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ABSTRACT 
An analytical model was developed to predict the critical 
conditions at the onset of gas entrainment in a single downward 
oriented branch.  The branch was installed on a horizontal 
square cross-sectional channel having a smooth stratified co-
currently flowing gas-liquid regime in the upstream inlet region.  
The branch flow was simulated as a three-dimensional point-
sink while the downstream run flow was treated with a uniform 
velocity at the critical dip location.   A boundary condition was 
imposed in the model whereby the flow distribution between the 
branch and run was obtained experimentally and digital imaging 
was used to quantify the critical dip location through the dip 
angle.  Three constant dip angles were evaluated in the model 
and results showed the dip height to have good agreement with 
experiments between angles of 50 and 60 degrees.  The 
predicted upstream height, however, did not match well with the 
experimentally determined height due to the omission of shear 
and inertial effects between the upstream location and critical 
dip.   
 
INTRODUCTION 
Two-phase flow in branching conduits is a widely studied topic 
with a variety of motivating applications, including oil-gas 
production and safety analysis in nuclear power plants.  
Efficient two-phase flow separation can lead to improved 
performance of oil-gas production plants [1], and has been 
investigated experimentally [2] and analytically [3]. 
 In normally single fluid phase systems, prior knowledge of 
two-phase operating conditions are important for predicting 
accident scenarios [4, 5].  Single and multi-junction 
configurations have been studied for this purpose, focusing on 
either the critical conditions leading to two-phase flow, or the 
two-phase flow characteristics.  Empirical models derived from 
these types of experimental programs, for example the 

horizontal stratification entrainment model, have been used in 
thermalhydraulic codes for accident analysis [6]. 
 Zuber [7] reviewed the two-phase phenomena at a small 
branch on the side of a large reservoir containing stratified 
layers of gas and liquid fluid phases.  With single phase liquid 
initially flowing into the branch, the onset of gas entrainment 
(OGE) was described by mechanisms that included either 
vortex induced or vortex-free gas entrainment.  The critical 
liquid height (HOGE) at which vortex-free OGE occurred was 
found to be a function of the branch flow Froude (Frd) number, 
which is a ratio of the branch fluid inertia to gravity.   
 A variety of quasi-steady experiments were later conducted 
with one, two, or three branches on a wall exposed to a large 
stratified two-phase reservoir [8, 9].  In these studies the critical 
liquid height was recorded at a stagnant reference point within 
the large two-phase reservoir. Of these, Saleh et al. [9] used a 
digital imaging technique to record the OGE dip curvature and 
produced a semi-empirical model that compensated for the 
effects of interfacial surface tension at low Froude numbers. 
The critical heights in these studies were found to significantly 
differ from measurements conducted in horizontal channels with 
co-current stratified gas-liquid flows with equivalent branch 
Froude numbers.  
 Reimann and Khan [10] investigated the critical height at 
the onset of vortex-free gas entrainment in a 206 mm internal 
diameter horizontal pipe with a single downward branch whose 
diameter ranged between 6, 12, and 20 mm.   The liquid height 
measurements were conducted at a location approximately 0.5 
m upstream of the branch. They discussed that the water’s 
velocity in the pipe (0.2 to 0.8 m/s) had negligible influence on 
the critical height since the branch velocity was significantly 
larger than the crossflow velocity.  This was later corroborated 
by Smoglie and Reimann [11] who demonstrated that their 
correlation of the critical height, represented here as, 
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H =  (1) 

was independent of the ratio between the run (2

2SLLVρ ) and 
branch ( 2

3LLVρ ) superficial momentum fluxes over the range, 
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 Maciaszek and Micaelli [12] also experimented with gas 
entrainment in a downward branch using pipe diameters of 80 
and 135 mm and branch diameters of 12 and 20 mm, 
respectively.  Their tests were conducted at operating pressures 
between 2 and 7 MPa.  The authors found that their data was 
correlated by, 

 4.0335.0 d
OGE Fr
d

H =  (2) 

and argued that the transverse liquid velocity in the pipe (up to 
3 m/s) drastically reduced the value of the critical height when 
compared to Smoglie and Reimann [11]’s correlation in Eq. (1).. 

 The correlations provided by Smoglie and Reimann [11] 
and Maciaszek and Micaelli [12] provide dramatically different 
predictions in critical height and flow quality, although the 
entrainment phenomenon was reportedly quite similar.  This led 
the present authors to recently model the gas entrainment 
phenomenon under liquid crossflow conditions [13]. The model 
followed a potential flow approach based on earlier work using 
semi-infinite stagnant two-phase domains [14].  This earlier 
model was based on an unconfined geometry – a branch in a 
semi-infinite medium.  This posed a challenge when trying to 
compare the predictions with finite sized geometries.  The 
present study improves the earlier analysis by modeling the 
branch within a confined horizontal channel.  The authors’ 
recently presented an experimental study of the critical height at 
the onset of gas entrainment [15].  The study also contains the 
details of the facility and methodology.  Data presented in 
Hassan et al. [15] were used in this study as empirical boundary 
conditions, and the relevant data is also presented here for 
completeness.  

 
 

NOMENCLATURE 
A  point on the interface upstream of the branch  
B  lowest point of the dip 
ay  vertical acceleration, (m/s2) 
d  branch diameter, (m) 
D  horizontal pipe diameter, (m) 
Frd  discharge Froude number 
FrU  crossflow Froude number 
g  acceleration due to gravity, (m/s2) 
h  dip height, (m) 

kji
rrr

 , ,   unit length directional vectors in x, y, z  

H  upstream interface height, (m) 
HOGE  critical height at onset of gas entrainment, (m) 

L  inlet and run pipe length, (m) 
m   mass flow rate, (kg/s) 
P  pressure, (N/m2) 
Q  volume flow rate, (m3/s) or (L/min) 
u, v, w  velocity components in x, y, z, (m/s) 
U  horizontal velocity with uniform profile, (m/s) 
V  velocity, (m/s) 
VL2S  superficial liquid velocity in the run, (m/s) 
VL3  average liquid velocity in the branch, (m/s) 
x, y, z  Cartesian coordinate system,  
 
Greek  θB  dip angle, (degrees)  
λ   x-location where H is measured, (m) 
µ  fluid viscosity, (Ns/m2) 
σ  gas-liquid interface surface tension, (N/m) 
ρ   fluid density, (kg/m3) ∆ρ  density difference of fluid phases, (kg/m3)  

Bφ   potential function at dip,  (m2/s) 

Bcrossflowφ   crossflow potential function, (m2/s) 

ksinφ   point-sink potential function, (m2/s) 

∇
r

  gradient operator 
 
Subscripts 
d  branch  
G  gas phase 
L  liquid phase 
1, 2, 3  inlet (1), run (2) and branch (3)  
 

 

THEORETICAL ANALYSIS 
A horizontal pipe, having a square cross-section of side length 
D, is shown in Fig. 1 to have a bottom oriented branch of 
diameter d.  The branch inlet is the origin of the Cartesian 
coordinate system (x = 0, y = 0, z = 0).  Liquid flows into the 
branch with a mass flow rate of mL3, and flows out of the run 
with a mass flow rate of mL2.  Gas flows out of the run with a 
mass flow rate of mG2.  The interfacial shear induced by the gas 
phase is neglected in this study.  A steady dip forms in the gas-
liquid interface, with its lowest point located at B (x = b, y = h, z 
= 0).  Applying Bernoulli’s equation on each side of the gas-
liquid interface between point A (x = -λ, y = HOGE, z = 0) and 
point B, and summing the two resulting equations, the liquid 
phase kinetic energy at point B, 2BV , can be expressed as, 

 ( ) 22 2 AOGE

L

B VhHgV +−∆=
ρ
ρ

 (3) 

The inlet liquid height is denoted as yA = HOGE while the dip 
height is yB = h.  Assuming that the velocity profile at the inlet is 
uniform, the interface kinetic energy at point A, 2AV , can be 

found using the average velocity, UA, as, 
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This is found through conservation of mass, as the inlet liquid 
flow rate is a summation of the run, QL2, and branch, QL3, liquid 
flow rates.  The inlet liquid flow area is the product of the 
channel width, D, by the liquid height, HOGE.  Substituting Eq. 
(4) into Eq. (3) yields, 
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For any given flow condition (QL2, QL3) there are three 
unknowns in Eq. (5), namely2

BV , HOGE, and h.  Two additional 

equations are therefore needed to solve for the two remaining 
unknowns. 
 The steady vertical acceleration at any point in the flow 
field can be found from White [16]  using the velocity vector 
components (u, v, w) in the Cartesian coordinate system (x, y, z) 
through, 
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The criterion to predict the dip instability at the onset of gas 
entrainment is defined from the vertical acceleration being 
equivalent to gravity as, 

 ga
By −=  (7) 

The gravitational acceleration is given by –g (-9.81 m/s2), with 
the negative sign indicating that it is acting in the negative y-
direction.  Assuming that the velocity field local to the branch 
can be represented by a superposition of a point-sink in uniform 
crossflow (x-direction), results in a total potential function, φ , 
described by, 
 ( )kcrossflow sinφφφ +=  (8) 

where the velocity components can be found through, 

 φ∇=
rr

V  (9) 

The vertical acceleration at point B can be found through 
substitution of the velocity field definition in Eq. (9) into Eq. 
(6), and the onset criterion is found as, 
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 The crossflow velocity at point B is assumed to have a 
uniform profile, UB, and independent of the y coordinate.  Its 
magnitude is found as a quotient of the liquid flow rate in the 
run, QL2, and liquid flow area beneath the dip, which is a 
product of the dip height h and channel width D.  The resulting 
potential function is therefore found, following from Schetz and 
Fuhs [17], as,  
 xUBcrossflow =φ  (11) 

where,  
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at the lowest point of the dip (x = b, y = h, z = 0).  The point-
sink velocity at point B is found through a quotient of the 
branch flow rate, QL3, and the sink flow area, which in this case 

is simulated as a hemisphere with a radius of( )2

1
222 zyx ++ .  

The resulting potential function at point B is found, again 
following from Schetz and Fuhs [17], as, 
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The first derivatives of the total potential function in Eq. (8) 
evaluated at point B (x = b, y = h, z = 0) are found as, 
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and the second derivates evaluated at point B as, 
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The velocity field is symmetrical about the x-y plane, and 
subsequently wB = 0 in Eq. (16).  The derivative definitions are 
substituted into Eq. (10) and the resulting equation has two 
unknowns for any flow condition (QL2, QL3), these are the dip 
height, h, and dip offset distance, b.  The offset distance is a 
result of the transverse liquid momentum forcing the dip 
downstream.  In effect a fourth equation is needed to have the 
number of unknowns equal to the number of equations.  The dip 
angle, θB, as shown in Fig. 1, is defined as a function of h and b 
as, 

 






= −

b

h
B

1tanθ  (20) 
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A criterion for the dip offset distance, b, was proposed by 
Bowden and Hassan [13]; however recent analysis showed it to 
lead to an under-prediction of the experimental dip co-
ordinates.  This criterion is omitted in this study, and instead 
three dip angles are tested in the solution based on experimental 
evidence (θB = 40, 50 and 60 degrees) [15].    
 With the velocity field defined at point B through the 
potential function, the kinetic energy at point B can be found 
through the length of the velocity vector at B by, 
 
 2222

BBBB wvuV ++=  (21) 

and substituting the first derivatives of the total potential 
function in Eq. (14) to (16) evaluated at point B into Eq. (21) 
results in, 
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 The model to predict the onset of gas entrainment dip is 
defined by the system equations provided in Eq.s (10), (20) and 
(22) with unknowns h, b, VB, for given flow conditions, QL2, 
and QL3, and dip angle, θB.  The link between the OGE dip 
phenomenon and the inlet flow is provided by a statement of 
Bernoulli’s equation in Eq. (5) with the remaining unknown 
being the upstream height, HOGE.  In practice the flow rates 
between the branch and run are not independently controllable 
and the total inlet liquid flow rate, QL1, is dependant on several 
factors including the channel geometry, orientation, frictional 
losses, and interfacial shear.  In stratified co-current gas-liquid 
channel flow, for example, the driving forces include gravity, 
interfacial shear induced by the flowing gas phase, and wall 
shear stresses.  If the interfacial and wall shear stresses are 
neglected, the problem becomes analogous to open channel 
flow.  The branch flow, on the other hand, is pressure driven 
and can be actively controlled using a throttling device.  With 
the branch flow constant, the run flow is found as the difference 
between the inlet and branch flow rates.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The splitting of the liquid stream between the inlet, branch, and 
run is referred to as the liquid flow distribution.  The critical 
liquid flow distribution, defined at OGE, was determined 
experimentally [15]. 
 The model solution is a two step process.  In the first step 
the dip characteristics (position, velocity, and acceleration) are 
solved using the potential function developed from Eq. (8) for 
an imposed branch and run flow rate, and dip angle.  The OGE 
criterion in Eq. (10) was evaluated numerically using an in-
house code to scan a physically appropriate range described by, 

 ,
2

0
D

y << ooo 60 ,50 ,40=Bθ , z = 0 (23) 

The upper limit of the y-coordinate, D/2, was chosen so that the 
point-sink radius would not interfere with the channel side wall, 
thereby avoiding distortion of the sink hemispherical flow area.  
The root of Eq. (10), the dip location, was found using an 
algorithm to verify that the acceleration at the given point did 
not exceed 1% of the gravitational value (-9.81 m/s2).  The 
process was repeated over a range of imposed branch and run 
flow rates which were physically appropriate and based on 
experimental evidence [15].   
 In the second step the dip kinetic energy and height found 
from the first step are coupled with the upstream kinetic energy 
and height in Eq. (5) to solve for the upstream height, HOGE.  
This was done numerically whereby Eq. (5) was scanned over a 
physically appropriate range where, 

 
 DHh OGE <<  (24) 

An algorithm was implemented to search for roots where the 
kinetic energy at the dip using the potential function (Eq. 22) 
was within 1% of the dip kinetic energy using Eq. (5). 
 In the limiting case when the crossflow velocity at the dip 
is zero (UB = 0) the model is representative of quasi-stagnant 
stratified environment within the horizontal channel.  That is to 
say the liquid flows into the branch symmetrically from the inlet 
and run.   
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Assuming that the volume of fluid contained in the horizontal 
channel is sufficiently larger than the outflow of fluid through 
the branch, the upstream interfacial liquid velocity, point A, 
becomes negligible and the interface height, HOGE, may be 
found analytically as, 

 4.0625.0 d
OGE Fr
d

H =  (25) 

 
RESULTS AND DISCUSSION 
 
Flow Visualization 

The images presented in Fig. 2 shows the typical development 
of the gas entrainment flow structure in the bottom branch.  In 
Fig. 2a the image depicts the formation of the steady dip, 
typical of the vortex-free gas entrainment phenomenon.  In this 
instance the inlet liquid height and branch and run flow rates 
have achieved steady state.  The dip structure remains relatively 
stable.  The lowest point of the dip was found in this case to be 
around b = 6 mm, h = 5.9 mm, with Frd = 18.  Reducing the 
inlet height, typically less than 1 mm, resulted in air entrainment 
into the branch, as shown in Fig 2b.  Initially entrainment was 
observed to be transient as the dip experienced a sudden 
collapse into the branch and then quickly reformed.  As the 
liquid height was decreased further, the gas phase began to 
steadily entrain into the branch. The visualization method used 
to depict the OGE does cause a bias uncertainty in the 
measurement of the critical height, and was estimated to be 1 
mm, as it is dependant on the observer’s perception of the OGE 
phenomenon. 
 The steady dip profiles obtained at branch Froude numbers 
of 18, 13, 11.4, and 7.9 obtained through image analysis were 
used to determine the dip angle, following Eq. (20).  
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Fig. 2. Two-phase flow structure (a) just prior to gas 
entrainment and (b) at transient dip break-up with subsequent 

gas entrainment. 
 

The number of measurements was insufficient for developing a 
confident relationship between the dip angle and branch Froude 
number.  Instead, the average value was calculated over the four 
Froude numbers shown in Fig. 3 as, 
 
 18  Fr 7.9 , 50 d ≤≤= o

Bθ  (26) 

A maximum deviation of eight degrees was found over the 
range of branch Froude numbers.   
 
 Critical Liquid Flow Distribution 
 The critical liquid flow distribution was determined by 
scanning the full range of allowable branch Froude numbers and 
recording the corresponding branch and run flow rates at OGE.  
The branch flow rate, QL3, is a function of the branch diameter, 
d, while the run flow rate, QL2, is a function of the pipe 
diameter, D.  By dividing each of the liquid mass flow rates by 
the total flow areas the critical flow distribution may be 
represented in terms of a ratio of superficial velocities, VL2S/VL3.  
The critical flow distribution is shown in Fig. 4 and is 
correlated here as, 

 30Fr  1 ,02.0 d

16.0

3

2 ≤≤= −
d

L

SL Fr
V

V
 (27) 

Multiplying Eq. (27) by the ratio D2/d2 yields the ratio of flow 
rates, QL2/QL3. 
 The total inlet mass flow rate, QL1, was observed to vary 
proportionally with the inlet height, and this observation was 
collaborated by Reimann and Khan [10].  They presented the 
inlet liquid mass flow rate at the maximum and minimum liquid 
heights, and based on this, the critical distribution was 
estimated from their measurements.  Since they investigated two 
different branch diameters, 6 mm and 12 mm, respectively, the 
effect of d/D could be presented more readily.  The critical flow 
distribution extracted from Reimann and Khan [10]’s results are 
also presented in Fig. 10.  Decreasing d/D leads to a decrease in 
the ratio VL2S/VL3.  This is expected since a smaller branch 
diameter requires less liquid flow rate to achieve the same 
branch Froude number.  
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Model Prediction 

 Using Eq. (27) as an empirical boundary condition, the 
onset of gas entrainment criterion in Eq. (10) is used to 
determine the dip height, h by scanning three dip angles, Bθ = 

40, 50 and 60 degrees.  Scanning Eq. (10) for a single branch 
Froude number, and over a range of heights, y, as shown in Fig. 
5a, a single root is found where the acceleration is equivalent to 
gravity, for each dip angle.  For example, for a branch Froude 
number of Frd = 15, and a dip angle of 50 degrees, the 
predicted dip height corresponds to h = 4.9 mm.  Increasing the 
dip angle is shown to increase the predicted dip height.  This 
can be explained through the acceleration field presented in Fig. 
5b for Frd = 15, Bθ = 50, and h = 4.9 mm.  The acceleration 

field equivalent to gravity (g = -9.81 m/s2) is represented by a 
contour surrounding the branch origin (x = 0, y = 0, z = 0).  The 
acceleration field is asymmetrical about the x-axis due to the 
imposed crossflow velocity from Eq. (12).  In effect, the dip 
criterion is satisfied anywhere along this contour.  Experiments 
have shown that for the imposed flow rates the dip angle can be 
expected to be in the neighborhood of 50 degrees.  The dip 
angle, coupled with the onset criterion of Eq. (10), is necessary 
to determine the dip height. 
 The locus of dip heights, as a function of the branch Froude 
number and dip angle, is presented in Fig. 6a.   The analytical 
prediction of h is compared in the figure with those obtained 
experimentally.  The results show that h is well predicted 
between dip angles of 50 and 60 degrees.  In this range of dip 
height (0.1 < h/D < 0.13) the difference in lateral flow area (z-
direction) between a channel with a square or circular cross-
section (diameter D) is on the order of 50%.  It could be 
expected that for any given QL2 the crossflow velocity, UB, 
should be higher in the cylindrical channel geometry for any 
given dip height h.  However, the impact on the sink potential 
function can not be overlooked.  With a cylindrical channel the 
sink flow area is no longer hemispherical, but rather found as 
the intersection of a sphere and cylinder [9].  In effect the sink 
flow area for a circular cross-section is reduced when compared 
to the square channel for the  
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Fig. 4.  Critical liquid flow distribution between run and branch. 

same dip height h.  For the same branch flow rate, the sink 
velocity at any radial location is therefore expected to be higher 
in the cylindrical channel.  One could therefore speculate that 
the predicted dip height should be higher, if the crossflow 
velocity is also assumed uniform, in the case of a cylindrical 
channel.  The effect of the channel geometry should therefore 
be investigated further in order to quantify its effects on the dip 
prediction. 
 The predicted dip crossflow Froude number, FrUB, is 
presented in Fig. 6b as a function of the dip height.  The dip 
crossflow Froude number is defined as, 
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which is used extensively in the study of open channel flows 
[18].  The crossflow Froude number reveals three distinct types 
of well known flow regimes in open channel flow: 
 

• FrU = 1  Critical flow 

• FrU < 1  Subcritical flow 

• FrU > 1  Supercritical flow 
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Fig. 5. Dip prediction showing (a) the critical dip height 
accompanied by the (b) acceleration field for Frd = 15 and 50 

degree dip angle. 
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For a dip angle of 50 degrees and h/D > 0.05, the flow regime is 
shown to be supercritical, while the same regime is found for 
the 60 degree dip angle and h/D > 0.1.  Interestingly, 
experiments showed a secondary phenomenon whereby a steady 
liquid jet emanated from the dip, flowing in the direction of the 
run.  This phenomenon is shown in Fig. 2a, just to the right of 
the dip.  When air entrained into the branch the phenomenon 
was dissipated, as shown in Fig. 2b.  One possible explanation 
for this phenomenon is that the run flow becomes supercritical 
at the dip and produces a type of hydraulic jump. 
 The character of Eq. (5) as a function of the upstream 
height, H, is shown in Fig. 7a.  The figure presents the predicted 
dip kinetic energy from Eq. (5) and from the potential field in 
Eq. (22).  In the case of a large stagnant reservoir, a comparison 
of kinetic energies between the dip and static interface was used 
to predict the critical height [19].  The critical height being the 
vertical distance from the branch to the static interface, which 
follows from Craya [20]’s original analysis.  The critical height 
is then found as a single root where the dip kinetic energy 
obtained from the statement of Bernoulli’s equation and the 
potential field are equal, with Eq.s (5) and (22) being tangent to 
each other at the root (UA = UB = 0).  The same methodology 
was employed in this study; however, no root was found when 
the upstream velocity was non-zero, as seen in the figure.   
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Fig. 6.  (a) The predicted dip height and (b) the 
predicted dip crossflow Froude number. 

The upstream velocity, UA, is presented using the upstream 
crossflow Froude number, FrUA,  

 
( )
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1
23
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gDH

QQ
Fr LL

UA

+=  (29) 

The upstream velocity is imposed in Eq. (5) implicitly as a 
function of the upstream height, using Eq. (4).  The 
consequence is that the upstream velocity term is dominant in 
Eq. (5) at low values of H (H/D < 0.25), and becomes less 
significant as H increases (H/D > 0.25). The effect is seen in the 
figure as Eq. (5) decreases to a minimum value at Hcrit (H/D = 
0.25)  This minimum peak value is significant from a physical 
standpoint in that it represents the transition from subcritical to 
supercritical flow regimes as evidenced by the value of FrUA.   
 If the functional relationship between the upstream height 
and velocity are relaxed in Eq. (5), that is the upstream velocity 
is imposed explicitly rather than as an implicit function of HOGE, 
a solution can be found in the form of a single root at HOGE, as 
shown in Fig. 7b.  The difference between Fig. 7a and 7b is that 
the upstream velocity, UA, is set constant at 0.24 m/s in the 
latter.  This value was not chosen haphazardly, but rather based 
on experimental evidence, and results in a subcritical crossflow 
Froude number. 
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Fig. 7. Comparing the dip kinetic energy obtained from 
Bernoulli’s equation and the potential function for (a) the inlet 

velocity defined as a function of the inlet height and (b) the inlet 
velocity defined explicitly (UA = 0.24 m/s). 
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In order to find a solution to Eq. (5) an empirical function for 
the average upstream velocity was developed from the recorded 
values of the upstream height and flow rate as, 

 
( ) 212
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2cos HRHHR
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QQ
U LL

A

−−−






 −
+=

−

 (30) 

The denominator in Eq. (30) is the lateral flow area represented 
by a circular segment of height H and radius R, where R = D/2 
[21].  The value of the upstream height was taken at a distance 
of 5/ −=Dλ .  The resulting average velocity is shown in Fig. 
8a as a function of Frd and was found to be best fit by, 
 
 ,1.0 32.0

dA FrU = 301 << dFr  (31) 

Over the range of H the flow is subcritical with FrU ranging 
between 0.4 and 0.6, as shown from Fig. 8b.  The resulting 
locus of solutions for the upstream heights, as a function of Frd, 
is presented in Fig. 8c and is shown in comparison to the 
experimental upstream height.  The upstream height is not well 
predicted over the three dip angles tested, and the error is on the 
order of approximately 50% for a dip angle of 50 degrees.  
Several factors contribute to this error, including the omission 
of energy changes due to shear and inertial effects in Eq. (5).  
The interfacial liquid gradient in horizontal channels with co-
current gas-liquid flow has been shown to be well predicted 
when wall friction and interfacial shearing are considered [22].  
Secondly, the interfacial velocities are likely not well 
represented by the average velocity, particularly in the near 
branch region.  Lastly, the channel geometry impacts the dip 
prediction, which in turn, will affect the upstream height 
prediction.  

 
CONCLUDING REMARKS 
Experiments have shown that the stratified flow is 
hydrodynamically developing upstream of the branch, within 
the inlet region.  This results in an interfacial liquid gradient 
within the inlet region, and consequently, a single unique 
critical height to characterize the onset of gas entrainment 
phenomenon is un-realistic.  This is in contrast to the stagnant 
reservoir case where a single critical height is reasonable. 
Experiments also showed that the dip structure is dependant on 
the imposed flow conditions.  The dip angle was recorded over 
a limited range of Froude numbers in this study, and was 
assumed to have a constant value.  In reality, this is not the case, 
as the dip position, size, and orientation are expected to be 
influenced by the ratio of momentum fluxes between the run 
and branch flows.   
 The analytical model was shown to predict the dip 
height for the applied flow conditions well; however the inlet 
height could not be predicted without an empirical function to 
describe the inlet velocity.  The dip and inlet region were 
coupled through Bernoulli’s equation and consequently the 

effects of wall and interfacial shear, as well as inertial effects 
due to the velocity profile development, were neglected.   
Future directions include,  

• Using circular inlet/run pipe geometry to improve the 
geometric representation of the problem.  

• Simulation of the flow field using a finite diameter branch 
rather than a point-sink.  

• Investigating shear and inertial effects between the dip and 
inlet regions. 

• Developing an analytical criterion for the dip angle. 
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Figure 8.  (a) The inlet average velocity accompanied by (b) the 
inlet crossflow Froude number and (c) inlet height prediction 

compared with experiments.  
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