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ABSTRACT 
Methods for the quantification of numerical uncertainty 

have been a subject of interest to the American Society of 
Mechanical Engineers (ASME) and the mechanical engineering 
community as a whole for over a decade.  During this time 
period, ASME has promulgated three statements of standards 
for the reporting of numerical uncertainty in archival 
publications (Journal of Fluids Engineering).  This paper 
summarizes the work that has gone into the specification of 
these standards and the continuing effort in formulation of 
methods and procedures for quantifying numerical uncertainty.  
Specifically, this paper discusses the efforts of the ASME V&V 
20 Committee (Verification and Validation in Computational 
Fluid Dynamics and Heat Transfer) to lay a foundation and 
structure to verification and validation for fluid flow and heat 
transfer simulations.  Issues and methods related to code 
verification and in particular solution verification are presented 
and discussed in the context of the recently released V&V20 
Standard. 

 
INTRODUCTION 

Verification is a process to establish and confirm code and 
solution accuracy.  Validation is a process to establish 
numerical model accuracy in reference to physical data only.  In 
the context of numerical simulation, we wish to ultimately 
establish and confirm the accuracy of a numerical model of a 
physical system.   A numerical model consists of the code and 
the solution to a specific problem.  The verification process for 
a numerical model must then establish and confirm accuracy for 
both the code and the solution.  Code verification is distinct 
from Solution verification and must precede it, even though 
both procedures utilize grid convergence studies.  In general, 
code verification assesses code correctness and specifically 
involves error evaluation for a known solution.  By contrast, 
solution verification involves error estimation, since we 
generally do not know the exact solution to the specific 
problem.  Code and solution verification are mathematical 
activities, with no concern whatever for the agreement of the 
numerical model with physical data from experiments, that is 
the concern of validation.  Note, however, that the solution and 

its error estimate from a solution verification exercise will be 
used in the validation process.  In this way, code verification, 
solution verification, and validation are coupled together into an 
overall process. 

To support the formalization of an approach to the overall 
process of code verification, solution verification, parameter 
uncertainty assessment and ultimately validation of simulations, 
ASME established the Performance Test Code Committee, 
PTC-61: Verification and Validation in Computational Fluid 
Dynamics and Heat Transfer.  PTC-61 held its first meeting in 
May 2004.  (Note: ASME has subsequently changed the naming 
convention for Verification and Validation Committees under 
Codes and Standards to V&V##; PTC-61 is now V&V20)  The 
members of this committee are: 

 
Prof. Hugh W. Coleman (University of Alabama Huntsville) 
- Chairman 
Dr. Christopher J. Freitas (Southwest Research Institute) – 
Vice-Chairman 
Dr. Ben F. Blackwell (Consultant) 
Dr. Kevin J. Dowding (Sandia National Laboratories) 
Prof. Urmila Ghia (University of Cincinnati) 
Prof. Richard G. Hills (New Mexico State University) 
Dr. Roger W. Logan (Lawrence Livermore National 
Laboratory) 
Dr. Patrick J. Roache (Consultant) 
Prof. W. Glenn Steele (Mississippi State University) 
Ryan Crane (ASME) 
  
The charter of this committee is to “Provide procedures for 

quantifying the accuracy of modelling and simulation in 
computational fluid dynamics and heat transfer.”  An approach 
to verification and validation using experimental uncertainty 
analysis concepts to quantify the result of a validation effort 
was a key focus of the committee.  With this focus, the V&V20 
Standard was officially released in December 2009. 

Presented in the remainder of this paper is a discussion of 
the key elements involved with code and solution verification 
and aspects of validation as presently conceived by the 
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Committee.  This paper is a summary of all the hard work 
performed by the entire V&V20 Committee.  

The purpose of this paper is to present some of the key 
details of primarily Solution Verification, but also the overall 
verification process as defined in the V&V20 Standard.  Much 
of the information presented in this paper may be found in the 
V&V20 Standard, although new examples of the procedures are 
presented here.  The ultimate objective of this paper is to help 
promulgate the methodology of V&V20 to the engineering 
community.  

 
A CONCEPTUAL FRAMEWORK FOR VERIFICATION 
AND VALIDATION 

Figure 1 provides a conceptual framework for code and 
solution verification, uncertainty assessment, and validation.  In 
this conceptual framework, error may be viewed as hierarchical, 
in the sense that error may be associated with different levels of 
model formulation and implementation.  In any assessment of 
error or uncertainty, it is implicit that we have a measure of 
reality (or nature) or at least a descriptive framework of reality. 
This is generally our starting or reference point.  Certainly any 
measurement of reality also has uncertainty associated with it 
due to measurement inaccuracies, which is the justification and 
basis for experimental uncertainty methods.  And further, the 
best that one can hope for in a validation exercise is for the 
regions bounded by uncertainties (measurement and 
computational) to be coincident to some measure.   

With the assumption that we have a measure or description 
of reality, one may then formulate a Postulated Math Model 
(PMM).  The PMM is a continuum model and is the model that 
we ultimately wish to demonstrate as providing some measured 
predictability of reality.  The PMM may be described as the 
weak-sense model – the model form, such as the Reynolds-
Averaged Navier Stokes equations.  The PMM is then cast into 
a discretized form or the Computational Model (CM) – a model 
form sufficient for numerical simulation.  The CM is a form of 
the strong-sense model which includes all the input parameters, 
boundary and initial conditions required to define a particular 
problem for simulation.  The distinction between the weak-
sense model and strong-sense model suggests that the validation 
at an experimental set-point occurs only for the strong-sense 
model, and that only through an ensemble of validated strong-
sense models is the weak-sense model ultimately validated.  
Note that the PMM may also be defined in a strong-sense model 
form, but we choose to not do so in this paper.  The key point in 
this discussion is that a weak-sense model may be validated by 
an ensemble of specific or strong-sense model validations. 

As shown in Figure 1, the total error may be defined by the 
difference between reality (plus uncertainty) and the PMM, plus 
the difference between the PMM and a fully resolved CM.  
However, a fully resolved CM is not generally achieved, so the 
third term in the error equation results from an under-resolved 
CM.  Each of these error terms contributes to the total error.  
Through the procedures of verification and validation supported 
by a method for quantifying uncertainty or the error band, one 

may then determine the magnitude of contribution by each term 
to the total error band.  Based on the magnitudes of each term, 
an appropriate action would result.  For example, if the 
contribution of the second term dominated the error, then we 
would know that an error was present in the code (programming 
or algorithmic).  If the third term dominated the error, then this 
would suggest that the discretization scheme was not 
sufficiently accurate or some resolution dependent boundary 
condition was inappropriate, or that grid resolution in general 
was not sufficient.  Through this systematic process, verification 
(code and solution) followed by validation may be achieved for 
a code and ultimately the PMM.  The essential element to this 
process, however, is a method for computing uncertainty in the 
simulation.  That subject is addressed later in this paper. 

V&V20 has formalized the above into the following set of 
equations.  We first define the validation comparison error E 
(also represented in Figure 1) as  

 
E = S – D               (1) 

Where S is the simulation solution and D is the experimental 
data.  The error in S due to the accumulated errors as suggested 
in Figure 1, is defined as the difference between S and the true 
value T, and similarly for the error in the experimental data D, 
or 

        δS = S – T   and   δD = D – T      (2) 

The validation comparison error E is thus the combination of all 
the errors in the simulation solution and the experimental data, 
and its sign and magnitude are known once the validation 
comparison is made. 

E = S – D = (T + δS) – (T + δD) = δS - δD (3) 

As illustrated in Figure 1, all errors in S can be assigned to 
one of three categories: 

1. error due to modelling assumptions and 
approximations (errors in PMM), defined as δModel, 

2. error due to the discretization of PMM and numerical 
solution of the computational model CM, defined as 
δNum, and/or 

3. error due to errors in the simulation input parameters, 
defined as δInput 

Thus 

        δS = δModel + δNum + δInput                        (4) 

  δModel = E - δNum - δInput + δD                    (5) 

The objective of the verification process is to estimate the 
error due to δNum, and the objective of the validation process is 
to estimate δModel.   Equation 4 indicates that δInput may be 
explicitly accounted for and thus contribute directly to the 
validation process and assessment of δModel or it may be 
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implicitly part of δModel, which leads again to the distinction 
between a weak-sense model and a strong-sense model 
validation.  In general, as discussed above, the weak-sense 
model refers to the mathematical model form or PMM, while 
the strong-sense model refers to the computational model (CM) 
with all associated boundary and initial conditions, and other 
input data required to define a particular problem.  For the 
strong-sense model, δInput, need not necessarily be explicitly 
determined, but rather may be implicitly defined as part of 
δModel for a strong-sense model formulation.  For example, 
consider a particular problem with a specified inflow boundary 
profile which in combination with the CM forms a strong-sense 
model.  Simulation results are then compared to experimental 
data (validation) and an estimate of δModel is determined, which 
includes both model form errors and model input errors.  This 
δModel is then specific to this strong-sense model with its 
specified inputs.  If we now change the model inputs, we have 
created a new strong-sense model which may then be validated 
against the same or similar experimental data and another 
estimate of δModel is determined.  We now have potentially 
(likely) two different solutions and two different model error 
estimates, which is appropriate since we have two different 
strong-sense models.  In this example, δModel then has error 
contributions from both modelling assumptions and 
approximations (model form) and model input errors.  In 
practice, there are numerous gradations or combinations of 
model form and model inputs contributing to δModel.  Thus, it is 
crucial in interpreting the results of a validation effort that those 
error sources that are included in δModel be defined and 
understood – the strong-sense model must be well defined. 

Equation 5 may also be written as the following for a 
strong-sense model in which model input error are considered 
fully part of the model form error  

δModel = E - δNum + δD                               (6) 

Standard uncertainties for the errors on the RHS of equations 5 
or 6 may be defined as uNum, uInput, and uD, which represent the 
estimate of the standard deviation of the parent distribution 
from which the specific error estimate is a single realization.  
The error terms on the RHS of equations 5 or 6 and with their 
associated standard uncertainties define a validation uncertainty 
uVal as follows 

222
DInputNumVal uuuu ++=          (7) 

From this we may then define the interval E ± uVal  within 
which δModel will fall with some unspecified degree of 
confidence.  The estimation of uVal is the kernel element of the 
V&V20 methodology, and E and uVal are the validation metrics. 
The other kernel element in the methodology is the estimation 
of uNum.  The above discussion summarizes to a degree the 
overall framework to progress from verification through 

validation for a simulation and model.  At this point, we now 
focus on code and solution verification only and ultimately the 
assessment of uNum.  The reader is directed to the V&V20 
Standard for further discussions on the methods for assessing 
uInput and uD and other topics important to the estimation of E 
and uVal. 
 

 
Figure 1.  Conceptual framework for identification of sources of 

error in a computational modelling effort 

CODE VERIFICATION 
Code verification, establishing and confirming the 

correctness of the code itself can only be done by systematic 
discretization convergence tests and monitoring the 
convergence of the solutions towards a known benchmark 
solution. The best benchmark solution or standard of 
comparison is an exact analytical solution, ideally one 
expressed in simple primitive functions.  Benchmark solutions 
involving infinite series are not desirable, due to potential 
difficulties in accurate evaluation of the benchmark solution 
itself.  Further, it is not sufficient that the analytical solution be 
exact, i.e., the solution structure must also be sufficiently 
complex that all terms in the governing equation(s) and code 
being tested are exercised [1, 4].  A classic example of a 
physically meaningful analytical solution appropriate as a 
benchmark is the Sod problems – one-dimensional flow 
discontinuity problems or “shock tube” problems (although 
some may argue that these are not true analytical solutions since 
some iteration is required in the “analytic” solution process).  

The process of developing a computer code (and the 
algorithms used in it) for nonlinear partial differential equations 
(PDE’s) necessarily involves much testing and evaluation of 
algorithms and coding. Mostly, this is performed for sets of 
simplified problems with analytical solutions. For example, a 
3D time-dependent full nonlinear Navier-Stokes code will 
probably have been tested on a simple 1-D linear advection-
diffusion equation, a 2D or 3D Burgers equation, and other 
increasingly complex equation forms. While these tests are 
helpful in ascertaining code performance, and taken all together 
can constitute a partial or informal code verification, they are 
inadequate to convincingly demonstrate that the code is correct 
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for the targeted problems.  In order to achieve convincing code 
verification, one needs an exact analytical solution or family of 
solutions that exercises all the important features of a code (e.g. 
variable properties, nonlinearities, turbulence models, etc.).  It 
is well known that even the laminar Navier-Stokes equations do 
not have known analytical solutions for any but the most trivial 
boundary and initial conditions; in fact, the Navier-Stokes 
equations are recognized as one of the great unsolved problems 
of modern mathematics or physics.  Fortunately, a very general 
procedure does exist for generating exact analytical solutions 
required for accuracy verification of codes.  This procedure, the 
Method of Manufactured Solutions (MMS) [1, 2, 4] is 
presented in the next section. 

Systematic grid or discretization convergence testing is 
based on a series of solutions generated by the computer code 
as a function of different grid resolutions, where the monitoring 
of convergence as h → 0 is performed, where h is a measure of 
the level of discretization.  Observed order of convergence is 
then based on the behaviour of the error of the discrete solution 
as h → 0.  In the most general sense, error is simply the 
difference between the discrete solution f(h) and the exact 
solution F, E = f(h) – F.  For an order P method, the error in the 
solution E asymptotically is proportional to hP , or E = f(h) – F 
= C hP + H.O.T..  A comparison between the values of the 
observed P and the theoretical P (from a Taylor series 
expansion for example) provides valuable insights to the 
numerical error in the computer code.  If the values of the 
observed P and the theoretical P vary greatly from each other, 
then this indicates one of several possible issues: 

• the grid convergence study has not been carried out to 
a sufficient level of refinement, 

• there are more significant errors being generated in the 
code than those due to discretization and thus a 
detailed review of the code is required, 

• boundary conditions and/or initial conditions may not 
be appropriate, and 

• iterative convergence may not have been sufficient. 

When a systematic grid convergence test is verified (for all 
point-by-point values), then we have verified  

• equation transformations (e.g., nonorthogonal 
boundary fitted coordinates),  

• order of the discretization,  
• encoding of the discretization, and  
• matrix solution procedures. 
 
Figure 2 displays an illustration of what one would 

anticipate the computational solution should do as the grid is 
refined in a grid convergence study of an analytical solution, 
that is it approaches the analytic solution.  In this example, the 
Sod problem is solved using a three-dimensional tetrahedral 
grid flow solver, in which a discontinuity in pressure and 
density of 100:1 is simulated.  The characteristic length scale of 
the tetrahedral grids is systematically refined over 5 grid 

resolutions to a final length scale refinement of a factor of 3 in 
reference to the coarsest grid (G1 is the coarsest grid and G5 is 
the most refined grid in 3D).  The axial distribution of pressure 
and sound speed are shown in Figure 2 as a function of grid 
resolution. 
 

 

 
Figure 2.  Example of grid convergence study, results compared to 

an analytical solution 

METHOD OF MANUFACTURED SOLUTIONS 
The Method of Manufactured Solutions (MMS) provides a 

methodology for code verification that has been successfully 
demonstrated in a variety of codes. It is only applicable, 
however, to codes based on the solution of partial differential 
equations.  For some models, the method can be set up with no 
special code requirements, however, in general and the easiest 
way to apply MMS does require two code features that may not 
be already built in to the computer code (i.e., the ability to (1) 
introduce an arbitrary source term in to the code as well as (2) 
associated boundary conditions). The following brief discussion 
of MMS is given to provide a general sense of the method; 
detailed examples of the implementation of the method are 
given in the V&V20 Standard and references [1, 4]. 
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Code Verification requires an exact, analytical solution to 
a non-trivial problem. The formulation of an exact, analytical 
solution may seem difficult for nonlinear systems of PDE’s, but 
in fact it is relatively easy.  MMS starts at the end, with a 
sufficiently complex solution form, e.g., hyperbolic tangents, 
which are easily evaluated and differentiated and contain all 
orders of derivatives (there are plenty of other functional forms 
with this attribute).  Boundary conditions or domain structure 
are not necessarily important, just the solution form.  Nor is 
“realism” a concern.  Physical realism is not important to the 
“engineering proof” of code correctness, since only 
mathematics is involved.  MMS simply must exercise all the 
terms in the mathematical model.  In fact, unrealistic solutions 
typically are better in this regard, since realistic solutions will 
often contain small parameters and boundary layers in which 
some terms are negligible, so that errors in these terms might go 
undetected. 

In the generalized MMS approach, the problem is written 
symbolically as a nonlinear (system) operator L, L[f(x,y,z,t)] = 
0.   The manufactured solution M is then defined by f = 
M(x,y,z,t).  We will now change the problem to a new operator 
L’ such that the solution to L’[f(x,y,z,t)] = 0 is exactly the 
manufactured solution M.  The most general and 
straightforward approach is to determine L’ by adding a source 
term Q to the original problem, L’ = L – Q, where the required 
source term is evaluated by allowing L to operate on the 
manufactured solution M, Q = L[M].  So instead of solving the 
original problem L(f) = 0 with an unknown solution, one solves 
the problem L(f) = Q (or equivalently, L’(f) = 0) which has the 
known solution M.  Boundary values, for any boundary 
condition to be tested, are determined from M, as are the initial 
conditions. A detailed example of MMS application is provided 
in Appendix A in the V&V20 Standard. 

Given this non-trivial exact analytical solution, we then 
perform grid convergence tests on the code and verify not only 
that it converges, but also at what rate it converges, the value of 
P.  Further, the magnitude (and sign) of the error is directly 
computed from the numerical solution and its comparison to the 
analytical solution.  Again, in order to apply MMS in this most 
general form, it is necessary that the code be capable of 
handling source terms and non-homogeneous boundary 
conditions [3]. 

SOLUTION VERIFICATION 
Systematic grid refinement is the cornerstone of 

verification processes for either codes or solutions.  Whereas 
grid refinement studies in the context of code verification 
provide an evaluation of error, grid refinement studies used in 
solution verification provide an estimate of error.  This estimate 
of error is determined through the prediction of uncertainty or 
uncertainty estimates, which are intended to bound the solution 
error.  Two methods of obtaining solution uncertainty estimates 
from grid refinement studies are commonly used: classical 
Richardson Extrapolation [9] and Roache’s Grid Convergence 
Index (GCI) [11].  GCI is in fact obtained from the 

(generalized) Richardson Extrapolation (RE) by multiplying the 
RE error estimate by an empirically determined Factor of 
Safety, Fs. The Fs is intended to convert the 50% uncertainty 
(error band) implicit in the definition of any ordered error 
estimate (like RE) into a 95% uncertainty estimate. 

Richardson Extrapolation is based on the assumption that 
discrete solutions f have a series representation in the grid 
spacing h.    If the formal order of accuracy of an algorithm is 
known, then the method provides an estimate of the error when 
using solutions from two different (halved or doubled) grids.  If 
the formal order of accuracy is not known, then three different 
(twice halved or doubled) grids and solutions are required to 
determine the order of the method and the error.  Although grid 
doubling (or halving) is often used with Richardson 
Extrapolation, it is not required [1], and the ratio of grid 
spacing may be any real number.  

Prior to the application of a grid convergence study for 
solution verification it is assumed that code verification has 
been completed and documented.  In general, the computer 
code being used for the application being considered must be 
fully referenced, and previous verification studies must be 
described.  Code verification will insure that the computer code 
is capable of solving a system of non-linear coupled partial 
differential equations with a properly posed set of initial and/or 
boundary conditions, and approaches the exact solution to these 
equations when a sufficiently fine grid resolution (both in time 
and space) is used.  

Before any discretization error estimation is calculated, it 
must be ensured that iterative convergence (if iterative methods 
are used) is achieved.  Iterative convergence of at least three 
orders of magnitude decrease in properly normalized residuals 
for each equation solved over the entire computational domain 
is often used.  However, there currently is no justification for 
this level of convergence, and is based solely on users 
experience (and code default values) and has not been formally 
demonstrated.  The more appropriate level of iterative 
convergence is when the iterative error has been reduced to a 
level negligible in reference to the discretization error.  Recent 
results suggest that iteration error needs to be 2 to 3 orders of 
magnitude smaller than discretization error to guarantee 
negligible influence [13].   

As stated above, the preferred method for uncertainty 
estimation based on discretization error is Richardson 
Extrapolation.  Since its first elegant application by its 
originator, L. F. Richardson, in 1910 and later in 1927 [9, 10], 
this method has been studied by many authors.  Its intricacies, 
pitfalls and generalizations have been exhaustively investigated.  
A short list of references are given and are selected for their 
direct relevance to the subject include; Celik et al [6], Celik and 
Karatekin [7], Eca and Hoekstra [8], Roache [1, 11], and Stern 
et al. [12]. 

Application of RE and GCI may encounter some 
difficulties in practical problems.  When applied, local values of 
predicted variables may not exhibit a smooth, monotonic 
dependence on grid resolution, and in a time dependent 
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calculation, this non-smooth response will also be a function of 
time and space.    But, nonetheless it is currently the most 
robust method available for the prediction of numerical 
uncertainty.  

A PROCEDURE FOR ESTIMATING UNUM 
A five-step procedure is defined in the V&V20 Standard 

and is presented below for the application of the Grid 
Convergence Index (GCI) method.  

Define a representative cell, mesh or grid size h. For example, 
for three dimensional, structured, geometrically similar grids 

Step 1: 

[ ] 3/1
maxmaxmax ))()(( zyxh ∆∆∆=      (8) 

For non-structured grids one can define 

∑
=

∆=
N

i
i NVh

1

3/1)/)((                            (9) 

where ∆Vi is the volume of the ith cell, and N is the total number 
of cells used for the computations [1].  Equation 9 was used to 
calculate the characteristic grid length scale used in Figure 2. 

Select three significantly different sets of grid resolutions and 
run simulations to determine the values of key variables 
important to the objective of the simulation study, for example a 
variable φ.  There are some advantages to using integer grid 
refinement, but it is not necessary.  It is desirable that the grid 
refinement factor, r=hcoarse/hfine, should be greater than 1.3 for 
most practical problems.  This value of 1.3 is again based on 
experience and not on some formal derivation.  The grid 
refinement should, however, be made systematically, that is, the 
refinement itself should be structured even if the grid is 
unstructured.  Geometrically similar cells are preferable.  It is 
highly recommended not to use different grid refinement factors 
in different directions, e.g. rx = 1.3 and ry = 1.6, because 
erroneous observed P values are produced, as shown by Salas 
[14]. (The computational solutions still converge to the correct 
answers with rx ≠ ry but the observed rate of convergence P is 
affected.) 

Step 2: 

Let h1 < h2 < h3 and r21 = h2/h1, r32 = h3/h2 and calculate the 
apparent (or observed) order, P, of the method from 

Step 3: 

     )](|/|))[lnln(/1( 213221 pqrp += εε             (10) 

     







−
−

=
sr
sr

pq p

p

32

21ln)(                              (11) 

     )/(sign1 2132 εε⋅=s                              (12) 

where ε32 = φ3 - φ2 , ε21 = φ2 - φ1 , and φk denoting the simulation 
value of the variable on the kth grid. Note that q(p) = 0 for r = 
constant.  This set of three equations can be solved using fixed 
point iteration with the initial guess equal to the first term, i.e., q 
= 0. 

A minimum of four grids is required to demonstrate that the 
observed order P is constant for a simulation series.  The 
“right” three-grid solution for the observed order P may be 
adequate if some of the values of the variable φ  predicted on 
the three grids are in the asymptotic region for the simulation 
series.  In fact, it may require more than three grids to 
convincingly demonstrate asymptotic response in difficult 
problems, possibly five or six grid resolutions in cases where 
the convergence is noisy.  This is all dependent on the initial 
grid resolution used and where the predicted value of φ  lays as 
a function of grid resolution.  However, in order to provide a 
balance between providing both a tractable method and insuring 
a level of accuracy in the predicted observed order P, we 
propose that at least a three-grid study be performed. 

Calculate the extrapolated values from the equation 

Step 4: 

      )1/()( 212121
21 −−= pp
ext rr φφφ                   (13) 

and similarly for φext
31 . 

Calculate and report the following error estimates along with 
the apparent order of the method P, where the approximate 
relative error may be cast as a dimensionless form or a 
dimensioned form  

Step 5: 

     dimensionless form:         
1

2121

φ
φφ −

=ae                (14a) 

     or, dimensioned form:       21
21 φφ −=ae                 (14b) 

Estimated extrapolated relative error is:        

                       21
1

21
21

ext

ext
exte

φ
φφ −

=                                  (15) 

The fine grid convergence index is finally:  
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1
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21

21
21
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•
= p

as

r
eF

                            (16) 

Fs is the Factor of Safety which originally was assigned a 
value of 3 by Roache [11].  Roache [1] has subsequently 
recommended a less conservative value for Fs of 1.25 when 
using three grid studies and the observed P.  He arrived at this 
value through empirical studies and this value roughly 
correlates with the definition of uncertainty U used by Coleman 
and Stern [5] and suggests that using a value of 1.25 results in a 
GCI with a 95% confidence interval.  Based on current 
evidence, we recommend a value of 1.25 be used with at least 
three grid studies. 

If the calculated order of the method P is less than 1.0, an 
uncertainty band may also be given by assuming P = 1.0.  We 
do this not to ignore the observed P, but simply to give two 
calculations, one with the observed P and one with P = 1.0, as 
an indicator of the sensitivity of the uncertainty band to the 
observed value of P.  However, the GCI computed with the 
observed P is the more conservative approach.  It should also 
be noted, that if the observed value of P is significantly 
different from the expected order of the method (for example 
the order of the method is believed to be third-order for the 
primary variables but it observed to be less than 1), than one 
should delve into the root cause of this difference. It may 
suggest a possible error in the method or its implementation, or 
that the grid resolutions used in the GCI analysis were not 
predicting values of the variable in the asymptotic region.  

The form of the GCI is based on theory, but the use of 
absolute values for estimated errors and the factor Fs are based 
on empiricism involving the examination of several hundred 
CFD case studies. The empirical tests involved the 
determination of conservatism in 95% of the cases, 
corresponding to GCI = Unum = 95%.  No assumptions on the 
form of the error distributions were made nor were necessary 
for these empirical studies, since actual data was examined with 
a simple pass/fail criterion.  Equation 7 was developed using 1σ 
and the corresponding uncertainty uNum.  In order to convert this 
(partially) empirical GCI from Unum to the uNum needed in 
equation 7, it is now necessary to make the assumption of a 
Gaussian distribution.  Then GCI = Unum = 95% corresponds to 
using a 2σ uncertainty, and the required term for use in equation 
7 is then (see the V&V20 Standard for an additional discussion 
on this point): 

 
                        uNum = Unum/2 = GCI/2             (17) 

CONSIDERATIONS IN SOLUTION VERIFICATION 
The simulation variable φ that is evaluated by the five-step 

procedure can be any result of the simulation: local values of 
the dependent variables like u, v, p; volume-weighted RMS 
values; or integrated functionals of the solution like lift 

coefficient or heat flux. The same principles of solution 
verification apply in all cases, but the following should be 
noted. First, integrated functionals typically are better behaved 
(more smooth) than local values and thus the observed P tends 
to be less noisy. Second, different simulation variables can 
converge at different rates.  Third, the same techniques for 
solution verification can be applied to derivatives of integrated 
functionals with respect to input parameters.  Finally, care must 
be taken in determining the appropriate grid resolution 
requirements for both the grid convergence exercise and the 
grid resolution required to minimally resolve the physics of the 
problem.  For example, if the problem to be solved has a 
specific range of length scales that characterize the flow physics 
such as boundary layers or thermal gradients, then the grid 
resolution for the coarsest grid used in the grid convergence 
study must still adequately resolve these length scales.  This is 
particularly important in the context of Large Eddy Simulation.  
In Large Eddy Simulation, the filter width is usually related to a 
measure of the grid resolution, and thus as the grid resolution is 
changed during the grid convergence study, the filter width also 
is changed. This means that the partitioning of energy between 
the resolved and unresolved scales is changing.  Thus if the user 
is not careful and as the grid convergence study is executed, 
they may be solving a different problem for some of the coarse 
grid resolutions if the cutoff between resolved and unresolved 
scales changes significantly from grid to grid. 

Finally, the following is suggested as an approach to 
effectively and efficiently perform and use a solution 
verification exercise in applications.  For the given problem to 
be simulated, the first step is to define a set of simulation 
objectives (i.e., why are you simulating this problem, what 
quantities are you interested in predicting, and what level of 
accuracy is required).  Given the simulation objectives, a 
nominal simulation problem is defined including boundary and 
initial conditions.  This nominal problem should be 
representative of the problem set to be studied (where typically 
many simulations are performed to achieve the problem 
solution).  This nominal problem will then serve as the basis for 
the solution verification grid convergence study.  A detailed 
grid convergence study of this specific, nominal problem is 
executed with 3 to 6 levels of grid refinement.  Based on the 
results of the solution verification for the nominal problem, a 
base grid resolution is defined that achieves the simulation 
objectives for estimated accuracy.  This base grid resolution is 
then used in all subsequent simulations for the particular 
problem.  If during the course of the subsequent simulations, the 
problem definition changes significantly such that the nominal 
problem no longer is representative of the study, then a new 
nominal problem should be defined and a new solution 
verification performed.   

SOLUTION VERIFICATION EXAMPLES 
Figure 3 provides an example of the five-step procedure 

defined above, where a TNT charge is detonated in a rigid, 
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fluid-filled box.  The quantity of interest is the quasi-static 
pressure at various locations in the box (colored dots in top 
image) after a finite elapsed time in the time-dependent 
simulation.  The bottom image in this figure displays the 
predicted value of pressure as a function of grid resolution at 
various measurement locations in the set of simulations.  In this 
example, the magnitude of pressure has a smooth dependence 
on grid resolution.  The basis for the grid resolution used is the 
number of zones across the diameter of the charge. 

 

 
Figure 3. Sample Uncertainty Analysis 

 
Table 1 summarizes the results of the application of the 

GCI to the explosive detonation problem.  Here pressure at 
three different locations are used; i.e., a node in the corner of 
the box, a node near the center of a box side, and a node at mid-
distance between the charge centerline and a box side.  The 
second row of the table provides the computed (observed) order 
of the method, and the third row provides the computed error 
band or uncertainty.  To compute these values the first four grid 
resolutions (4, 8, 16, and 20 zones across the diameter of the 
charge) were used.  Rows four and five provide the range in 
pressure as predicted by the uncertainty estimate.  This range 
should then bound the “exact” solution with a 95% confidence.  
The sixth row in the table displays the predicted value of 
pressure on the finest grid (resolution of 32 zones across the 
diameter of the charge).  The ranges displayed in rows four and 

five should then bound the values here, and they do, again, 
demonstrating both the validity of this approach and the 
appropriateness of the magnitude of Fs.  Please note that the 
units for pressure in Table 2 (rows 4 to 6) are MPa. 
 

Table 1. Sample Uncertainty Analysis 
 

Corner Wall Fluid 
P = 1.7 P = 1.5 P = 1.02 

GCI = 1.2% GCI = 1.6% GCI = 3.6% 
15.34 ± 0.16 15.23 ± 0.21 15.24 ± 0.48 

15.18 to 15.50 15.02 to 15.44 14.76 to 15.72 
15.47 15.40 15.39 

  
Another solution verification example is shown in Figure 4, 

where flow through an annular space bounded by an outer 
diameter tube and an inner hub is simulated (domain length of 1 
cm).  The inner hub has a wire wrapped around it, with diameter 
of D and represents the key geometric feature to be resolved in 
the flow simulation study.  
 

 
Figure 4. Annular flow geometry 

 
Figure 5 shows the 5 grid resolutions used to perform the 

solution verification.   Here the resolution of the wire wrap 
diameter ranges from 4 zones to 12 zones.  The computer code 
used in this simulation uses a volume-of-fluid formulation 
which allows for the inclusion of solid objects embedded in the 
grid system without the need for body-fitted grid systems and 
the calculation of grid metrics.  The resulting total number of 
grid cells used in these 5 resolutions are 0.4 M (0.24 M), 1.37 
M (0.84 M), 3.07 M (1.91 M), 5.89 M (3.69 M), and 10.05 M 
(6.34 M), where the M stands for million, and the first number 
is the total number of grid cells in the domain, and the number 
in parenthesize is the fluid cells or cells open to fluid flow 
(volume fractions greater than 0).   

 

 
Figure 5. Grid resolutions used in solution verification  

(focused on a single wire wrap) 
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Figure 6 illustrates the affect of grid resolution on the 
distribution of fluid strain in the flow domain.  Here contours of 
fluid strain on the surface of the hub and on the vertical 
centerline of the tube are shown for the same instance in 
elapsed time.  Visualization of the key flow parameters can be a 
very useful supplementary set of data for establishing 
appropriate nominal grid resolution requirements for 
subsequent simulations.  In this figure, for example, grid 
resolutions of D/h of 8 or greater are resolving quite similar 
fine-scale flow structures.  In this example a nominal grid 
resolution of D/h = 8 was selected as the best balance between 
simulation accuracy and computational requirements (runtimes 
were only 30% and 20% respectively of the two finer grids). 
   

 
Figure 6. Fluid strain contours at different grid resolutions 

 
For the conditions simulated in this problem, a nominal 

grid resolution of D/h = 8 was in the asymptotic region of the 
grid convergence curve when plotting the key parameter of total 
skin friction on the wire versus grid resolution.  Total skin 
friction was the key parameter of interest in this particular 
analysis.  At the grid resolution of D/h = 8, the GCI was 2%, 
which was more than sufficient for the application, and thus was 
the grid resolution selected for use in the subsequent production 
simulations and analyses.     
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