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ABSTRACT
Hot-wire anemometry is an established technique for ve-

locity measurements in turbulent flows. Calibration of hot-wire
probes is challenging due to the nonlinear relationship between
the probe output voltage and the velocity, and the sensitivity to
the temperature difference between the heated wire and the am-
bient flow. A triple-wire probe contains three mutually orthogo-
nal wires that permit the three components of the local instan-
taneous velocity vector to be measured simultaneously. Cal-
ibration data reduction methods for multi-wire probes, based
on variable-angle calibration techniques, may include curve-fits
and direct-interpolation schemes. In the present study, a novel
calibration data reduction method for a triple-wire probe is re-
ported which uses an artificial neural network. Such a method
has been successfully applied by other researchers for the cali-
bration of seven-hole pressure probes. For the triple-wire probe,
the neural network is used to produce a calibration relation be-
tween the three probe output voltages and the three components
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of the local velocity vector. Variable-angle calibration data were
obtained for a triple-wire probe for velocity magnitudes from 5
to 40 m/s, yaw angles from−35◦ to +35◦, and roll angles from
0◦ to 345◦. A three-layer perceptron feed-forward network, us-
ing a Levenberg-Marquardt training algorithm, was applied to
the calibration data, to map the mean voltages to the mean ve-
locity components. The network was tested using an independent
data set. The present results yielded standard errors of approxi-
mately±0.38 m/s,±0.25 m/s and±0.26 m/s in the magnitudes
of the streamwise, vertical, and cross-flow velocity components,
respectively. The results showed that the present neural network
model is not significantly sensitive to the size of the calibration
data set, suggesting it may be a more convenient calibration data
reduction method compared to other methods.

INTRODUCTION
Turbulent flows occur in many engineering and indus-

trial applications. Since turbulent flows are inherently three-
dimensional, measurements of all three components of veloc-
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ity are needed for improved physical understanding of turbulent
flow fields. There are different types of measurement instru-
ments that can be used for three-component velocity measure-
ments in turbulent flows, including five- and seven-hole pres-
sure probes, multi-sensor hot-wire anemometry (HWA) probes
(including a triple-wire probe), three-component laser Doppler
anemometry (LDA), and stereoscopic particle image velocimetry
(SPIV). Among these measurement techniques, the triple-wire
probe is perhaps the most suitable for measurement of turbulent
flows with high-frequency fluctuations in velocity [1].

HWA is an indirect velocimetry technique, in which the tur-
bulent flow velocity magnitude is nonlinearly related to the con-
vective heat transfer from a heated sensor. In the most common
mode of operation, constant-temperature anemometry, the heated
wire is maintained at a constant temperature (well above the am-
bient temperature of the air) by the anemometer unit while it is
being convectively cooled by the turbulent air flow. A calibra-
tion is then performed to determine the relationship between the
air velocity magnitude,U, and the anemometer output voltage,
E. Calibration of a single-sensor (single-wire) hot-wire probe re-
quires subjecting the probe to flows of known velocity magni-
tude. For multi-sensor (multi-wire) probes used for measuring
two and three components of the velocity vector, such as an X-
wire probe or triple-wire probe, calibration requires subjecting
the probe to flows of known velocity magnitude and direction. A
calibration data-reduction method is then employed. The nonlin-
ear nature of the velocity-voltage relationship makes calibration
of hot-wire sensors challenging, particularly in thermally vary-
ing flows and for multi-sensor probes. Many different calibration
data-reduction methods have been adopted [1].

Calibration of a single normal wire is based on the response
equation for the output voltage from an anemometer connected to
a given hot-wire sensor expressed in the form of a simple power
law known as the generalized King’s Law relationship

E2 = A+BUn
, (1)

whereA, B andn are the constants determined from calibration.
Directional sensitivity of a single normal wire can be ex-

plained by considering the components of the velocity vector
acting on the sensor. Figure 1 shows the velocity components
in a wire-fixed coordinate system for a single normal wire probe.
In this figure,UN,UT andUB are respectively the normal, tangen-
tial and binormal components of the velocity vector, andθ and
α are the probe yaw and pitch angles, respectively. Assuming
that the tangential component of velocity has negligible effect on
the wire, the probe responds mainly to the normal and binormal
(transverse) components. It is also assumed that the pitch angle
of the probe,α, with respect to the velocity vector does not influ-
ence the measured velocity magnitude so that the output voltage
of the anemometer is a function of only probe yaw angle,θ , and

the velocity magnitude,U. This leads to the definition of an ef-
fective velocity to which the probe responds,

Ve = fθ ×|U | , (2)

where fθ is the yaw function which is determined during the cal-
ibration procedure. Several functions have been proposed for
the yaw function. One of the proposed functions is “the Cosine
Cooling Law” wherefθ = cosθ . Using the Cosine Cooling Law,
it is assumed that the probe responds only to the velocity com-
ponent normal to the wire. When the effective velocity,Ve, is
obtained from Cosine Cooling Law, it replaces the velocity(U)
in Equation (1).

Calibration of an X-wire can be done with the cosine cool-
ing law and effective velocity approach which yields directly two
response equations for velocity (U) and yaw angle (θ ). In this
method, the wire angles must be known exactly and the flow an-
gle (the angle between the velocity vector,U, and the probe axis)
should not exceed the angle of acceptance for the given probe and
must be kept small in order to avoid directional ambiguity. The
Cosine Cooling Law is limited to small yaw angles and low tur-
bulence intensities [1]. Furthermore, to use the Cosine Cooling
Law, it is assumed that all wires see the same flow and have same
resistance. All the aforementioned assumptions limit the appli-
cation of the Cosine Cooling Law to probes with two or more
wires.

The main shortcoming of the above method relates to the
use of the Cosine Cooling Law, and this has motivated the use
of variable-angle calibration techniques, where the probe is sub-
jected to a full range of flow velocities and flow directions,
encompassing the entire expected angular range. For X-wire
probes, one of the calibration data-reduction methods is the poly-
nomial curve fitting method in which curves are fit to the voltage
data collected from the calibration, so that the response equa-
tions can be obtained. For example, Oster and Wygnanski [2]
proposed third-order polynomials in voltagesE1 andE2 to eval-
uate the velocity magnitude (U) and yaw angle (θ ). Another
calibration data-reduction method for X-wire probes is the look-
up-table method or direct interpolation method, in which the cal-
ibration data are directly interpolated and there is no need to use
curve fits [1].

The calibration data-reduction methods commonly used for
X-wire probes have been extended for use with triple-wire
probes, while other researchers have proposed their own, unique
methods. For triple-wire probes, calibration data reduction meth-
ods have been presented by Huffman [3], Skinner and Rae [4],
Lakshminarayana and Davino [5] and Gieseke and Guezennec
[6], using the expression proposed by Jφ rgensen [7] for the ef-
fective velocity as

Ve
2 = UN

2 +k2UT
2 +h2UB

2
, (3)
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FIGURE 1. A WIRE-FIXED COORDINATE SYSTEM AND THE
CORRESPONDING VELOCITY COMPONENTS.

wherek is the parallel cooling coefficient andh is the binormal
cooling coefficient. In these calibration data reduction methods,
the values ofk andh are often determined using the equations
related to the calibration of a single wire. These calibration tech-
niques may require accurate measurement of the wire angles,
since the values ofk andh are sensitive to errors in the known
values of these angles [7]. Researchers have obtained values fork
andh in the ranges of 0.17-0.28 and 1.01-1.12 for different mod-
els of triple-wire probes. Again, since the factorsk andh, and the
angles of the wires with respect to the probe axis, are difficult to
determine accurately, the effective cooling velocity approach and
the Cosine Cooling Law cannot be followed with reasonable ac-
curacy for triple-wire probes. Furthermore, as the constants in
King’s Law relation are functions of the difference between the
wire temperature,Tw, and the ambient temperature,Ta, the cal-
ibration data reduction process may be further complicated for
thermally varying flows.

With modern high-power computers, models with more de-
grees of freedom can be used to obtain a more accurate calibra-
tion. Indirect and direct functional fit techniques are among those
models that can be used for multi-sensor HWA probes. Applying
Equation (2) to King’s law relation yields

Ei = fi(u,v,w), (4)

wherei is the wire number (which varies from 1 to 3 for a triple-
wire probe) andu, v andw are respectively the streamwise, verti-
cal, and cross-flow velocity components in a space-fixed coordi-
nate system. In this indirect functional fit technique, the objective
is to adopt a suitable model for the functionsfi in order to obtain
an acceptable accuracy. Van Dijk and Nieuwstadt [8] proposed
a collection of product polynomials forfi with coefficients esti-
mated from a least squares optimization on a calibration dataset
using the method of Lemonis and Dracos [9]. In this technique,

in order to estimate the velocity vector from a collection of mea-
sured responses, one must solve the velocity components (u,v,
andw) from the response relations since the coefficients in those
relations express the response of the probe as a function of the
velocity vector and not voltages.

In practice, one is interested in velocity as a function of volt-
age. So, to interpret any sample of measured response equation
in terms of velocity, one needs to invert the indirect response re-
lations. This will be numerically expensive when large datasets
are to be processed [8]. According to Tsinober et al. [10], the in-
version procedure can be avoided by adopting direct calibration
relations, which express the velocity components as a function
of voltages:

Ui = gi(E1,E2,E3). (5)

As with the indirect functional model, van Dijk and Nieuw-
stadt [8] proposed a collection of product polynomials for
gi(E1,E2,E3) with coefficients estimated from a least squares fit
on a calibration dataset. It is noted that large systematic errors
were found in both the indirect and direct polynomial models
used by van Dijk and Nieuwstadt [8].

A direct interpolation lookup-table method is another tech-
nique to calibrate multi-sensor HWA probes. This technique
has been used by many researchers such as Lueptow et al. [11],
Browne et al. [12] and Wubben [13]. To apply the lookup-table
method, one should collect a set of calibration voltage samples
for a number of velocity values and probe orientations each with
regular intervals. To interpret a collection of response voltages,
one scans the calibration samples for the calibration voltage sam-
ple that has the smallest value of the mean square response dif-
ference with the measured voltage sample. Then, this procedure
is checked for other coordinate directions. A detailed explana-
tion of this technique was presented in the study by Van Dijk and
Nieuwstadt [8].

A potential problem with the lookup-table method is that
poor calibration samples can introduce systematic errors in their
neighborhoods when local interpolations are used. However, by
using fast data-logging devices and by applying automated cali-
bration methods the accuracy of the sample should not be a limit-
ing factor to applying the lookup-table method [8]. Also, in order
to achieve acceptable accuracy in this method, a large number of
samples is needed since the lookup-table method works based on
the interpolation between one data set and the data in neighbor-
hood.

In the present study, a calibration data-reduction method in-
volving an artificial neural network (ANN) model is proposed
for the calibration of a triple-wire probe. Neural-network ap-
proaches to calibration of velocity probes have been undertaken
by other researchers but are not widely used. For example,
Rediniotis and Chrisanthakopoulos [14] calibrated a seven-hole
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pressure probe using a neural network and fuzzy logic systems,
andRediniotis and Vijayagopal [15] developed a neural model
to calibrate miniature multi-hole pressure probes; their proposed
model yielded accuracies of±0.28◦ in flow angle and±0.35%
in velocity magnitude. Baskaran et al. [16] also studied the cal-
ibration of multi-hole pressure probes using neural networks. In
hot-wire anemometry applications, Erdil and Arcaklioglu [17]
calibrated a single-wire probe using an artificial neural network,
varying the air temperature and humidity during the calibration
procedure. Also, Ashhab and Salaymeh [18] used an artificial
neural network model to identify the transfer function response
curve of a novel thermal flow sensor.

In the present study using the triple-wire probe, the ANN
calibration data-reduction method is used to establish the rela-
tionship between the three measured wire voltages,E1, E2, E3,
and their corresponding velocity vector components,u, v, w. The
main advantages of the ANN calibration data reduction method
are that it avoids the limitations of the Cosine Cooling Law, no
knowledge of the wire angles is required, no response equa-
tions are required, and the method can be readily extended to
operate in thermally varying flows if a variable-angle, variable-
temperature calibration is performed.

PROBE CALIBRATION PROCEDURE AND EXPERI-
MENTAL SET-UP

A six-channel Dantec Dynamics StreamLine hot-wire
anemometry system was used in the present study. The
anemometer unit was connected to an NI SCXI-1140
simultaneous-sampling differential amplifier module and a 16-
bit PCIe-6259 data acquisition card and controlled through a per-
sonal computer running the Dantec Dynamics Streamware soft-
ware.

The triple-wire probe used in the present study was a Dan-
tec Dynamics 55P91 tri-axial probe. This probe has three mutu-
ally perpendicular sensors that form an orthogonal system with
an acceptance cone of 70.4◦. The sensors are platinum-plated
tungsten with a 5µm diameter and a 1.25 mm length, while the
overall wire length is 3 mm. The sensor resistance is approxi-
mately 3.75Ω at a reference temperature of 20◦C. The temper-
ature coefficient of resistance isα20 = 0.0036◦C−1. To avoid
oxidization, the maximum sensor temperature must be kept be-
low 300◦C. The sensors were operated on a constant temperature
circuit at an overheat ratio of 1.8.

A variable-angle calibration of the triple-wire probe was
performed using a Dantec Dynamics 90H02 Flow Unit calibra-
tor fitted with a yaw-roll manipulator. Pressurized air was sup-
plied to the unit from an external source, and was filtered and
regulated before entering the calibrator unit. An MKS model
1559A mass flow controller was added upstream of the calibra-
tor to improve the accuracy and steadiness of the flow rate dur-
ing the calibration. The calibrator creates a free jet with a uni-

FIGURE 2. SCHEMATIC OF A TRIPLE-WIRE PROBE DURING
CALIBRATION AND THE REPRESENTATION OF ITS ROLL AND
YAW-ANGLES.

form, low-turbulence velocity profile, in which the probe is im-
mersed. The velocity magnitude set-points are controlled from
the StreamWare software and the yaw and roll angle set points of
the probe were set manually.

Fig. 2 shows the coordinate system for the calibration proce-
dure as well as the probe yaw angle,θ , and roll angle,ψ. In this
figure, thex-axis corresponds to the probe axis. To ensure proper
alignment of the probe in the calibrator unit, sensor 3 was placed
in thex-zplane while the probe yaw angle was set atθ = 0◦; this
ensured the probe was set atψ = 0◦ [19].

During the calibration, the reference ambient temperature
was kept constant at 22.15◦C. The signal from each sensor was
offset and filtered, and then sampled at a sampling frequency of
2.5 kHz. The calibration was performed at eight velocity mag-
nitudes (ranging from 5 m/s≤ U ≤ 40 m/s in increments of 5
m/s), nine values of yaw angle, (ranging from -35◦ ≤ θ ≤ +35◦

in increments of 10◦), and 24 values of roll angle (ranging from
0◦ ≤ ψ ≤ 345◦ in increments of 15◦), for a total of 1728 calibra-
tion set points. For each individual calibration set point, compris-
ing U , θ , andψ, three mean voltages were acquired,E1, E2, and
E3, each corresponding to one of the three wires. These voltages
were the input data for the neural network, which is explained in
the next section. After collecting the calibration data, about 100
random data set points at different arbitrary velocities, yaw an-
gles and roll angles were collected in order to test the proposed
neural network with an independent set of data. The uncertain-
ties in the velocity magnitude, yaw angle and roll angle, of the
calibration data set, were estimated as±0.2 m/s,±1◦, and±1◦,
respectively.
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NETWORK ARCHITECTURE AND TRAINING PRO-
CESS DESCRIPTION

A multi-layer perceptron (MLP) feed-forward network us-
ing the well-known Levenberg-Marquardt training algorithm was
used to map the inputs of the network (the mean wire voltages,
E1, E2, andE3) to the corresponding target values (the mean ve-
locity componentsu, v, andw). The velocity components can be
found using the following equations:

u = Ucosθcosψ (6)

v = Ucosθsinψ (7)

w = Usinθ (8)

whereU is the velocity magnitude andθ andψ are yaw and roll
angle, respectively.

The 1728 data points of the calibration data set were ran-
domly divided into three subsets: training, 70%, validating, 15%,
and testing, 15%. The latter testing set is distinct from the inde-
pendent set of data, comprised of 100 random data points, men-
tioned in the previous section, and was used to prevent the net-
work to over fit. The developed MLP has two hidden layers each
of 10 neurons and an output layer of 3 neurons. Tangent sig-
moid transfer functions were used for the hidden layers while
the output layer had linear transfer functions. A schematic view
of the network model is shown in Fig. 3. The calibration data
set was pre-processed by scaling the minimum and maximum
values of inputs and targets so that all the data elements fall be-
tween -1 and +1. Before scaling, the input values (E1, E2, andE3)
ranges from approximately 2.3 to 9.6 volts. The mean square er-
ror (MSE) was minimized as the network performance function
and its value was monitored during the training process. This
minimum value for the present network is equal to 0.0453. The
early stopping method was implemented as the stopping crite-
rion. A detailed explaination of the neural network and training
algorithm used can be found in references [20]- [22].

The weights and biases of the neural network model are re-
ported to make the results of the present study reproducible. Note
that in these matricesW{1,i} are the weights to layer 1 from the
input layer,W{2,1} are the weights to layer 2 from layer 1,W{3,2}
are the weights to layer 3 from layer 2, andb{i} is the bias to
layer i.

FIGURE 3. SCHEMATIC VIEW OF THE PROPOSED NEU-
RAL NETWORK MODEL AND ITS INPUTS, OUTPUTS, AND
WEIGHTS.
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RESULTS AND DISCUSSION
After calibrating the triple-wire probe and reducing the cali-

bration data to the neural network, the probe can be used to mea-
sure the turbulent velocity field of an unknown flow. The in-
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stantaneous measured output voltages (E1, E2 andE3) from the
anemometer are converted to instantaneous velocity components
(u, v andw) using the ANN model. Standard temperature cor-
rections [1, 23], to account for ambient temperature variations,
can be applied to the output voltages before they are input to the
ANN model. In the present study, the calibration data and the
independent set of data were all acquired at the same, constant
value of ambient temperature.

A comparison of the streamwise components of velocity (u)
from the calibration to those predicted by the artificial neural net-
work is shown in Fig. 4. In this figure, the solid line represents
the identity of the ANN and the random experimental test dataset.
According to this figure, both the ANN data and the experimen-
tal test data collapse well onto the target line. A standard error of
approximately±0.38 m/s was determined for the magnitude of
the streamwise component of the velocity.

The performance of the proposed artificial neural network
for the transverse component of velocity (v) can be seen in Fig. 5.
According to Fig. 5, there is a good agreement between the ex-
perimentally collected test data and those predicted by the ANN
model. A standard error of approximately±0.25 m/s was deter-
mined for this component of velocity.

Fig. 6 shows the comparison of the predicted and the exper-
imental test data for the cross-flow component of velocity (w). A
standard error of approximately±0.26 m/s was determined for
this component of velocity. In this figure, the solid line is the
target line representing the identity of the experimental data and
the predicted ANN data.

The above standard errors in the velocity components trans-
late into errors of±0.39 m/s in velocity magnitude,±0.76◦ in
yaw angle, and±0.82◦ in roll angle.

Variable-angle calibrations of multi-component velocity
probes can be sensitive to the size of the calibration data set and
the increments used in the velocity magnitude and flow angles
[24]. As a further evaluation of the performance of the ANN cal-
ibration data-reduction method, it was tested with a smaller sam-
ple number, namely 300 sample data sets (about 20% of the total
collected sample data set). Applying the neural network to this
number of samples, comparable standard errors of±0.41,±0.27
and±0.29 m/s were estimated in the magnitudes of the stream-
wise, vertical, and cross-flow velocity components, respectively,
indicating good performance of the ANN model even for smaller
calibration data sets. This result suggests that the ANN calibra-
tion data reduction method may be relatively insensitive to the
size of the calibration data set, meaning that larger velocity and
angular increments can be used when collecting the calibration
data. This would significantly reduce the time required for cal-
ibrating a triple-wire probe, and is another potential advantage
of the neural network calibration data reduction technique over a
direct-interpolation (lookup-table) method, in which smaller in-
crements in velocity, yaw angle and roll angle are required to
achieve an acceptable accuracy for the velocity components [8].

FIGURE 4. COMPARISON OF EXPERIMENTAL AND PRE-
DICTED STREAMWISE VELOCITY COMPONENTS,u.

FIGURE 5. COMPARISON OF EXPERIMENTAL AND PRE-
DICTED TRANSVERSE VELOCITY COMPONENTS,v.

CONCLUSIONS
In the present study, a multi-layer perceptron feed-forward

artificial neural network (ANN), developed using the Levenberg-
Marquardt training algorithm, was used as a calibration data-
reduction method for a Dantec 55P91 triple-wire probe. The
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FIGURE 6. COMPARISON OF EXPERIMENTAL AND PRE-
DICTED BINORMAL VELOCITY COMPONENTS,w.

ANN was used to relate the measured anemometer output volt-
ages to the corresponding values of the velocity components. Of
the 1728 calibration data points, 70%, 15% and 15% of the points
were randomly selected for training, validating and testing of the
neural network, respectively. The results from the present study
yielded standard errors of approximately±0.38 m/s,±0.25 m/s,
and±0.26 m/s in the magnitudes of the streamwise (u), vertical
(v), and cross-flow (w) velocity components, respectively.

The proposed ANN calibration data-reduction method was
also tested using a subset of the full calibration data set, amount-
ing to about 20% of the collected data set, to check the sensitivity
of the network to the sample number. In this case, the neural net-
work had comparable standard errors of approximately±0.41
m/s,±0.27 m/s, and±0.29 m/s in the magnitudes of the stream-
wise, vertical, and cross-flow velocity components, respectively.
This suggests that the use of a neural-network calibration data-
reduction method can significantly reduce the time required to
calibrate a triple-wire probe, since larger increments in veloc-
ity magnitude, yaw angle, and roll angle can be used in the
variable-angle calibration process, without significantly impact-
ing the measurement uncertainty.

A further potential advantage of the ANN calibration data-
reduction method would be to extend the network to account for
the effects of ambient temperature variation. This could be done
by collecting several calibration data sets, each at a different am-
bient temperature, and incorporating this temperature informa-
tion into the construction of the neural network.
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