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ABSTRACT
A newly developed computational methodology for high-

fidelity prediction of fluid and structure dynamics and their un-
steady interaction is presented. The present methodology com-
bines an immersed-boundary method, which is capable of sim-
ulating flow over non-grid-conforming complex moving bodies
and a structural dynamics solver, which is based on a finite-
element method and is capable of predicting time-accurate dy-
namics of deforming solid structures. The pressure and velocity
of fluid and geometric information of submerged structures are
time-accurately coupled through an integration algorithm. The
capability of the present computational fluid dynamics (CFD) -
computational structure dynamics (CSD) coupling technique is
assessed in a number of validation simulations.

INTRODUCTION
Time accurate prediction of fluid-structure interaction has

considerable practical significance since fluid-structure interac-
tion often characterizes the performance, efficiency, vibration,
and noise emission of many aero-/hydro-dynamic systems such
as helicopter rotor blades, wind/hydro turbine blades, pitching
and flapping airfoils and wings, and rotating turbomachinery
blades. Fluid-structure interaction often takes place at extreme
conditions, e.g., very high speed, temperature, and pressure, and
in complex configurations. In such cases, simultaneous exper-
imental measurements of fluid and structure dynamics are very
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difficult and impractical.
Recent advancement of computing powers and computa-

tional modeling and simulation technologies allows predicting
complex physical phenomena occurring in fluid-structure inter-
actions. A major difficulty in simulations of unsteady fluid-
structure interaction phenomena is to design a computational
mesh, which can adequately resolve deforming structures. A
body-conforming time-varying mesh has often been utilized in
finite-element-based methods. Although this approach is ca-
pable of capturing the geometric deformation accurately, the
method is often limited to the cases with mild structural de-
formation, which can be resolved with reasonable mesh defor-
mation. Furthermore, for high Reynolds number simulations,
finite-element methods, especially high-order accurate, tend to
be unstable and therefore, necessitate numerical stabilization.
For example, Dettmer and Perić [1] employed a finite-element
method utilizing a streamline-upwind and pressure-stabilizing
Petrov-Galerkin (SUPG/PSPG) algorithm for a simulation of
flow-induced vibration of a flexible beam.

In recent years, finite-difference and finite-volume methods
utilizing an immersed boundary method [2] have received special
attention for simulation of fluid-structure interaction problems.
Compared to body-conforming grid methods, an immersed-
boundary method utilizes a simple Cartesian grid and imposes
necessary boundary conditions on non-grid conforming bound-
aries of structures. Although immersed boundary methods can
handle complex moving geometries, the methods have been
mostly applied to fluid-structure interaction problems where the
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deformation and motions of solid structures are prescribed.
In the present study, we develop a computational method-

ology for high-fidelity prediction of both fluid and structure dy-
namics and their unsteady interaction. The present methodology
combines an immersed-boundary method, which is capable of
simulating flow over non-grid-conforming complex moving bod-
ies and a structural dynamics solver, which is based on a finite-
element method and is capable of predicting time-accurate lin-
ear and non-linear dynamics of solid structures. In contrast to
the conventional immersed boundary method, where the struc-
tural dynamics is not predicted but prescribed, in the present
method, the structural dynamics is directly computed using a
finite-element-based method. The pressure and velocity of fluid
and geometric information of submerged structures are time-
accurately coupled through an integration algorithm.

COMPUTATIONAL METHODOLOGY

A. Numerical method for fluid flow
The numerical method is based on a Cartesian-coordinate

Navier-Stokes solver originally developed by You et al. [3], with
significant enhancements to treat complex moving geometries.
The incompressible Navier-Stokes equations are as follows:
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where i, j = 1,2, and 3. ui is the velocity component in the i-
direction. All of the coordinate variables, velocity components,
and pressure are nondimensionalized by a length-scale L, the in-
flow freestream velocity U∞, and ρ fU2

∞, respectively. The time
is normalized by L/U∞. The Reynolds number is defined as
Re = U∞L

ν
, where ν is the kinematic viscosity of the fluid. The

pressure and velocity components are arranged and discretized
on a collocated grid as shown in Fig. 1. A fractional step method
is used for time integration. For the convective terms, a second
order Adams-Bashforth scheme is employed, while a second-
order Crank-Nicolson scheme is used for the diffusion terms.
The discretized momentum equations can be written as

u∗i −un
i

∆t
+

1
2
[3Nn

i −Nn−1
i ] =−δpn

δxi
+

1
2Re

(D∗
i +Dn

i ), (3)

where Ni = δ(U jui)
δx j

and Di = δ

δx j
( δu j

δxi
) represent the convective

and diffusive terms, respectively, while δ

δx denotes a spatial dis-
cretization operator. The cell-center velocity u∗i is computed
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Figure 1. Illustration of a collocated-grid arrangement of primitive vari-
ables.

using a Line SOR scheme with a Gauss-Siedel method as a
smoother, while the face-center velocity U∗ is computed as fol-
lows:

ũi = u∗i +∆t(
δpn

δxi
)cc,

Ũ1 = γwũ1P +(1− γw)ũ1W ,

Ũ2 = γsũ2P +(1− γs)ũ2S,

Ũ1 = γbũ3P +(1− γb)ũ3B,

U∗
i = Ũi−∆(

δpn

δxi
) f c, (4)

where γw,γs, and γb are the linear interpolation weights for the
face velocity components in the west, south, and back direc-
tions, respectively. Subscrips of cc and f c represent the cell and
face centers, respectively. The velocity un+1

i is computed by a
pressure-correction as follows:

un+1
i −u∗i

∆t
=−δp′

δxi
, (5)

where p′ = pn+1− pn.
The equation (5) and the divergence free condition for un+1

i
result in a Poisson equation as follows:
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Figure 2. Definitions of the fluid, solid, and ghost cells in the present
immersed boundary method.

The Poisson equation is solved using a multigrid method.
The velocity and pressure components are updated as

pn+1 = pn + p
′
,

un+1
i = u∗i −∆t(

δp
′

δxi
)cc,

Un+1
i = U∗

i −∆t(
δp

′

δxi
) f c. (7)

B. Immersed boundary method
The present immersed boundary method is based on a ghost-

cell method proposed by Mittal et al. [4], and allows to effec-
tively handle complex moving and stationary bodies. Complex
geometries are represented with triangular surface elements. The
inside and outside of a submerged object are identified by a dot
product of the surface element normal vector and the position
vector which extends to the node from the closest surface ele-
ment. If the dot product has a positive (negative) value, the node
is identified as the outside (inside) of a submerged body.

The cells identified as the outside and inside of a submerged
body correspond to fluid and solid, respectively, while the cells
located at the interface between the outside and inside cells are
defined as ghost cells as illustrated in Fig. 2.

The velocity and pressure are not assigned to the solid cells,
while the variables are assigned to the ghost cells to impose the
necessary boundary condition on the immersed boundary. The
flow field variables on ghost cells are interpolated using the val-
ues at the associated image point, and boundary intercepts. A
flow variable φ at the image point is interpolated using surround-
ing eight nodes as follows:

φ(x1,x2,x3) = C1x1x2x3 +C2x1x2 +C3x2x3 +C4x1x3

+C5x1 +C6x2 +C7x3 +C8. (8)

The eight unknown coefficients Ci can be determined by
solving the following algebraic equation:

{C}= [V ]−1{φ}, (9)

where

{C}T = {C1,C2, ...,C8}, (10)
{φ}T = {φ1,φ2, ...,φ8}, (11)

[V ] =


x1x2x3|1 x1x2|1 x1x3|1 x2x3|1 x1|1 x2|1 x3|1 1
x1x2x3|2 x1x2|2 x1x3|2 x2x3|2 x1|2 x2|2 x3|2 1

...
...

...
...

x1x2x3|8 x1x2|8 x1x3|8 x2x3|8 x1|8 x2|8 x3|8 1

 . (12)

A flow variable φ at an image point can be expressed using
the computed Ci as follows:

φIP =
8

∑
i=1

βiφi +T.E., (13)

β
T = (14)

{x1x2x3|IP x1x2|IP x1x3|IP x2x3|IP x1|IP x2|IP x3|IP 1}[V ]−1{φ},

where T.E. denote a leading-order truncation error.
A flow variable at a ghost cell, φGC, is now calculated using

the values at the image point and boundary intercept with a linear
interpolation technique:

φBI =
1
2
(φIP +φGC)+O(∆l2)

=
1
2
(

8

∑
i=1

βiφi +φGC)+O(∆2)+O(∆l2), (15)

where ∆l is the distance between a ghost cell and an image point.
The equation (15) can be recast into an implicit form:

φGC = 2φBI −
8

∑
i=1

βiφi. (16)
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A Neumann boundary condition can be also imposed on a bound-
ary interface as follows:

(
δφ

δn
)BI =

φIP−φGC
∆l

+O(δl2)

=
1
∆l

(
8

∑
i=1

βiφi−φGC)+O(∆2/∆l2)+O(∆l2), (17)

φGC =
8

∑
i=1

βiφi−∆l(
δφ

δn
)BI . (18)

The governing equations are solved for the flow variables at
the fluid and ghost cells, while the required boundary condition
on the immersed boundary is satisfied.

C. Numerical method for solid dynamics
A dynamic motion of an immersed solid structure is com-

puted using an implicit-explicit time integration of the dis-
crete equation of motion as proposed by Miranda, Ferencz, and
Hughes [5]:

Man+1 +(1+α)Cvn+1−αCvn +(1+α)Kdn+1−αKdn

= Fext
n+1+α

de f
= (1+α)Fext

n+1−αFext
n , (19)

where M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, and Fext = fext(t) is an external force vector. dn,
vn, and an are approximated vectors of the nodal displacements,
velocities, and accelerations at the time step of tn = n∆t. The
displacements, and velocity vectors are calculated using the dif-
ference formulae of Newmark [6]:

dn+1 = dn +∆tvn +
1
2

∆t2[(1−2βd)an +2βdan+1],

vn+1 = vn +∆t[(1− γd)an + γdan+1]. (20)

The accuracy and stability of the present method rely on the
choice of α, βd , and γd . In the present study βd = 1

4 (1−α)2, and
γd = 1

2 −α, and the choice makes this scheme be second-order
accurate as well as unconditionally stable in the interval of α ∈
[− 1

3 ,0]. The time-discrete equation is solved using a predictor-
corrector algorithm as follows:
Predictor step:

d̃n+1 = dn +∆tvn +
1
2
(1−2βd)∆t2an,

ṽn+1 = vn +(1− γd)∆tan. (21)
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Figure 3. Nodal distribution of a unit load.

Solution of the equation of motion:

Man+1 +(1+α)Cṽn+1 − αCvn +(1+α)Kd̃n+1−αKdn
= Fext

n+1+α. (22)

Corrector step:

dn+1 = d̃n+1 +βd∆t2an+1,
vn+1 = ṽn+1 + γd∆tan+1. (23)

D. CFD-CSD Integration
Integration of the computational fluid dynamics (CFD)

and computational structural dynamics (CSD) codes is realized
through an exchange of the geometric and force information
during time integration steps. Surface mesh elements on de-
forming structures, of which dynamic motions are computed
by the CSD code, is transferred to the CFD code which is
based on an immersed-boundary method. In the present method,
rectangular- and triangular-shape elements are used for the CSD
code and for an immersed boundary identification routine, re-
spectively. Therefore, the rectangular elements are split to con-
struct triangular-shape surface elements required for the im-
mersed boundary identification routine.

Transformation of surface elements is needed only at the ini-
tial step of the simulation. Thereafter, only the change of coor-
dinates of surface elements due to structural deformation is ac-
counted for by the immersed boundary method. Locations of
ghost cells and boundary intercepts are identified on the newly
deformed surface elements, and necessary interpolation steps are
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Figure 4. Simply supported 3-ply plate subject to cylindrical bending,
where H=3 and L=12.

followed to impose boundary conditions on the surface of im-
mersed structures. Once the pressure and velocity components
are computed in the flow field over immersed structures, normal
and tangential forces imposed on the surfaces of the structures
are computed. The computed normal and tangential forces are
distributed to the nodal points of the surface elements for the
CSD analysis as illustrated in Fig. 3. The CSD code solves the
discrete equation of motion of a structure under the forces im-
posed by the fluid flow to find the deformation of the structure.
Then, the updated geometric information of the structure trans-
ferred to the immersed boundary identification routine to con-
tinue the simulation of fluid flow in the next time step.

ASSESSMENT OF THE PROPOSED METHODOLOGY

A. Validation of the CSD code
The predictive capability as well as the computational ef-

ficiency of the present CSD code is assessed in simulations of
deformation of a simply supported 3-ply plate subject to a cylin-
drical bending load as shown in Fig. 4. Each layer of the 3-
ply plate consists of unidirectional fibrous material with different
fiber orientation, 0◦− 90◦− 0◦. Material properties of this uni-
directional fibrous material are E1 = 172.4GPa, E2 = 6.90GPa,
G12 = 3.45GPa, ν12 = 0.25, where 1 and 2 denotes longitudi-
nal and transverse directions to the fiber, respectively, E is the
Young’s modulus, G is the shear modulus, and ν is the Poisson’s
ratio. In the present simulations, about 100 to 55,000 20-noded
continuum solid elements with reduced integration (C3D20R)
are employed. Figure. 5 and 6 are the shear stress and normal
stress distributions, respectively, at the middle of the plate, and
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Figure 5. Shear stress distribution along y-axis at the middle of the plate.
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Figure 6. Normal stress distribution along y-axis at the middle of the
plate.

in these figures, the present numerical solution are found to con-
verge to an exact solution of Pagno [7] with increasing number
of elements. The present numerical method shows second-order
spatial convergence.

B. Validation of the CFD code
Vortex shedding behind a circular cylinder The

accuracy and effectiveness of the present immersed-boundary
method is evaluated in the simulation of flow over a stationary
circular cylinder. The computational domain size is 40d × 40d
and the number of grid points is 451×451, where d is the cylin-
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Figure 7. Laminar vortex shedding simulation drag and lift force history.

(a)

(b)

Figure 8. (a) is contour of the instantaneous spanwise vorticity magni-
tude over a stationary circular cylinder at Re=100, and (b) is the enlarged
image of (a) around the cylinder.

der diameter. Time histories of the drag and lift coefficients are
shown in Fig. 7. The grid lines are clustered around the cylin-
der and the minimum grid spacing is 0.01d. The time-step size
is fixed to 0.005 and it corresponds to the CFL number of 0.77 -
1.11. As summarized in Table 1, the drag and lift coefficients and
the Strouhal number predicted by the present method are found
to agree well the results obtained using a curvilinear body-fitted-
mesh method (You et al. [8]). The advantage of using a kinetic-
energy conserving, non-dissipative numerical scheme is clearly
identified in Fig. 8(a), which shows well-organized vortices far

Table 1. Drag and lift coefficients, and Strouhal number at Re=100.

CL CD St

Present 0.232 1.348 0.167

You et al. [8] 0.229 1.306 0.166
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Figure 9. Time history of the drag force on an oscillating cylinder at
Re=100.

away from the cylinder. As shown in Fig. 8(b), smooth con-
tour lines around the cylinder indicate that the present immersed
boundary method accurately resolves a boundary layer over a
non-grid-conforming cylinder surface.

Flow over an oscillatory cylinder Flow over a peri-
odically oscillating cylinder, which was previously studied by
Dütsch et al. [9], is simulated to assess the predictive capability
of the presented immersed boundary method for a moving im-
mersed structure. A periodic motion of a circular cylinder is pre-
scribed with the Keulegan-Carpenter number of 5. The Reynolds
number is 100, based on the cylinder diameter and the maximum
velocity of the oscillation. The domain size is 50d×50d and the
grid size is 353× 193. The grid lines are clustered around the
cylinder with the minimum spacing of 0.01d. The time-step size
is fixed to 0.01, which corresponds to the CFL number of 0.55
- 0.75. As shown in Fig. 9, the drag coefficient predicted by the
present method is found to agree well with the result of Dütsch et
al. [9], which was computed using a body-fitted grid approach.
Figure. 10 shows the instantaneous vorticity and pressure con-
tours around an oscillating cylinder at the phase of 0◦ and 288◦,
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Figure 10. Contours of the instantaneous spanwise vorticity ((a) and (b))
and pressure ((c) and (d)) over an oscillatory cylinder. (a) and (c) are at
the phase angle of 0◦, and (b) and (d) are at the phase angle of 288◦.
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Figure 11. Computational configuration for a simulation of flow over a
square cylinder with a flexible splitter plate

and these phenomena are found to qualitatively agree well with
the result of Dütsch et al. [9].

C. Integrated CFD-CSD simulation
Flow-induced vibration of a flexible beam The ca-

pability of the present CFD-CSD integration technology is being
evaluated in a simulation of flow over a square cylinder with a
flexible splitter plate attached to the rear stagnation point. The
configuration has been extensively studied by other previous re-

(a)

(b)

(c)

Figure 12. Contours of the instantaneous spanwise vorticity. (a) t =
0.39, (b) t = 0.49, and (c) t = 0.58.

searchers (Hübner [10], Steindorf [11], Dettmer and Peric [1]).

The flow configuration is schematically shown in Fig. 11.
The fluid and structure properties are µ f = 1.82× 10−4, ρ f =
1.18×10−3, µs = 9.2593×105, ρ f = 0.1×10−3, E = 2.5×106,
and ν = 0.35, where superscripts f and s denote fluid and struc-
ture, E is the Young’s modulus, and ν is the Poisson’s ratio. The
Reynolds number is Re = ρ f Du∞/µ f = 333, where D and U∞

are the height of the square cylinder and the freestream velocity,
respectively. In CFD analysis, the domain size is 12D× 19.5D,
and the grid size is 309× 301. The grid lines of CFD analy-
sis are clustered around the square cylinder with the minimum
spacing of 0.01D. The time step size of CFD analysis, which is
normalized by square cylinder diameter and freestream velocity,
is 0.002. For the CSD analysis, 76 C3D20R elements are used,
and plane strain condition is assumed.

As shown in Fig. 12, flow over a square cylinder produces
vortex shedding, which causes alternating pressure and shear
stress distributions over the flexible splitter plate. As a result, the
flexible splitter plate vibrates periodically with a certain magni-
tude of displacement. The displacement of the splitter plate tip is
presented in Fig. 13.
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Figure 13. Flow induced vibration of a flexible splitter, where d/D is the
vertical displacement of a flexible splitter tip and tU∞/D is time.

SUMMARY
A computational methodology for high-fidelity time-

accurate prediction of fluid and structure dynamics and their un-
steady interaction has been developed. The present methodology
combines an immersed-boundary method, which is capable of
simulating flow over non-grid-conforming complex moving bod-
ies and a structural dynamics solver, which is based on a finite-
element method and is capable of predicting time-accurate dy-
namics of solid structures. The pressure and velocity of fluid
and geometric information of submerged structures are time-
accurately coupled through an integration algorithm. The stan-
dalone predictive capabilities of the CFD and CSD codes have
been extensively validated in a number of simulations.

The capability of the present CFD-CSD coupling method-
ology is being assessed in the simulation of flow over a square
cylinder with a flexible splitter plate.
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