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ABSTRACT
We present numerical solutions of natural convection

in a cavity of finite domain when the flow is driven by
a horizontal temperature gradient between isothermal
vertical walls. Only the transverse roll structure of con-
vection is calculated by employing the pseudo spectral
Chebyshev collocation method. A numerical solution of
the steady flow is first obtained and, based upon it, the
critical Rayleigh number (related to Grashof number) of
linear transverse mode is determined. The influence of
aspect ratio, on the flow and temperature patterns, is
also investigated.

1 Introduction

The problem of natural convection in a closed shal-
low cavity, with an imposed horizontal temperature gra-
dient, has been considered by serval authors. The work
on stability was begun by Hart[1, 2] who noted that
when the fluid in heated differentially at the two ends
of the cavity, a unicellular flow is established. Such sin-
gle cell flows have become known as Hadley circulations,
after the pioneering work of Hadley[3] in geophysics. Be-
sides finding applications in planetary atmosphere, such
shallow cavity flows have applications in growing of semi
conductor crystals, cooling of gas-cooled reactor, disper-
sion of pollutants in river estuaries and motion in storm
windows.

Subsequent extensions and improvements to Harts’
work have been considered by Kuo and Korpela[4],
Wang and Korpela[5], Laure and Roux[6] and many
others. Daniels, Blythe and Simpkins[7] consider the
flow near the vertical walls of the cavity and discuss
the possibilities of the onset of multicellular convection.
Most of these studies, however, consider the ratio of
the height to other two dimensions to be considerably
small. Moreover, because of the applications in liquid
metals, a number of these studies deal with low Prandtl

number fluid only. Experimental investigation of cav-
ity flows, driven by lateral heating, have been reported
by Imberger[8], Ostrach, Loka and Kumer[9], Simpkins
and Dudderar[10] and Hung and Andreck[11]. Gener-
ally, these consist of a main circulation in which the
fluid motion is up along the hot wall, across the top,
down at the cold wall and returning across the bottom.

Drummond and Korpela[12] have presented numerical
results in shallow cavities for a certain range of Grashof
number, and for Prandtl number Pr < 2.0. Their cal-
culations are based on the time integration technique,
using finite difference method. Cormack, Leal and
Steinfeld[13] also present numerical solutions for natural
convection for closed cavity problem with small aspect
ratio. These authors consider various limiting cases by
employing the standard methods of matched asymptotic
expansions. They find that heat is mainly transferred
by conduction when the Grashof number is quite low.
Park and Ryu[14] used the Chebyshev pseudo-spectral
collocation method for Rayleigh-Benard convection of
viscoelastic fluids in finite domains.

In the present paper we employ a Chebyshev pseudo-
spectral collocation method to study the title problem
at a fixed Prandtl number and focus only on the trans-
verse mode. We consider the effect of varying the as-
pect ratio and horizontal Rayleigh number, in stream
lines, iso-streamline patterns, isotherms etc. Since only
transverse modes are considered, the problem can be
considered as two-dimensional one.

2 Governing Equations

Consider a cavity, as shown in Fig. 1. The fluid is
confined within a finite domain. A Cartesian coordinate
system (x, y, z) is chosen such that origin is in the middle
of the layer and z-axis is vertically upward. The fluid
layer is taken to be confined in a cavity to be large in its y
direction and small of the thickness dz in the z direction,
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and of moderate thickness dx in the x direction. It is also
assumed that the ratio of dx or dz to the length in the
y direction is considerably small so that the lateral end
effects do not influence the motion in the central part.
The problem thus may be considered as two dimensional
problem.

We non-dimensionalize the quantities as follows:

β =
dx
dz
, t =

κt̃

dz
2 , x = 2

x̃

dx
= 2

x̃

βdz
, z = 2

z̃

dz
,

u =
dzũ

κ
, w =

dzw̃

κ
, p =

d2
z

ηκ
p̃, Pr =

η

κρ0
,

RH =
gαdz

3ρ0∆T
βηκ

, T =
ηκ

gαdz
3ρ0

T̃

where coordinate vector x̃ = (x̃, 0, z̃), velocity vector
ṽ = (ũ, 0, w̃), g is the gravitational constant, Pr is the
Prandtl number, RH is the Rayleigh number, which
is equivalent to the Grashof number multiplied by the
Prandtl number. ρ0 is the density, T the temperature,
α the coefficient of thermal expansion, η is the fluid vis-
cosity and κ the thermal diffusivity. β is the ratio of
length in x direction to z direction, ∆T is the tempera-
ture difference between two walls x = 1 and x = −1.

On using Boussinesq approximation, the non dimen-
sional governing equations then take the form:

1
β

∂u

∂x
+
∂w

∂z
= 0, (1)

1
Pr

(
∂u

∂t
+ 2u

1
β

∂u
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+ 2w

∂u

∂z

)
= −2

1
β

∂p

∂x
+

4
β2

∂2u

∂x2
+ 4

∂2u

∂z2
, (2)

1
Pr

(
∂w

∂t
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1
β

∂w

∂x
+ 2w

∂w

∂z

)
= −2

∂p

∂z
+

4
β2
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∂x2
+ 4

∂2w

∂z2
+ T, (3)

∂T

∂t
+ 2u

1
β

∂T

∂x
+ 2w

∂T

∂z
= +

4
β2

∂2T

∂x2
+ 4

∂2T

∂z2
, (4)

and the corresponding non dimensional forms of bound-
ary conditions become:

u = w = 0, T = −1
2
βRHx at z = ±1; (5)

u = w = 0, T = ∓1
2
βRH at x = ±1. (6)

For simplicity, we denote the stream function by ϕ and
using the following form for temperature variable θ.

u = −2
∂ϕ

∂z
, w =

2
β

∂ϕ

∂x
, T = −1

2
RHx+ θ. (7)

The equations in ϕ and θ are transformed into:

− 4
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(
1
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∂x2
+
∂2ϕ

∂z2

)
−RH +

2
β
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16
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32
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∂x2∂z2
+

16
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− 4

1
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∂x2
− 4

∂2θ
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− 4
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+ 4
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and corresponding boundary conditions become:

ϕ =
∂ϕ

∂x
= θ = 0, at x = ±1; (10)

ϕ =
∂ϕ

∂z
= θ = 0, at z = ±1. (11)

We now split the variables ϕ and θ into the steady
and perturb parts, and perform the standard normal
mode analysis. We denote the steady-state solutions as
(ϕs, θs) and fluctuating solutions as (ϕ′, θ′) and write:

ϕ(x, z, t) = ϕs(x, z) + ϕ′(x, z) ∗ exp (σt) , (12)
θ(x, z, t) = θs(x, z) + θ′(x, z) ∗ exp (σt) . (13)

On substituting the expression (12) and (13) into equa-
tions (8) and (9) and separating the resulting equations
for the steady and fluctuating parts, we have:
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and
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Both sets ϕs, θs and ϕ′,θ′ should satisfy the boundary
conditions:

ϕs =
∂ϕs

∂x
= θs = 0, at x = ±1 and z = ±1; (16)

ϕ′ =
∂ϕ′

∂z
= θ′ = 0, at x = ±1 and z = ±1. (17)

3 Chebyshev pseudo-spectral method

The solution of differential equations by the Cheby-
shev pseudo-spectral method[15] is based on the repre-
sentation of the derivative operators, d/dx and d2/dx2,
in a discrete ordinate basis. The Chebyshev polynomials
Tk(x) are orthogonal with respect to the weight function
w(x) = (1− x2)−1/2, that is,∫ 1

1

w(x)TK(x)TL(x)dx =
ck
2
πδK,L, (18)

where

Tk(x) = cos(k arccosx),
− 1 ≤ x ≤ 1, k = 0, 1, 2, . . . , (19)

and c0 = 2, ci = 1(i ≥ 1). The Gauss-Lobatto inte-
gration involves the evaluation of an integral by a finite
sum, given by:∫ 1

1

w(x)f(x)dx =
L∑
i=0

wif(xi), (20)

where wi = π
ciL

are the weights and xi = − cos iπL are
the roots of derivatives of Chebyshev polynomials. as
Gauss-Lobatto collocation (GLC) points. The colloca-
tion method is based on the representation of a function
by its values at L+1 root points, i.e., f(xi). We expand
the function in Chebyshev polynomials

f(x) =
L∑
k=0

akTk(x), (21)

where ak are the expansion coefficients given by

ak =
2
ckπ

∫ 1

−1

w(x)f(x)Tk(x)dx. (22)

If we substitute (22) into (21) and apply the Gauss-
Lobatto integration formula (20), it allows us to con-
struct the interpolation formula, that is

f(x) =
L∑
j=0

gj(x)f(xj), (23)

where the interpolating polynomial is given by

gj(x) =
2
Lcj

L∑
k=0

1
ck
Tk(xj)Tk(x). (24)

After introducing the Gauss-Lobatto integration, the cj
in (18) and (24) will be c0 = cL = 2, cj = 1, for 1 ≤
j ≤ L. Equation (23) implies that the derivative of f(x)
can be represented by derivatives of the interpolating
polynomials gi(x) given by (24).

Two dimensional function f(x, z), defined for −1 ≤
x ≤ 1 and −1 ≤ z ≤ 1, and based at Gauss-Lobatto
collocation points xi = − cos( iπLx

), 0 ≤ i ≤ Lx and zj =
− cos( jπLz

), 0 ≤ j ≤ Lz, can be approximated as

f(x, z) =
Lx∑
m=0

Lz∑
n=0

Gxm(x)f(xm, zn)Gzn(z), (25)

where Gxm(x) and Gzn(z) are interpolating functions
defined as (24). The partial derivatives of the function
f(x, z) at the collocation points may be expressed in the
matrix form as:

FFF p,q =
∂p+q

∂xp∂zq
FFF (xi, zj) = DXDXDXpFFF (xm, zn)DZDZDZq,

(26)

where DXDXDXp is (Lx+1)⊗ (Lx+1), FFF p,q and FFF are (Lx+
1)⊗ (Lz + 1) and DZDZDZq is (Lz + 1)⊗ (Lz + 1) matrices.
The component of DXDXDX and DZDZDZ may be written as:

DXDXDXi,m =

1
Lxci

Lx∑
m=0

1
cm

m cos(mπ
Lx −m
Lx

) sin(mπ
Lx − i
Lx

)/sin
iπ

Lx
,

(27)

DZDZDZn,j =

1
Lzcj

Lz∑
n=0

1
cn
n cos(nπ

Lz − n
Lz

) sin(nπ
Lz − j
Lz

)/sin
jπ

Lz
.

(28)

The matrices DXDXDXp and DZDZDZq for the higher derivatives
can be obtained by simple matrix multiplications.

The boundary conditions (10) and (11) at the col-
location points can be represented by the value of the
boundary grids and the outermost internal grids:

From x = ±1; ϕ =
∂ϕ

∂x
= θ = 0,

yield ϕ0,j = ϕLx,j = 0, θ0,j = θLx,j = 0,
(0 ≤ j ≤ Lz), (29)

and
Lx−1∑
m=1

DXDXDX0,mϕm,j = 0;
Lx−1∑
m=1

DXDXDXLx,mϕm,j = 0;

(0 ≤ j ≤ Lz). (30)

Solving equation (30), we can express the outermost in-
ternal collocation points in terms of the remaining in-
ternal points:

ϕ1,j =
Lx−2∑
m=2

amϕm,j ;
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ϕLx−1,j =
Lx−2∑
m=2

bmϕm,j ; (0 ≤ j ≤ Lz) (31)

where

am =
DXDXDX0,Lx−1DXDXDXLx,m −DXDXDXLx,Lx−1DXDXDX0,m

DXDXDX0,1DXDXDXLx,Lx−1 −DXDXDX0,Lx−1DXDXDXLx,1
, (32)

bm =
DXDXDXLx,1DXDXDX0,m −DXDXDX0,1DXDXDXLx,m

DXDXDX0,1DXDXDXLx,Lx−1 −DXDXDX0,Lx−1DXDXDXLx,1
. (33)

Similarly, the boudary conditions;

from z = ±1; ϕ =
∂ϕ

∂z
= θ = 0,

yield ϕi,0 = ϕi,Lz
= 0, θi,0 = θi,Lz

= 0,
(0 ≤ i ≤ Lx) (34)

and
Lz−1∑
n=1

ϕi,nDZDZDZn,0 = 0;
Lz−1∑
n=1

ϕi,nDZDZDZn,Lz = 0;

(0 ≤ i ≤ Lx) (35)

ϕi,1 =
Lz−2∑
n=2

cnϕi,n; ϕi,Lz−1 =
Lz−2∑
n=2

dnϕi,n;

(0 ≤ i ≤ Lx) (36)

where

cn =
DZDZDZLz−1,0DZDZDZn,Lz

−DZDZDZLz−1,Lz
DXDXDXn,0

DZDZDZ1,0DZDZDZLz−1,Lz
−DZDZDZLz−1,0DZDZDZ1,Lz

, (37)

dn =
DZDZDZ2,Lz

DZDZDZn,0 −DZDZDZ1,0DXDXDXn,Lz

DZDZDZ1,0DZDZDZLz−1,Lz −DZDZDZLz−1,0DZDZDZ1,Lz

. (38)

The equations of steady state (14) and linear stability
(15) may be discretiziered by the pseudospectral Cheby-
shev collocation method:

Equation for steady state
LLL(XsXsXs) = 0, (39)

Equation for linear stability
σB(Xs)B(Xs)B(Xs)X ′X ′X ′ = A(Xs)A(Xs)A(Xs)X ′X ′X ′. (40)

The equations of steady state (39) are nonlinear equa-
tions. On using the direct Newton iterative method, we
have:

JJJ (Xs
nX
s
nX
s
n)δXXX = −LLL(Xs

nX
s
nX
s
n); Xs

n+1Xs
n+1Xs
n+1 = Xs

nX
s
nX
s
n + δXXX (41)

Coincidentally, the Jacobi matrix JJJ (Xs
nX
s
nX
s
n) is identical

with matrix A(Xs)A(Xs)A(Xs) in equation (40). The matrices
A(Xs)A(Xs)A(Xs) and B(Xs)B(Xs)B(Xs) are almost full matrices, which will
be not expressed here. The equations corresponding the
boundary grids and outermost internal grids of ϕ will be
overwritten by the boundary conditions (29), (31),(34)
and (36).

In our implementation the DGESV routine of LA-
PACK library[16] is employed for solving the linear
equations (41), and the DGGEV routine of LAPACK for
the generalized eigenvalue equations(40). The DGESV
routine decomposes the Jacobi matrix JJJ (Xs

nX
s
nX
s
n) into LLLUUU .

The routine DGGEV reduces AAA and BBB to upper tri-
angular form with diagonal elements µj and νj . The
eigenvalues are σj = δj + iωj . Because BBB matrix is sin-
gular, we need to filter out those νj = 0 yielded by the
QZ algorithm.

The algorithm for calculating the critical Rayleigh
number RH value is the following. As a first step,
with parameters Pr, β being given, we choose a RH
value, and solve the equations (41) by Newton iterative
scheme. If the Newton iterative is not convergent within
limited step, we reduce the RH and solve the equations
(41) again. Next, after having the convergence ofXsXsXs, we
use QZ algorithm to find leading eigenvalue σj , which is
the largest real part of eigenvalue δj among the whole set
of eigenvalues of generalized eigenvalues equations(40).
Finally, if δj is greater than zero, we reduce RH . If
δj is less than zero, we increase RH . We repeat these
steps again to find R1

H for δ1j < 0 and R2
H for δ2j > 0.

Between R1
H and R2

H , we search the critical Rayleigh
number RH by bisection method such that correspond-
ing δj approaches zero.

4 Discussion of Results

First we check the influence of grid’s resolution. The
grid resolutions (16×16),(20×20) and (32×20) are an-
alyzed for Pr = 10, β = 1, 2, 4, 8, 12, 16, 20, 50. Fig. 2,
show the results of critical RH . We note that grid’s res-
olution has a great influence on the accuracy of critical
RH values. But the feature of critical RH in relation to
the aspect ratio is almost similar. The computer time
consumption will dramatically increase as grid’s resolu-
tion becomes finer. For β = 50, and grid’s resolution
32× 20, we have RH = 13081.8. It is almost close with
linear result RH = 15504.8 . We thus adopt (32 × 20)
grid’s resolution for our further analysis because it is a
reasonable compromise between accuracy and computer
time.

Imberger[8], Cormack, Leal and Seinfeld[13] have in-
vestigated the shallow cavity with differentially heated
end walls through experiment and numerical analysis.
They showed that flow structure in the core region is
simply a parallel flow. Hart[1] gave the simple basic flow
for the infinite case. According to our nondimensional
scheme, the basic flow is:

us =
RH
48

z(1− z2), (42)

θs =
R2
H

11520
(7z − 10z3 + 3z5). (43)

We compare the steady velocity and temperature solu-
tions of numerical simulation with analytical results (42)
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and (43). Fig.3 show the streamline of ϕs and steady
isoline of temperature solution θs for Pr = 10, β = 50,
RH = 500. Apart from near the walls, they show simply
parallel flow patterns. Fig. 4 shows the profiles of ve-
locity us and θs at x = 0 determined numerically. They
show that results are almost identical between numer-
ical analysis and analytical expressions (42) and (43).
This gives confidence to our numerical approach. If we
increase the Rayleigh number RH , the steady flow pat-
tern has a dramatical change. Fig. 5 shows the stream-
line and isoline of temperature θs for Pr = 10, β = 16,
RH = 6000. It is interesting to note that the Kelvin
cat’s eye pattern appears for the steady flow. If the
aspect ratio β and Rayleigh number RH are relatively
large, the Kelvin cat’s eye pattern of the steady flow
will appear in most cases for RH far below critical RH
values. For the case of Pr = 10, β = 30, Fig.6 show
the isoline for gradually increasing RH values. We note
that a significant change of flow pattern occurs between
RH = 2800 and RH = 3200.

The effect of β, the aspect ratio, for different Pr val-
ues (100, 10, 1, 0.027) on the critical RH values is pre-
sented in Table 1. We note that the flow is more stable
at higher Pr values and also when the aspect ratio is
small. For all Pr values the flow appears destabiliz-
ing as β increases. This fact is corroborated in Fig. 7,
where isolines of stream function and temperature are
plotted for Pr = 10. We note from these figures that be-
yond β = 16, the cells appear significantly distorted and
the flow becomes multicellular. At the present time, we
can identify the cat’s eye flow pattern only by plotting
the streamlines. Finally in fig 8, we try to elucidate
the secondary flow pattern. Here the real part of the
leading eigenfunctions for both stream function and the
temperature are plotted for Pr = 10. It is interesting
to note from these figures, that how the flow and tem-
perature pattern becomes gradually complicated as the
aspect ratio increases. Above β = 16, we note the an-
ticipated oscillatory type behaviour. In conclusion we
have, in the present note, shown that by judiciously ap-
plying the Chebyshev pseudo-spectral method, one can
obtain significant results within a reasonable computer
time.
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Fig.1 Basic geometry and the coordinate system
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y
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∆T/2 -∆T/2

Fig 2. Critical RH values for Pr=10

Pr β 1 2 4 8 12 16 20 50 ∞∗
RH 8921000 703342.0 70970.2 15933.8 12561.8 11341.9 10281.0 12939.0 15372.2

ω 10311.3 2820.5 1036.0 513.2 363.1 411.4 334.9 222.6 850.0

RH 7971620 700313.0 68808.1 15781.5 12595.8 10609.9 9784.8 13081.8 15504.6

ω 8113.1 2411.9 1201.0 448.1 443.2 342.1 278.5 204.7 832.3

RH 1966500 271453.0 57890.6 23031.7 14808.1 12213.1 11103.5 10101.6 20103.2

ω 1906.2 735.5 374.9 486.2 409.8 310.3 252.0 133.6 1026.8

RH 70734.4 14948.6 869.2 1544.1 285.0 220.6 219.6 300.0 227.8

ω 220.8 43.8 3.2 3.5 0.0 0.0 0.0 0.0 0.0

100

10

1

0.027

Table  1 Critical RH values for different Pr
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Fig.3 (b). Isoline of Temperature θ (Pr=10, β=50 RH=500)

Fig.3 (a)  Streamline ( Pr=10,β=50 RH=500)

Fig . 4(a)  Velocity  U at x=0  (Pr=10, β=50 RH=500)

Fig.4(b) Temperature θ at x=0  (Pr=10, β=50 RH=500)
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Fig. 5(a)  Streamline ( Pr=10,β=50 RH=6000)

Fig.5(b) Isoline of Temperature θ (Pr=10, β=50 RH=6000)

(a) RH= 200

(b) RH= 2000

(c) RH= 4000 

(d) RH= 5400 

Fig.6  Isoline of stream function of Steady flow  (Pr = 10.0,β=30)
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Isoline of streamfunction Isoline of temperature θ

(f) β=50,RHC= 12141.0

(e) β=20,RHC= 10066.4

(d) β=16,RHC= 11074.5

(a) β=1,RHC= 7916730.0

(b) β=4,RHC= 77546.3

(c) β=8,RHC= 16270.4

Fig. 7   Steady flow , Pr = 10.0
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Isoline of streamfunction Isoline of temperature θ

(a) β=1,RHC= 7916730.0

(b) β=4,RHC= 77546.3

(c) β=8,RHC= 16270.4

(d) β=16,RHC= 11074.5

(e) β=20,RHC= 10066.4

(f) β=50,RHC= 12141.0

Fig.8 Realparts of leading Eigenfunctions ( Pr = 10)
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