

 

 
(b) 

Figure 6 Numerical solution at x=1.0 as a function of the 
grid size when (a) a1=-50 and (b) a1=-35 

 
On the other hand, when using first order backward 

discretization of the governing equation, the exact finite 
difference solution of the governing equation takes the 
following form 

( )
0

11i ia h
φφ =
−

    (6) 

 
The use of backward discretization does not show 

oscillatory convergence at x=1.0 even with coarse grids as 
shown in Figure 7.  
 

The exact finite difference solution shown in Eq. (6) 
potentially shows two problems. The most important one is that 
the solution is singular when  (if 1 1a h = 1 constanta = ) which 
can happen depending on the selected grid in relation with the 
magnitude of the source term which might vary with space in 
actual CFD applications. As an example, in Figure 8 the 
relative true error is plotted at the center point of the domain as 
a function of the grid size  for several values of the 
parameter . As it can be seen, the singularity occurs at 
different grid size  depending on the magnitude of the 
parameter . In general,  changes values in space, hence it 
can be expected that in different regions of the computational 
domain the singular behavior will occur at different grid 
resolutions. 

h
1a

h
1a 1a
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Figure 7 Numerical solution at x=1.0 as a function of the 

grid size using 1st. order backward differencing 
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Figure 8 Relative true errors in the center point of the 
computational domain as a function of the grid size for 

several values of the parameter  in Eq. (6) 1a
 
This problem can not be remedied in any way because it is 

a consequence of the nature of numerical methods, and 
presumably any finite difference solution scheme should 
reproduce the exact behavior of that scheme. The origin of the 
singularity is not due to the discretization of the governing 
equation using mixed order terms as is usually believed by the 
CFD community. One might think that changing to backward 
differencing may solve the problem, but then similar problems 
occur for .  1 0a >

 

The other problem arises when the grid size approaches 
zero, which produces a numerical solution of 1 over the whole 
domain. The singularity occurs when  (for 0.05h ≈ 1 2.5a = ) 
which is a reasonable grid size. The problem of the numerical 
solution approaching unity happens when the grid size is less 
than 10-16 (out of the double precision range). However, this is 
unlikely to happen in practical application of CFD since using  
such a grid resolution, especially in three-dimensional 
simulations, is impractical at present. 
 

The comparison of the numerical solutions using 1st. order 
forward and backward differencing is shown in Figure 9 where 
in both cases the computational domain was discretized using 
10 nodes.  

 

 
Figure 9 Comparison of numerical solutions using 10 nodes 

along with forward and backward differencing 
 
 

In fact, the numerical solution using backward differencing 
with 10 nodes is more accurate than the numerical solution 
with 30 grids using forward differencing as can be observed by 
comparing Figure 4 and Figure 10, where the numerical 
solution with 10 nodes using backward differencing is shown. 
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Figure 10 Numerical solution using backward differencing 

with 10 nodes 
 
Non-linear case 

For the non-linear case, the parameters  and  were set 
as 14.5 and 0.0127, respectively.  

1a 2a

 
By using first order forward differencing to discretize the 

governing equation, the numerical solution takes the form 
( ) 2

12111 −− −+= iii haha φφφ   (7) 
 
The solution at x=1.0 with different grid resolutions is shown 
in Figure 11. In this case, the problem illustrated in Figure 8 
manifests itself somewhat smoothly. The solution seems to 
diverge first, but then it starts converging to the right value as h 
tends toward zero.  
 

  
Figure 11 Convergence of the numerical solution using 

forward differencing as a function of the grid size at x=1.0 
where 1144=exactφ  

 

Using central differencing, the discretized equation takes 
the following form 

2
2111 22 iiii haha φφφφ −+= −+   (8) 

 
The convergence behavior of the numerical solution at 

x=1.0 is highly oscillatory (see Figure 12) where numerical 
solutions with h>0.072 do not show acceptable solutions since 
negative values are obtained at that location.  

 

 
(a) 

 
(b) 

Figure 12 Convergence of the numerical solution using 
central differencing as a function of the grid size at x=1.0 

where 1144=exactφ (a) hmax=0.25 and (b) hmax=1/13 
 

Judging from Figures 11 and 12, depending on the selected 
grids to study grid convergence, it could be concluded that 
monotonic convergence, oscillatory convergence or monotonic 
divergence is occurring in the numerical solutions. 
 
Although the convergence is more stable using first order 
forward differencing, the numerical solutions using this 
discretization scheme are not as accurate when compared with 
central differencing discretization as shown in Figure 13, where 
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the numerical solutions obtained from both schemes are 
presented with h=0.04. Discretization with 2nd order forward 
differencing did not provide acceptable solutions since the 
scheme showed instabilities that led to divergence. 
 

 
Figure 13 Numerical solutions using 1st order forward and 

central differencing to discretize the first derivative 
(h=0.04) 

 
Taylor series approximation 

In this section, the representation of the numerical solution 
using Taylor series is evaluated. The comparison of the 
numerical solution and the Taylor series representation of the 
numerical solution for the non-linear equation is presented in 
Figure 14. In Figure 14(a) 3 terms were considered in the 
Taylor series and the solution using 10 terms is presented in 
Figure 14(b). The domain was discretized using 15 interior 
nodes in both cases. It’s apparent that, the Taylor series 
representation of the numerical solution is not satisfactory even 
with 10 terms.  

 
(a) 

 
(b) 

Figure 14 Taylor series representation of the numerical 
solution using first order forward differencing in the non-

linear equation with (a) 3 terms and (b) 10 terms in the 
Taylor series 

 
The derived equation for the Taylor series at x=1.0 using 

first order forward differencing to discretize the non-linear 
equation is 

 
8 14 18 24

2 3 4
7 10 14

21731 2.064 10 1.033 10 3.76 10 1.41 101 .5 ..
100 9375 7.5 10 6.328 10 7.593 10

x x x xf h h h h h .
x x x

+ + + + + +   =

(9) 
 

Application of the Taylor series approximation to the linear 
case where 02 =a  is also performed. The Taylor series 
approximation of the numerical solution along with the exact 
and numerical solutions using first order forward discretization 
where 251 −=a  are shown in Figure 15.  

 
Figure 15 Taylor series representation of the numerical 

solution using first order forward differencing in the linear 
equation with 3 terms in the Taylor series 
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The domain was discretized using 30 interior nodes. A 
good agreement with the Taylor series can be observed. 
However, if the convergence at x=1.0 is observed in more 
detail, it can clearly be seen that the Taylor series is not a good 
representation of the numerical solution when relatively coarse 
grids are used, irrespective of whether  3 or 5 terms are 
considered in the Taylor series (see Figure 16). For the linear 
case with , at least 30 interior points are needed to 
obtain an acceptable solution. 

251 −=a

 

 
(a) 

 

 
(b) 

Figure 16 Convergence at x=1.0 using Taylor series 
representation of the numerical solution using first order 

forward differencing in the linear equation with (a) 3 terms 
and (b) 5 terms in the Taylor series 

 
The derived equation for the Taylor series at x=1.0 using 

first order forward differencing to discretize the linear equation 
is  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
++−+−−= .......

1152
10133.2

48
1071.1

24
10047.1

2
625125exp 4

11
3

8
2

6

hxhxhxhf
 

      (10) 

 
Representation of the numerical solution using the Taylor 

series when the linear equation is discretized using backward 
differencing is well behaved as shown in Figure 17. 
 

 
(a) 

 

 
(b) 

Figure 17 Representation of the numerical solution using 
Taylor series with 3 terms using backward differencing in 

the linear equation (a) solution in the domain and (b) 
convergence at x=1.0 

 

CONCLUSIONS 
The method of the exact finite difference solution was 

applied to linear and non-linear one-dimensional governing 
equations. Different discretization schemes were used on both 
equations.   

 
In the linear equation case, if the source term is negative 

( )1 0a <  and a first order discretization scheme is used, the 

exact finite difference solutions show an oscillatory behavior. 
With first order backward discretization, the numerical solution 
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will have a singularity when . The use of backward 
discretization offers more accurate solutions when compared 
with forward discretization, which amounts to upwinding in 
this case. However, this is not a satisfactory remedy since in 
practical CFD applications the sign of the source term can 
change independent of the velocity. 

1 1a h =

 
Oscillatory behavior in the solution of the non-linear 

equation was observed on coarse grids when 2nd order forward 
difference is used as the discretization scheme. Divergence 
problems were observed with 2nd order forward discretization. 

 
The representation of the numerical solution using the 

Taylor series is not satisfactory when a first order forward 
discretization scheme is used in the non-linear equation case 
even when ten terms are included in the Taylor series. In the 
linear equation case, using first order forward difference 
discretization offers a good representation with Taylor series 
although the convergence with coarse grids is not well 
represented when compared with the numerical solution. The 
use of backward discretization provides a good representation 
of the numerical solution with Taylor series. 

 
This study elucidated some essential facts concerning the 

grid convergence studies practiced in literature, which are 
generally based on Richardson extrapolation. 

(1) Depending on the sign and magnitude of the 
source term, the numerical solution may exhibit 
oscillatory behavior. 

(2) Some discretization schemes exhibit singular 
behavior which may occur at different grid 
resolutions or at different location in the domain 
when non-uniform grid distributions are used 

(3)  When (1) or (2) occurs, Taylor series 
representation, hence the Richardson extrapolation 
becomes problematic.  
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