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ABSTRACT 
         

The present work reports a way of using Artificial Neural 

Networks for modeling and integrating the governing chemical 

kinetics differential equations of Jones' reduced chemical 

mechanism for methane combustion. The chemical mechanism 

is applicable to both diffusion and premixed laminar flames. A 

feed-forward multi-layer neural network is incorporated as 

neural network architecture. In order to find sets of input-output 

data, for adapting the neural network's synaptic weights in the 

training phase, a thermochemical analysis is embedded to find 

the chemical species mole fractions. An analysis of 

computational performance along with a comparison between 

the neural network approach and other conventional methods, 

used to represent the chemistry, are presented and the ability of 

neural networks for representing a non-linear chemical system 

is illustrated. 

 
 
INTRODUCTION 
  

Direct integration of the governing differential equations of 

a chemical mechanism with various reactive species requires 

too much computer processing time and also the complexity of 

chemical kinetics and interactions between chemistry and 

governing combustion equations are one of the outstanding 

difficulties for handling the engineering applications in this 

field. With the exception of direct integration method, which 

needs extensive computing time, several methods have been 

introduced to handle chemical systems, such as Look-up tables 

[1] and In-situ adaptive tabulation [2]. These techniques have 

various numerical costs. For example, Look-up tables store the 

incremental changes in composition, due to the reaction. So, 

this approach has the disadvantage of large memory 

requirements. 

A neural network is a parallel dynamic structure and neural 

modeling of complex systems is an expanding field of 

application and research. The neural modeling is to adjust the 

synaptic weights of the network during an iterative process in 

the training phase. Then the neural network learns the principles 

of the physical problem and generates the required model. This 

model provides an approximation of the actual system with the 

same physical and mathematical behaviors. 

      With the exception of neural networks abilities of parallel 

computing and learning, they have also two main advantages: 

first, neural networks are fault tolerant against noises, which are 

appearing in many engineering applications, and second, since 

neural network is made of large number of interconnected 

neurons, the network is not dependent to a particular neuron and 

the presumptive errors of neurons will be damped during the 

parallel computing process. 

      In this work, the temporal changes of reactive chemical 

species, in Jones and Lindstedt chemical mechanisms, have 

been modeled by a feed-forward neural network [3]. Although, 

the application of neural networks to chemical mechanisms has 

been reported in recent works (Blasco et al. [4] and Christo et 

al. [5]), the main motivations for doing such a work were to 

model different reduced chemical mechanisms for methane 

combustion and making a comparison between the results from 

the point of view of CPU time and RAM memory for different 

mechanisms in the future. Blasco et al. [3] used the neural 

network method to model the temporal changes of seven 
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reactive species for another important reduced chemical 

mechanism, which was introduced by Peters and Kee [6]. Peters 

and Kee chemical mechanism is methane/air combustion 

mechanism with nitrogen, as an inert non-reactive species, but 

in the present research, we have neglected the effects of 

nitrogen, as an inert species, and assumed a methane/oxygen 

combustion mechanism with the stoichiometric mixture fraction 

of 2.0. =stf .  

         In the last section of this work, an analysis of 

computational costs and performance and a comparison 

between different approaches are presented. 

 

NOMENCLATURE 
 

tE  total error of the neural network  

f  mixture fraction  

()f  activation function 

n  moles  per mass of mixture  

y  expected output of the network 

ŷ  estimated output of the network 

α  momentum factor  

η  learning rate  

θ  bias value  

ω  synaptic weight 

 

 
The Chemical Mechanism 

 

The reduced chemical reaction, which is considered in the 

present neural modeling, is Jones and Lindstedt reduced 

chemical reactions for methane combustion. As we know, for 

extracting reduced chemical mechanism from detailed 

chemistry, some of minor elementary reactions and intermediate 

species are eliminated and also some species are assumed to be 

in partial equilibrium state.  

This four-step mechanism was built by extracting six 

reactive species and simplifying them into four-step reactions. 

Jones and Lindstedt reported that this four-step mechanism is an 

acceptable mechanism and it is applicable to both diffusion and 

premixed laminar flames. Moreover they confirmed that the 

obtained burning velocity and flame structure (such as 

temperature and species concentration distributions) inside the 

flame conform well to actual measurements.  

The original four-step reaction mechanism was proposed 

for generic saturated lower-hydrocarbon fuels, and for the case 

of methane, the mechanism is proposed as follows:  
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The reaction rate for each reaction is given as below: 
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The constant parameters of reaction rates are given in Table 1: 

 
Table 1. CONSTANTS PARAMETERS OF REACTION RATES 

FOR JONES' MECHANISM 

Reaction A d a b E (cal/mol) 
R1 0.30e09 0 1.0 1.0 30’000 

       

R2 0.44e12 0 0.5 1.2 30’000 

       

R3 0.68e16 -1 0.2 1.5 40’000 

      

R4 0.275e1 0 1.0 1.0 20’000 

       

 

 

Feed-forward Neural Network and Learning Algorithm 
 
       As shown in Fig. 1, a feed-forward multilayer neural 

network is a computing architecture that consists of massively 

distributed interconnected simple neurons [7]. For multilayer 

perceptron networks, the inputs propagate through the network, 

and the output of each neuron is evaluated according to: 
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where 
n

iy  is the output of the i th
 neuron of the n th

 layer, n

ijw  

is the synaptic weight value of connection between j th
 node of 

the )1( −n
th

 layer and i th
 neuron of n th

 layer, and, finally, n

iθ  

is the bias value of the i th
 neuron of the n th

 layer. The 

nonlinear activation function, ()f , is differentiable and it must 

have a positive first derivative. 
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Figure 1. SCHEMATIC DIAGRAM OF A FEED-FORWARD 

MULTILAYER NEURAL NETWORK 

 

        In this work multilayer perceptron architecture, with two 

intermediate or hidden layers, has been employed. A 

hyperbolic-tangent function has been used as the transfer 

function. Figure 2 shows the neural network, used for modeling 

the mechanism. The inputs of the network are mole numbers of 

two main species 
4CH  and 

2O  and also two intermediate 

species CO  and 
2H  per unit mass at time t . The outputs are 

mole numbers of the same species per unit mass at the time 

tt δ+ . This neural network predicts the mass fractions of the 

this four reactive species and, therefore, the thermochemical 

state of the system at the end of the time step tδ . 

 

 
Figure 2. SCHEMATIC DIAGRAM OF USED NEURAL 

NETWORK 

           

       Figure 3 shows the synaptic weights between the neurons in 

different layers. For adjusting the weights, n

ijw , in the network, 

we used the back-propagation method. This method is probably 

the most well-known and widely used learning algorithm that is 

based on gradient descent technique. This algorithm minimizes 

the value of the error function during the learning process [8]. 

The error function, E , is defined as: 
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where 
on  is the number of output units, ky  and kŷ  are the 

expected and estimated outputs for the k th
 learning pattern. 

 

 

 
Figure 3. SYNAPTIC WEIGHTS FOR THE NEURAL 

NETWORK WITH TWO HIDDEN LAYERS 

 

The back-propagation method adjusts the weights according to 

the following equation: 
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where t  is the iteration number, and, 0>η  and 1<α  are 

learning and momentum factors, respectively. These factors can 

be adjusted to speed up the convergence of the algorithm. 

Furthermore, the use of appropriate η  and α  reduces the 

possibility of being trapped in local minimums. The function 

jδ  represents the change in the error function of the j th
 node 

with respect to the network inputs. It is: 
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The explicit form of jδ  depends on the activation function. It 

should be mentioned that j  is an internal or an output node. 

The functional form of  jδ  is given by: 
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The function jf '  denotes the derivative of the activation 

function of the j th
 node with respect to the total net inputs. It 

is: 
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Generating the training patterns 
 

To define the thermochemical state of the system and 

generate the learning patterns for training of the neural network, 

one must first determine the scalars of the mechanism. Using 

the concept of mixture fraction, Chen et al. showed that a 

reduced mechanism, with seven reactive species, which has ten 

scalars (including seven reactive species, density, pressure and 

temperature), needs five known scalars to be defined [1]. They 

also showed that, these five scalars can not take independent 

values and they derived specific equations for the upper and 

lower bounds for each of these scalars. 

For Jones' reduced chemical mechanism, there are six 

reactive species and, therefore, by adding temperature, pressure 

and density of the mixture, we have nine scalars. Using the 

concept of mixture fraction (defined as the normalized mass 

fraction of an atomic element originating from the fuel stream), 

the number of scalars can be reduced to three. Given a mixture 

fraction, three equations can be derived for atomic balance: 
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(9) 

 

f is the mixture fraction, in indicates number of moles of 

species i  per one kilogram of the mixture and 
iMW indicates 

the molecular weight of species i .  

       Since this approach assumes that the enthalpy of the 

mixture is linear function of the mixture fraction, another 

equation is also added for the mixture enthalpy. Finally, 

considering ideal gas law for the mixture and constant pressure 

combustion, we will have six relations for thermochemical state 

of the system. Therefore, with the exception of mixture fraction, 

only three scalars are needed to determine the thermodynamic 

properties of this system. It is worthy to mention that 4CHn , 

COn  and 2On  have been selected as these three scalars. 

Therefore, we are faced with four-dimensional domain 

),,,( 24 COOCH nnnf  to define the system. For finding the 

look-up table computer storage requirement, this four-

dimensional domain has been discretized into )10,10,10,40(  

grid points. Mixture fraction is assumed to vary in the range of 

6.00 << f . Around the stoichiometric point of methane and 

pure oxygen reaction ( 2.0. =stf ) much closer and smaller 

grid points have been selected because the outputs of the 

network show much more non-linear behavior around this point.  

 

 

Optimal Neural Network 
 
     After defining the learning patterns, the neural network must 

be trained by a number of input-output data pairs. The number 

of training sets must be large enough to be distributed in the 

whole range of the thermochemical state. 4000 sets have been 

selected for the training phase. The outputs of these sets have 

been found by a direct numerical integration process. The 

thermochemical database of CHEMKIN has been also used to 

compute the density and temperature of the system in each time 

step. 

    In the training phase of a neural network, it is important to 

check the behavior of the network for the unseen data within the 

thermochemical state domain. 3000 unseen pairs of input-output 

data have been selected for testing the network. These pairs are 

called test sets. 

     In order to find the optimal neural network architecture, 

number of hidden layers and hidden units, in each layer, has 

been increased and the total error of the network has been 

reported in Table 2. As can be seen, the neural network, with 

two hidden layers and 16 neurons in each layer, seems to be a 

good candidate. We also checked a neural network with two 

hidden layers and 22 units in each layer but, regarding the 

noticeable difference between the learning times and the small 

improvement in the error, the network with 162×  hidden units 

was selected. 

 

Table 2. ERRORS OF DIFFERENT NEURAL NETWORK 

ARCHITECTURES 
Hidden Neurons  

 2×16  16  12  8    

0.013  0.037  0.051  0.072  
Training 

Set Error  

0.032  0.059  0.077  0.108  
Test Set 

Error  

 
 
RESULTS 
 
     Figure 4 shows the errors detected by the neural network for 

three species (methane, oxygen and carbon monoxide) as 

function of mixture fraction. As can be seen, the maximum 

errors for methane and oxygen take place around the 
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stoichiometric point but for the intermediate species, carbon 

monoxide, this maximum error takes place somewhere else. 

Figure 4. ERRORS FOR THREE SPECIES AS FUNCTION OF 

MIXTURE FRACTION 

 

Figures (5) and (6) show the time evolution of methane and 

oxygen for two different values of mixture fractions: (A) near-

stoichiometric point behavior (solid line for direct integration 

and dots for the neural network prediction), and, (B) a random 

selection of mixture fraction and other scalars of the system in 

the rich zone of the mixture, when stff >  (dotted line for 

direct integration and multiplication sign for neural network 

prediction). 

 
Figure 5. TEMPORAL CHANGES OF METHANE IN TWO 

DIFFERENT MIXTURE FRACTIONS: (A) NEAR STOICHIOMETRIC 

BEHAVIOR (SOLID LINE AND DOTS WHICH ARE 

CORRESPONDING TO THE DIRECT INTEGRATION METHOD AND 

NEURAL NETWORK MODELING, RESPECTIVELY) (B) A RANDOM 

SELECTION OF THE SCALARS IN THE RICH ZONE (DOTTED LINE 

FOR DIRECT INTEGRATION AND MULTIPLICATION SIGN FOR 

NEURAL NETWORK PREDICTION) 

 
Figure 6. TEMPORAL CHANGES OF METHANE IN TWO 

DIFFERENT MIXTURE FRACTIONS: (A) NEAR 

STOICHIOMETRIC BEHAVIOR (SOLID LINE AND DOTS 

WHICH ARE CORRESPONDING TO THE DIRECT 

INTEGRATION METHOD AND NEURAL NETWORK 

MODELING, RESPECTIVELY) (B) A RANDOM SELECTION 

OF THE SCALARS IN THE RICH ZONE (DOTTED LINE FOR 

DIRECT INTEGRATION AND MULTIPLICATION SIGN FOR 

NEURAL NETWORK PREDICTION) 

 

 

      Once again, figure 7 shows the temporal evolution for the 

intermediate species, carbon monoxide, for two different 

regimes: (A) near stoichiometric point behavior (solid line for 

direct integration and dots for the neural network prediction), 

and, (B) a random selection of mixture fraction and other 

scalars of the system in the lean zone of the mixture, when 

stff < (dotted line for direct integration and multiplication 

sign for neural network prediction). As can be seen, for the 

latter case, neural network prediction is a little higher than the 

actual direct integration values. In Fig. 7, solid line and dots are 

corresponding to the direct integration method and neural 

network modeling, respectively. 
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Figure 7. TEMPORAL CHANGES OF THE INTERMEDIATE 

SPECIES, CARBON MONOXIDE IN TWO DIFFERENT 

MIXTURE FRACTIONS: (A) NEAR STOICHIOMETRIC 

BEHAVIOR (SOLID LINE AND DOTS WHICH ARE 

CORRESPONDING TO THE DIRECT INTEGRATION 

METHOD AND NEURAL NETWORK MODELING, 

RESPECTIVELY)  (B) A RANDOM SELECTION OF THE 

SCALARS IN THE LEAN ZONE (DOTTED LINE FOR DIRECT 

INTEGRATION AND MULTIPLICATION SIGN FOR NEURAL 

NETWORK PREDICTION) 

 
 
COMPUTATIONAL COSTS 
 
     In order to make a comparison between neural network 

approach and one conventional method, like look-up tables, 

from the computational costs point of view, an important 

parameter must be calculated for each of these methods [5]. 

This parameters is the required memory storage factor, S . The 

required memory storage for look-up table method in bytes is 

given by: 

 

)...(4 21 JtJLUT NNNNNNS ε=  (10) 

 

where JN  is the number of reactive scalars, εN  is the number 

of discretized nodes of mixture fraction, and iN  for i=1,2,..,N 

is the number of tabulated scalars. tN  is the number of reaction 

time intervals. 

 

    The required computer storage for neural network model, in 

bytes, is given by: 
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where lK  is the number of neurons in the l th
 hidden layer, 

IN  and JN  are the number of input and outputs of the 

network. 

 

      For Jones' reduced chemical mechanism, with five scalars,  

),,,( 24 COOCH nnnf  which has been discretized into 

)10,10,10,40(  grid points and a neural network with four 

inputs, four outputs and two hidden layers with sixteen neurons, 

in each layer, the required computer storage has been calculated 

for both methods, look-up table and neural network method. 

The relevant results are shown in Table 3. 

 

 
Table 3. COMPARISON BETWEEN COMPUTER STORAGE 

REQUIREMENT OF LOOK-UP TABLE METHOD AND 

NEURAL NETWORK METHOD FOR FIVE TEMPORAL 

INTERVALS (BYTES) AND THEIR RATIO 

 Required computer storage (bytes) Ratio 

Look-up table 64e+05 740 

Neural network 8640 1 

 
 
CONCLUSION 
 
   In this research, an important reduced chemical mechanism of 

methane/oxygen reaction has been successfully modeled by an 

artificial neural network with considerably decreasing of the 

computational costs. Also the approach for building the neural 

network architecture and choosing the optimal network has 

been stressed. There is good agreement between neural 

modeling and direct integration for the main species, like 

methane and oxygen, but for an intermediate species, like 

carbon monoxide, there are some inconsistencies between the 

prediction of the network and direct integration method. 

   The work is now under development to model other chemical 

mechanisms of methane/air and methane/oxygen combustion, 

like Srivatsa mechanism [9], skeletal mechanism [10], and full 

mechanism (if possible), Afterwards, we will have the 

possibility to provide the detailed comparison between the 

neural modeling and computational costs of the mentioned 

mechanisms.  
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