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ABSTRACT 
 
The lattice Boltzmann method (LBM), where discrete 

velocities are specifically assigned to ensure that a particle 
leaves one lattice node always resides on another lattice node, 
has been developed for decades as a powerful numerical tool to 
solve the Boltzmann equation for gas flows. The efficient 
implementation of LBM requires that the discrete velocities be 
isotropic and that the lattice nodes be homogeneous. These 
requirements restrict the applications of the currently-used 
LBM schemes to incompressible and isothermal flows. Such 
restrictions defy the original physics of Boltzmann equation. 
Much effort has been devoted in the past decades to remove 
these restrictions, but of less success. 

 
In this paper, a novel dynamic lattice Boltzmann method 

(DLBM) that is free of the incompressible and isothermal 
restrictions is proposed and developed to simulate gas flows. 
This is achieved through a coordinate transformation featured 
with Galilean translation and thermal normalization. The 
transformation renders the normalized Maxwell equilibrium 
distribution with directional isotropy and spatial homogeneity 
for the accurate and efficient implementation of the Gaussian-
Hermite quadrature. The transformed Boltzmann equation 
contains additional terms due to local convection and 
acceleration. The velocity quadrature points in the new 
coordinate system are fixed while the correspondent points in 
the physical space change from time to time and from position 
to position. By this dynamic quadrature nature in the physical 
space, we term this new scheme as the dynamic quadrature 
scheme. The lattice Boltzmann method (LBM) with the 
dynamic quadrature scheme is named as the dynamic lattice 

Boltzmann method (DLBM). The transformed Boltzmann 
equation is then solved in the new coordinate system based on 
the fixed quadrature points.  
 

Validations of the DLBM have been carried with several 
benchmark problems. Cavity flows problem are used. Excellent 
agreements are obtained as compared with those obtained from 
the conventional schemes. Up to date, the DLBM algorithm can 
run up to Mach number at 0.3 without suffering from numerical 
instability. The application of the DLBM to the Rayleigh-
Bernard thermal instability problem is illustrated, where the 
onset of 2D vortex rolls and 3D hexagonal cells are well-
predicted and are in excellent agreement with the theory.  

 
In summary, a novel dynamic lattice Boltzmann method 

(DLBM) has been proposed with algorithm developed for 
numerical simulation of gas flows. This new DLBM has been 
demonstrated to have removed the incompressible and 
isothermal restrictions encountered by the traditional LBM.  

 

 
INTRODUCTION 

 
The lattice Boltzmann method (LBM) is pioneered by 

several researchers, particularly McNamara and Zanetti [1], and 
can be viewed as a simplified finite difference solver of the 
Boltzmann equation on a discrete lattice [2, 3]. The lattice 
Boltzmann equation, i.e. a lattice analogy of the Boltzmann 
equation, provides an alternative description of the evolution of 
particle distribution that can be solved efficiently with an LBM 
algorithm. With the simplicity of algorithm that has retained 
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most physical properties but little statistical noise, the LBM 
was used widely and indistinguishably to study many classical 
fluid problems, including turbulence, single and multiphase 
flows, porous flows, colloidal flows, etc. Its use in multi-scale 
problems has also attracted much recent interests in the method 
[4]. It is also a favourable platform for designing algorithm to 
tackle multi-physics problems. Some examples include 
multiphase flows, particulate flows, micro-flows and 
transitional Kn regime flows [4], and acoustic propagations [5]. 

The LBM has been understood as a self-contained special 
discrete finite difference form of the original Boltzmann 
equation [6, 7], and is considered as a specific case of the 
discrete ordinate method (DOM) mathematically [8]. It is a 
lattice technique for the solution of the Boltzmann equation, 
and is found to be effective for solving incompressible flows. 
The performance of the LBM has been compared with the 
conventional CFD methods, to demonstrate that LBM is a 
robust and accurate numerical method for solving NSF 
equations of very low Mach number flows [2, 9]. 

Nevertheless, the LBM has its limitation in solving the 
Boltzmann equation. Essentially, the implementation of LBM 
requires that the discrete velocities be isotropic and that the 
lattice nodes be homogeneous. These requirements restrict the 
conventional LBM schemes only applicable to incompressible 
and isothermal flows. In the past decades, much efforts have 
been devoted to the development of thermally enabled LBM 
[10]. Different kinds of thermal LBM have been proposed in 
decades, but they are of less satisfactory due to various 
deficiencies, such as non-Galilean invariance and instabilities 
inherited in the thermal scheme [11]. These existing 
workarounds have not been directed to the above essential 
requirements. The resulting restrictions, such as isothermal and 
very low Mach number, defy the original physics of Boltzmann 
equation. Much effort has been devoted in the past decades to 
remove these restrictions, but of less success. 

 
In this paper, a novel dynamic lattice Boltzmann method 

(DLBM) that is free of the incompressible and isothermal 
restrictions is proposed and developed to simulate gas flows. 
This is achieved through a coordinate transformation featured 
with Galilean translation and thermal normalization. The 
transformation renders the normalized Maxwell equilibrium 
distribution with directional isotropy and spatial homogeneity 
for the accurate and efficient implementation of the Gaussian-
Hermite quadrature. The velocity quadrature points in the new 
coordinate system are fixed while the correspondent points in 
the physical space change from time to time and from position 
to position. By this dynamic quadrature nature in the physical 
space, we term this new scheme as the dynamic quadrature 
scheme. The lattice Boltzmann method (LBM) with the 
dynamic quadrature scheme is named as the dynamic lattice 
Boltzmann method (DLBM). 

In this paper, the transformed Boltzmann equation was 
solved for the viscous cavity flows and the Rayleigh-Benard 
instability, with BGK collision model (DLBM-BGK) [12, 13]. 
Excellent agreements with the results obtained from the 
conventional macroscopic NSF equations were achieved.   

 
DYNAMIC DISCRETE ORDINATE METHOD 

 
The Boltzmann equation, derived from statistical 

mechanics based on gas kinetic theory, describes the evolution 
of the velocity distribution function ),,( tf cr  of dilute gases 
of identical molecules in the phase space and with the BGK 
collision model is given by 
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where τ is the molecular collision relaxation time. The 
equilibrium velocity distribution ),,( tf eq cr  is given by the 

Maxwell distribution, 
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In (2), ( )t,rρ , ( )t,ru and ( )tT ,r are the macroscopic 
density, mean velocity and temperature of the gas, which can 
be obtained by taking the first three moments of the distribution 
function: 
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 It is noted that the last equalities in (3) are satisfied by  feq  
automatically by definition.  They become the constraints to 
the efficiency in the discrete evaluation of the integrals (3).  

 
To simplify the solution to (1)-(3), a discrete ordinate 

method (DOM) is used to approximate the integrals in (3) by 
the summation of integrand over quadrature points with 
appropriate weightings. The main task of the DOM is to 
properly select the quadrature points and the weightings to 
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minimize the error. For the Maxwell equilibrium distribution, 
the Gaussian-Hermite quadrature has been commonly used. 
Traditionally, the DOM was applied directly to c in (2), which 
leads to error that depends greatly on the shape of the 
temperature T and mean velocity u. More quadrature points are 
needed when the temperature difference and the mean velocity 
are large. To circumvent this problem, the following 
transformation is used, 

 
 

RT2
* ucC −
=  

(4) 
 
where R = k/m. Equation (4) basically represents the 
composition of Galilean translation and thermal normalization 
of c.  In term of *C , (2) becomes 
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where the shape of the exponential is independent of T and u. 
The integrals (3) expressed in Gaussian-Hermite quadrature 
now become  
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where 2/3−= πiF . The quadrature points *
iC  and the 

weightings iw  can be determined mathematically from the 
Gaussian-Hermite polynomial of N-degree. In (6), a polynomial 
of N ≥ 2 will result in zero error. The salient feature is that the 
quadrature points are fixed and independence of the mean 
velocity and temperature, i.e., independence of the Mach 

number of the gas flows. We noted that an expression similar to 
(4) had also been employed by Albright [14] and Smith [15] to 
replace the random sample procedure for reducing the high 
numerical noise in DSMC. 

As from (4), the qaudrature points ic  will change with 
time and location in real space, this scheme was termed as the 
dynamic quadrature scheme. A discrete ordinate method with 
the dynamic quadrature scheme was then termed as the 
Dynamic Discrete Ordinate Method (DDOM) [12, 16]. 

 
DYNAMIC LATTICE BOLTZMANN METHOD 

 
The LBM is a subset of DOM where the discrete velocities 

are specifically assigned to ensure that particle leaves one node 
will end at other nodes. In LBM, the fixed discrete velocity set 
is applied over the entire computation domain disregarding the 
orientation. Therefore it can only be applied efficiently for the 
isotropic and homogeneous distributions. In traditional LBM, 

ic  is used as the fixed discrete velocity set. This requires to 
expand eqf in small Mach number and truncate at certain order 

due to the anisotropy of eqf  in c . The truncation leads to 

errors which increase with Mach number. From the discussion 
in the last section, it appears that *

iC  will be better to use as 
the fixed discrete velocity set since no expansion and 
truncation will be required. To this end, we transformed the 
Boltzmann equation through the following coordinate 
transformation, 
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where τ0 is a constant reference time and RTa 2=  is the 
sound speed. The Boltzmann equation in the new transformed 
coordinates ),,( *** tCr  now becomes 
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Equation (8) shows that the transformation leads three 
additional terms associated with the convection due to u  and 
the accelerations due to u  and a. The constraints of the 
moments with respect to eqf  then become  
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which are equivalent to equation (6). Equations (8) and (9) can 
be solved with the LBM with the convection and acceleration 
terms treated as source terms. With the same reasons as 
DDOM, we name this new LBM using *

iC  as the fixed 
discrete velocity set as Dynamic Lattice Boltzmann Method 
(DLBM).   
 
SIMPLIFIED DLBM FOR THERMAL FLOWS 

 
The numerical procedure for the DLBM is a complicated 

procedure since it requires the Galilean translation in the c 
space and the local coordinate stretching in both the c and r 
spaces. For thermal problems where the temperature difference 
is not so large, it is possible to simplify the procedure by 
employing the Galilean translation only. This can be achieved 
by setting a as constant with 00 2RTaa ==  where T0 is 
the reference temperature. Equation (8) is then reduced to 
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This formulation is the same as the equation of change as in 
Chapman and Cowling [17] who focused on the mean velocity 
to establish the NS equations through the Chapman-Enskog 
expansion. Here we focus on the peculiar (thermal) velocity for 
employing the streaming process in the LBM procedure.  
 

It is found that this simplified procedure is readily suitable 
for dealing with thermal LBM problems with moderate 
temperature change, and when the physical particle velocity is 

not altered for more than 0.3a0. Moreover, if higher 
temperature changes are encountered, one can always employ a 
larger discrete velocity set to improve the accuracy of capturing 
the variation due to high temperature differences, but this 
requires a different discrete velocity set and quadrature 
coefficients that will lose the optimality of the Gaussian-
Hermite quadrature when the number of velocity is not 3 per 
dimension, i.e., D2Q9 for 2 dimensional flows or D3Q27 for a 
3 dimensional system. 

 
 
NUMERICAL PROCEDURE 
 

In the implementation, we choose a D3Q27 lattice for the 
discretization of the phase space using Gaussian-Hermite 
quadrature coefficients. The streaming and collision procedures 
in the DLBM are similar to those of conventional LBM 
procedure. The acceleration term and convection term in 
equation (10) are discretized using central difference method. A 
Strange splitting algorithm is used to achieve 2nd order 
Lagrangian streaming. The boundary conditions on the wall are 
typical diffused reflection as in some conventional LBM. The 
details of the numerical procedure can be found in [18]. 
 
 
NUMERICAL RESULTS 

 
Cavity Flows 

 
The numerical domain is a square of size 100x100x5 to 

500x500x5 with a dimensionless height H=2. The typical 
cavity velocity is U=0.2. The Reynolds number Re=UH/ν we 
employed in the simulations are 100, 400, and 1000. The 
DLBM is run until the average velocity magnitude has reached 
a steady state and changes less then 10-8 in magnitude. 
Different number of CPU cores is tried. The results shown in 
the following are for Re=100, 400, and 1000 with an OpenMP 
code running using an 8-cores dual-quad Dell Xeon 
workstation. As shown in Table 1, the vortex center positions 
are in agreement with the reference works within 1%. The 
small difference may arise from the current non-isothermal 
nature of the gas flows. These results show that the DLBM 
method can reproduce the main feature of the cavity flows. 

 
Figure 1 shows the streamlines of the cavity gas flows as 

obtained from the present simulation for the cases of Re =100 
and 1000. The flow patterns are in excellent agreements with 
those of the reference works [19, 20]. The evolution of internal 
energy e in the flow for the case of Re=1000 is shown in Figure 
2, started from an initial internal energy value of e0=0.55. All 
the walls were set to this initial temperature. We note that there 
is significant thermal evolution in the flow. This can constitute 
to extra stress in the flow and have considerable effects on the 
eventual steady flow pattern. The difference of the flow from 
ideal case will be more pronounced when there is gravitational 
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acceleration, to increases the difficulty for the comparison with 
experiment. In brief, the isothermal assumption commonly used 
in most cavity flow simulations may require reassessments. 

 
Table 1 VORTEX CENTER POSITION :- COMPARISON 
OF THIS WORK WITH REFERENCES [19] [20]. 

  
Re Primary vortex Lower right 

vortex 
 
100[19] 
 

 
(0.6172,0.7390) 

- 

 
100 
(this work) 
 

 
(0.6220,0.7406) 

- 

 
400[20] 
 

 
(0.5608,0.6078) 

 
(0.8902,0.1255) 

 
400  
(this work) 
 

 
(0.5621,0.6059) 

 
(0.8880,0.1215) 

 
1000[19] 
 

 
(0.5333,0.5647) 

 
(0.8667,0.1137) 

 
1000  
(this work) 

 
(0.5459,0.5951) 

 
(0.8688,0.1230) 

 
 
Rayleigh-Benard Instability 

 
The Rayleigh-Benard cell (RBC) patterns were produced 

from the numerical simulations based on full thermally driven 
Navier-Stokes equations with Boussinesq approximation [21-
23]. Quasi-two-dimensional convective rolls are one simple 
form of convection in RBC over a range of lower Rayleigh 
numbers Ra, provided that the spatial distribution of the fluid 
does not exhibit significant vertical asymmetry with respect the 
the z=0 plane (Figure. 3). However, recent discovery that three-
dimensional cellular flows are not prohibited in symmetric 
layers and, as established in recent years, can be stable within a 
certain region of the parameter space [24]. Such pattern has not 
been reproduced by numerical studies yet. It is known that 
RBC hexagons occur as the up-down symmetry of the velocity 
field is broken. One of the possible causes for such a symmetry 
breaking is the departure from Boussinesq approximation with 
probable significant change of fluid properties. When Ra is at 
the order of critical value Rac or higher, deviations from 
Boussinesq approximation can be quite significant [25]. 
Moreover, temperature difference gradually leads to extra 
stress in the fluid which drives the asymmetry further away. 
The patterns are estimated to be related to the variations of 
density, isobaric thermal expansion, kinematic viscosity, 

thermal conductivity, and specific heat with respect to the top 
and bottom temperatures. This may be a system too complex 
for correct macroscopic numerical modeling.  

 
 

  

  
Figure 1. STREAMLINES OF THE LID DRIVEN CAVITY 
FLOWS WITH Re=100 and Re=1000.  

 

  
Figure 2. INTERNAL ENERGY DISTRIBUTION OF THE 
CASE Re=1000. THERE IS SIGNIFICANT INTERNAL 
ENERGY EVOLUTION IN THE CAVITY. 

 
Flows of RBC describe a viscous fluid at rest between two 

horizontal parallel plates z=0 and z=d, subjected to a typical 
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temperature difference ΔT with the lower plate at higher 
temperature. The direction of gravity is in the negative z-
direction normal to the plates. Due to the local buoyant effect, 
the lower fluid with less density tends to move upwards, and 
the top heavier fluid tends to sink. The system becomes 
unstable when a dimensionless ΔT reaches a certain critical 
value. In particular, flows of RBC arise when Rayleigh number 
is sufficiently large. The critical Rayleigh number Rac depends 
on many physical parameters at different regime, including 
thermal expansivity α, gravitational acceleration g, separation 
distance between the two plates d, the typical temperature 
difference ΔT, kinematic viscosity ν, and thermal diffusivity κ. 
At the convective roll regime the significant convection 
phenomenon is the 2 dimensional rolls. Through non-linear 
stability analysis, the critical Rayleigh number CRa  can be 
obtained to be about 1708 [26]. In the present simulations, our 
search for CRa  starts from 1400 to 1900, with an increased 

interval of CRaΔ =100, until the instability occurs. The 
critical wave number WdWaC // ** ππ ==  was found to be 
around 3.12.  
 

Figure 3 shows the simulation domain along with the 
coordinate system for the present numerical computation. The 
mesh size is different for each problem. Boundary conditions 
are set to simulate the asymmetric conditions at the top and 
bottom walls. The heated bottom is at a fixed temperature 
Tbottom and the cooled top plate is under a relaxation condition 
to the desired ambient temperature, corresponding to a constant 
overall heat flux losing to the environment from the top 
surface. The four vertical boundaries are two pairs of periodic 
boundaries which are paired consistently along each axis. The 
initial condition of the velocity in the entire domain is zero and 
the fluid temperature equals the cooled ambient temperature. 
For the 2-D convective roll case, both horizontal plates are of 
no-slip boundary. For the 3-D simulations, the cooled surface is 
a slip boundary and the heated surface is a no-slip wall. The 
Boussinesq approximation and the assumed fluid physical 
properties, which are usually used in macroscopic simulation, 
are not present in our computation. 

  
A 2-D RBC is simulated using a domain with a very short 

dimension in the y-direction. The domain size is 137x7x23. 
The Δx employed for the DLBM is 0.02. A ΔT of 0.2 is 
established between the top and bottom plate. At the initial time 
t=0, the fluid in the domain is stagnant, and the g employed is 
0.01 towards negative z direction. We searched for the 
instability through the range of Ra number as mentioned earlier 
and located its occurrence at 1600, and the corresponding flow 
fields, including the velocity vector u and its magnitude |u|, as 
well as the distributions of number density and energy 
(temperature), are shown in Figure 4 in color contour. Below 
this Ra number no instability is observed. When Ra =1600, the 
wave number obtained is approximately 3.12, which is close to 

the theoretical value given in [26] as predicted for flows under 
the incompressible assumption. We consider that our current 
result for weakly compressible flows represents the real fluids 
and is in a good agreement with the theoretical prediction. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 3 SIMULATION DOMAIN FOR RAYLEIGH-
BENARD INSTABILITY 

 
 
 

 

 

 

 
 
 
 

Figure 4. THE SIMULATION OF THE 2-D RAYLEIGH-
BENARD INSTABILITY WITH CONVECTIVE ROLLS 
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Figure 5. THE SIMULATION OF A 3D RAYLEIGH-
BENARD CELL. FOR Ra=4000, THE CONVECTION 
SHOWS HEXAGONAL CELLULAR PATTERNS 

 
 
 

 
The flows for 3-D RBC were calculated using an 8-core 

parallel computation code. The computation domain varies 
from 103x103x23 (for hexagonal cell case) to 123x123x23 (for 
convective rolls case). Similar parameter setting is employed 
for the 2D RBC case, but the Ra is increased to 4000. Some 
parameters are changed, including the Δx which is 0.04 in the 
present DLBM simulation, the gravitational pull is also doubled 
to 0.02. The top boundary uses a slip flow boundary, and the 
temperature is kept at a mean value using simple temperature 
relaxation to the mean value across time. The field is allowed 
to evolve for 105 time steps when the resultant flow is still 
evolving very slowly, with mean velocity magnitude change 
less then 10-4 of the typical value. Figure 5 shows the 
macroscopic flow field distributions of the velocity amplitude 
|u| at the top plate, the energy e at the top plate and the vertical 
velocity component w at the mid-plane. Hexagonal cells pattern 
are seen at Rayleigh number of around Ra=4000. For lower Ra 
values, convective rolls similar to the case of 2D-RBC are seen, 
but with a different wave number for the rolls. It is interesting 
to note that inside the hexagonal cells there exist very slow 
circular streaming flows other than the up-down circular 
motions. Fluid particles circulate around the centers of the 
hexagons in the RBC.  

 

CONCLUSIONS 
 
The dynamic lattice Boltzmann method (DLBM) is 

proposed and implemented. The DLBM code is validated and 
demonstrated for thermal fluid flow problems, such as the 
cavity flows and the 2D and 3D RBC flows. The locations of 
the viscous vortices in cavity flows and the onset of instability 
in RBC have been tested accordingly. They are in excellent 
agreement with classic literatures. With minimal efforts on 
modeling, macroscopic stress, flow fields, and thermal fluid 
properties all evolve naturally to attend flow patterns in good 
agreements to experimental results from literatures. The DLBM 
is a promising method in removing the incompressible and 
isothermal restrictions encountered by the conventional LBM. 
The homogenous and isotropic requirements are automatically 
satisfied by the DLBM to maintain the genuine features of the 
Boltzmann equation; hence the DLBM can then naturally 
predict thermal gas flows. The DLBM has removed the 
incompressible and thermal limitations encountered by 
conventional LBM. The simulation results based on DLBM 
exhibit indeed the physics of the original Boltzmann equation. 

 

(1) |u| at z=d/2  
 

(2) e at z=d/2 

(3) w component at z=0 
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NOMENCLATURE 
 

f  Velocity distribution function 
eqf  Maxwellian equilibrium distribution 
*f  Normalized velocity distribution function 0/ nf  
*C  Normalized peculiar velocity RT2/)( uc −  

**, tr  Normalized space and time coordinates 
*F  Normalized long range force a/0τF  
*Ω  Normalized collision term 00 / nτΩ  

τ  Collision relaxation time 
*n  Normalized number density 0/ nn  
*u  Normalized macroscopic velocity a/u  

a  Most probable speed RT2  

0n  Constant reference number density 

0τ  Constant reference time scale 

0a  Constant reference velocity scale 

0T  Constant reference temperature scale 

Re  Reynolds number ν/UH  
Ra  Rayleigh number )/(3 ναβ THg Δ  
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