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ABSTRACT
The role of unavoidable space between heat exchangers and

stack inside a thermoacoustic standing wave generator is inves-
tigated. A two-dimensional Low Mach number viscous and heat
conducting flow model of the active thermoacoustic cell, com-
prising heater and cooler separated by a stack made of parallel
conducting plates, is described. Three different models of heat
exchangers are implemented and compared. Ideal heat exchang-
ers consist of a fluid zone with imposed temperature. The other
two models are made up of stacks of horizontal plates, either with
specified wall temperatures, in one model and with constant pre-
scribed heat fluxes in the other. A multiple scale analysis allows
for coupling the active thermoacoustic cell model with the flow
inside the resonator, obtained as a solution to a linear acoustic
formulation. When a large enough temperature difference is ap-
plied between the heat exchangers, initial pressure perturbations
grow. Different resonant modes are amplified for different con-
figurations, in the same way as in experimental observations.

∗Address all correspondence to this author.

INTRODUCTION

A standing wave thermoacoustic engine consists of a long
tube with one end closed and equipped with a load such as a pis-
ton at the other end, within which a heat exchanger section is
placed. The heat exchanger section is made up of a heater and
a cooler, separated by a porous medium or a stack, along which
surface heat exchange occurs. When a sufficiently large tem-
perature difference is applied between the two heat exchangers,
some initial pressure perturbations are amplified by the so-called
thermoacoustic instability.

Although in many studies, the complete system is described
using one-dimensional models [1–3], a more accurate model of
the heat exchanger section requires a multidimensional formula-
tion, because of the strong coupling between the hydrodynamic
and temperature fields. Recent studies [4–6] have focused upon
heat exchanger design and on thermal edge effects, in particular
in the region between the extremities of the stack and the heat
exchangers. The present study considers a stack made up of flat
horizontal plates of conducting material; it focuses upon the role
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of unavoidable dead space between heat exchangers and stack.
The issue is investigated numerically using a two-dimensional
Low Mach number viscous and heat conducting flow model of
the so-called active thermoacoustic cell, defined as the stack,
heater, cooler, and associated dead spaces. Coupling with the
flow in the left and right parts of the resonator tubes is dealt
with based upon results from a multiple scale analysis. The mul-
tiple scale formulation has been described in detail in [7]. In
the resonators, the appropriate model consists of an exact linear
acoustic solution. Assuming vertical periodicity in the active-
cell, i.e. that the flow is identical in different stack or heat ex-
changer spaces, the simulation domain can be reduced to one
slice of the active cell, delimited by two successive stack plates.
Three different models of heat exchangers are considered and
have been simulated: ”ideal” heat exchangers, modeled as a fluid
zone within which a constant fluid temperature is prescribed at
all times (hot for the heater and cold for the cooler), and two
models in which the heat exchangers are made up of stacks of
horizontal plates with a prescribed blockage ratio, allowing for
porosities that differ between heat exchangers and stack. For the
latter geometry, the two models consider respectively fixed, pre-
scribed temperatures in the heat exchangers, and constant pre-
scribed heat fluxes.

The main features of the model, in which an exact analytical
solution to the resonator acoustics is coupled to a direct numer-
ical simulation of the viscous and conducting flow in the stack
and heat exchangers, are briefly described in the next section.
The three models of heat exchangers are also explained in de-
tail. A description of the numerical solution technique follows.
Finally, results are presented for a case corresponding to experi-
ments described in the literature [8].

PHYSICAL MODEL
The simulation domain, consisting of one slice of the ac-

tive cell, delimited by two successive stack half-plates is shown
in Fig. 1. In the reference experiment [8] the heat exchangers
also consist of stacks of horizontal plates, with different thermo-
physical properties, different blockage ratio, and different length.
The stack and heat exchangers assembly is placed within the res-
onator, which is closed at one end, while a load is placed at its
other end. That device is described by a an initial boundary value
problem characterized by conservation of mass, momentum and
energy, including viscosity and conduction but no gravity, for a
known compressible fluid, over the domain described in Fig. 1,
with suitable initial conditions. The appropriate description of
the heat exchangers, including thermal boundary conditions, will
depend upon the heat exchanger model. This is dealt with in de-
tail below. No-slip boundary conditions are imposed on the heat
exchanger and stack walls. In the stack walls, energy is con-
served. Temperature and heat flux are continuous along the stack
walls. Along the stack plate centerlines, periodic thermal bound-

FIGURE 1. Active thermoacoustic cell geometry

ary conditions are imposed.
Given that the period will be determined by an acoustic res-

onance, time is scaled by the resonator lengthLR divided by the
speed of sound at the reference temperatureare f . The length
of the heat exchanger section is of the same order as the stack
lengthLS; it is taken to be much smaller than the length of the
resonator. A reference velocityUre f is introduced assuming that
the fluid sweeps a length of the order of the length of the heat
exchanger section. This results in a reference Mach number
M = Ure f/are f = LS/LR, which is small for short stacks. The
Low Mach number model outlined below is explained in detail
in [7].

As to initial conditions, given that the focus is currently upon
engine start up, in the simulations below, two cases were consid-
ered: an initial random noise, or a small amplitude monochro-
matic acoustic wave.

Multiple Scale Formulation
Scaling length byLR, time byLR/are f , velocity byUre f , the

flow in the resonators is found to be governed by usual inviscid,
non-conducting, isentropic acoustics. A d’Alembert solution is
readily formulated using Riemann variables,L = γu−

√
T p(1)

and R = γu+
√

T p(1) which remain constant on characteris-
tics moving at the speed of sound (the speed of the fluid being
negligible in comparison). The temperatureT has different val-
ues on the two sides of the stack and heat exchangers.u is the
velocity,γ is the ratio of specific heats.p(1) is the acoustic pres-
sure, i.e. a perturbation of orderM to the mean pressure, which
is constant and spatially uniform.p(2) represents the dynamic
pressure correction in the heat exchangers, i.e. a perturbation of
orderM2 to the mean pressure.

At the closed endx= xL, velocity is zero,u= 0, and the out-
going Riemann variableR is thus determined by a reflection con-
dition: R(xL,t) = −L (xL,t). At the right endx = xR, the load
is described as an impedancef such thatp(1) = f u, thus yield-
ing a somewhat more complex reflection condition:L (xR,t) =
(

γ − f
√

T
)

/
(

γ + f
√

T
)

R(xR,t). A closed end (u = 0 hence
f → ∞) results inL = −R (as at the left end) while an open
end (p(1) = 0 hencef = 0) results inL = R.
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Combining the d’Alembert solution with these boundary
conditions, the value of one of the Riemann variables at the in-
terface between resonator and heat exchanger can be related to
the value of the other one at the same location at an earlier time
equal to the current time, minus the round-trip travel time to the
respective end.

In the heat exchanger section, the conservation laws are
scaled as above except for length which is now scaled byLS.
This produces a viscous, conducting low Mach number model
that supports spatially homogeneous pressure fluctuations up to
leading order, in which temperatures may vary at leading order
and in which dynamically induced pressure gradients only oc-
cur at orderM2. In effect, the approximation obtained is the
same as in [9–11]. However, given that the acoustic model in
the resonator only produces pressure fluctuations at orderM, in
the current problem, pressure remains constant at leading order.
Because the temperatures differ at leading order between the hot
and cold heat exchangers, though, leading order temperature and
density variations occur. Pressure and densities are related by the
ideal gas equation of state in which pressure is taken as its con-
stant leading order value. Thus although this is a low Mach num-
ber flow, because leading order density variations occur, energy
conservation cannot be decoupled from conservation of mass and
momentum. The dimensionless equations become:

∂ρ
∂ t

+ ∇.ρu = 0 (1)

∂ (ρu)

∂ t
+ ∇.(ρu⊗u) = −∇p(2) +

1
Re

∇.τ (2)

ρ
[

∂T
∂ t

+(u.∇)T

]

=
1
Pe

∇2T (3)

p = 1 = ρT (4)

whereτ = [∇u+(∇u)t − 2
3(∇.u)I], the reference Reynolds num-

ber isRe= ρre fUre f LS/µre f and the reference Péclet number is
Pe= ρre f cpre fUre fLS/kre f . In the solid stack plates (and if appli-
cable the heat exchanger plates), the dimensionless heat conduc-
tion equation is:

∂T
∂ t

=
1

Pes
∆T, (5)

where the solid Péclet number is defined asPes = Peαre f/αs,
αre f and αs being thermal diffusivities respectively at the ref-
erence state in the fluid and in the solid (the value of the solid
Péclet number depends on the solid that is considered).

In the outer (acoustic) scaling, the stack and heat exchang-
ers section has a negligible length; in the inner scaling, the res-
onators have a length that→∞. Matching the two solutions, first,
from the above, the inner section is transparent to acoustic pres-
sure. However, integrating the energy equation over the entire

FIGURE 2. Ideal heat exchangers

FIGURE 3. Heat exchangers - constant prescribed heat

heat exchanger section, of heightH, one finds that

(uL −uR)H +
1
Pe

∫

∇T ·nds= 0 (6)

Here,uL corresponds to a locationx → −∞ in the scaling asso-
ciated with the heat exchanger section, but to the heat exchanger
end of the left side of the resonator. Likewise,uR corresponds
to a locationx → ∞ in the scaling associated with the heat ex-
changer section, but to the heat exchanger end of the right side
of the resonator. Thus, while being transparent to acoustic (or-
der M) pressure, the stack and heat exchangers act as a source
of velocity in the acoustics, thus coupling the inner and outer
problems.

Taking into account thatp(1) is spatially uniform in the stack
and heat exchangers assembly, Eq. (6), together with the acoustic
solution above, provides velocity boundary conditions forx →
−∞ andx → +∞ in the heat exchanger section, hence allowing
for numerical simulation.

Heat Exchanger Models
As already mentioned, three different heat exchanger models

were studied.
The first model considers ”ideal” heat exchangers. No phys-

ical heat exchanger is present; instead, it is assumed that the fluid
somehow reaches the specified heat exchanger temperature at all
times. In the simulation this is achieved by setting the fluid tem-
perature at a the desired fixed value within a specified ”heat ex-
changer” region, as shown in Fig. 2, instead of solving the energy
equation.

In the second model, the heat exchangers are considered
to be solid plates maintained at constant temperature (Thot for
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the hot heat exchanger, andTcold for the cold heat exchanger).
Since the size and number of plates composing the thermoa-
coustic stack and the heat exchangers can differ, the geometry
shown in Fig. 1 includes a different blockage ratio for both sets
of stacks. As in the reference experiment [8], the hot and cold
heat exchangers have the same blockage ratio. Also, gaps are
present on both sides of the stack, between heat exchangers and
stack. These gaps are of interest in the current study; they were
taken to be equal to the distance between two stack plates.

In the third model, the same geometry is considered, but this
time a constant heat flux is imposed along the heat exchanger
symmetry plane, as shown in Fig. 3, and conduction within the
walls is included in the simulation. The value of the flux for each
heat exchanger is calculated so that the total heat flux injected at
the corresponding (hot or cold) heat exchanger/fluid interface is
the same as in the second model.

In the first model, there are no physical heat exchangers;
these are ideal in the sense that the fluid is set to reach exactly
the specified ”heat exchanger temperatures.”. Thus the solution
is not constrained by boundary conditions. In the latter two mod-
els, the heat exchangers are made up of actual plates. The bound-
ary conditions then provide an accurate description of the actual
heat exchange mechanism, and in that sense, they do constrain
the problem. These boundary conditions, are, however, repre-
sentative of the true physics of the heat exchangers. Thus, if in
a sense they impose a solution, that solution is representative of
real exchangers made up of parallel plates.

In all three models, the heat capacity and thermal conductiv-
ity of the wall material are assumed to be independent of temper-
ature.

NUMERICAL SOLUTION
The numerical solution uses a finite volume solver initially

developed for direct simulation of non-Boussinesq convection
[12]. Treatment of diffusive terms is implicit while convection
is explicit. The algorithm is second-order accurate in both space
and time. A staggered mesh is used, with velocities defined on
cell faces and state variables at cell centers. Continuity is ensured
based upon a version of the projection method adapted for vari-
able density, using a fractional step. The Helmholtz equations
obtained for temperature and velocity components are solved
by either an ADI method or GMRES method (both algorithms
are tested). The equation for the dynamic pressure correction is
solved using a multigrid method.

The presence of stack and heat exchanger walls is dealt with
by introducing a phase variable that differentiates between fluid
and solid, and ensures continuity of temperature and of the heat
flux vector at the solid/fluid interfaces.

At each time step, resonator acoustics yields, on both sides
of the stack and heat exchanger section, a relationship between
velocity and acoustic pressure. Equation (6) provides a third re-

lationship, thus yielding the necessary velocity conditions. The
three variables (left and right velocity and acoustic pressure at
the active cell location) obtained from solving these three equa-
tions are also stored for later use in the simulation, providing a
discretized version of the analytical solution in the resonators.

In order to provide thermal initial conditions, before starting
the simulation proper, a steady state temperature field is deter-
mined solving the heat conduction problem assuming that the
fluid stays at rest. To that effect, the equations are made di-
mensionless based on a different reference time scale than that
previously defined, corresponding to heat conduction in the gas.
Next, that temperature field is used as an initial condition, that
may trigger thermoacoustic instability. In the simulation proper,
the reference time scale is the acoustic time scale previously de-
fined in the physical model.

RESULTS
The results shown correspond to simulations described in

[8]. A device 1 m long with a 3.5 cm stack, filled with helium
at given values of mean pressure, that were varied from 0.1 to
0.5 MPa, and 293 K on the cold side was simulated. This cor-
responds to a dimensionless description in whichLR = 28.6LS,
hence a reference Mach number of 0.035. The hot heat ex-
changer is located at a distance of 0.055LR from the left end.
The width of the stack passages is 0.022LS and the plate thick-
ness is 0.008LS. The stack is taken to be made of stainless steel,
and the heat exchangers are made of nickel. The hot heat ex-
changer has a length equal to 0.21LS, the cold heat exchanger has
a length equal to 0.63LS, the plates are calculated to be (on aver-
age) 0.009LS thick, and the passages 0.021LS wide. The distance
between heat exchanger and stack is equal to the stack passage
width.

As to resolution, meshes of 512×32, 1024×64 and 512×
64 were used. Time steps of about 1/100th of the period were
used initially, but as velocities increased, steps smaller by a factor
ten were used. These parameters were found to result in adequate
convergence.

On a coarse mesh, one simulation, from start up until a pe-
riodic regime is observed, takes about 30 hours on a NEC SX8,
hence a fairly large computation. An average of 3 or 4 multi-
grid cycles at every time step are necessary throughout the sim-
ulation. For small time steps, the ADI algorithm was found to
give identical results to GMRES, and since the exact solution
obtained with GMRES required a significantly longer time, the
ADI method was used in the simulations shown below. Most
simulations shown below took about 20 min CPU time.

Initial Temperature Field
The initial temperature field is the driver of the thermoacous-

tic instability. The most common initial temperature distribution
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FIGURE 4. Temperature field, Top: model 1, temperature fixed on
solid heat exchangers, Middle: model 2, heat flux fixed, Bottom: model
3, ideal heat exchangers
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FIGURE 5. Temperature profile along centerline, comparison be-
tween heat exchanger models

used for example in 1D studies consists of a homogeneous hot
temperature left of the hot heat exchanger, homogeneous cold
temperature right of the cold heat exchanger, and linear variation
from hot to cold between the two heat exchangers. However,
in reality, the temperature field established by pure conduction
is not one-dimensional, and these multidimensional effects may
play an important role in the instability.

The steady conduction temperature fields obtained for the
three models of heat exchangers are shown in Fig. 4, in the
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FIGURE 6. Temperature profile along centerline, detail between hot
heat exchanger and stack plate, comparison between models

zone between the hot heat exchanger and the stack plate, for
Thot = 2Tcold. Outside the region close to the ends of the stack
plates, the steady temperature field is mostly one dimensional.
Isothermal lines, shown in Fig. 4, show that the ideal model
yields slightly different results than the other two. The temper-
ature profiles obtained from the three models, along a line go-
ing through the heat exchanger section that coincides with the
stack gap centerline, are shown in Fig. 5 and Fig. 6. The pro-
files obtained from the latter two models (solid heat exchang-
ers with either fixed temperature or fixed heat flux) are indistin-
guishable. The profile obtained from the ideal heat exchanger
model is very close to the other two, but a slight difference can
be observed in the detail shown in Fig. 6. In any case, these
profiles are very different from the linear approximation. The
temperature gradient along the stack plates, i.e., ultimately, the
gradient available to drive the thermoacoustic instability, is sig-
nificantly smaller in models that account for a non-zero space
between heat-exchangers and stack.

These steady conduction fields mostly depend upon the heat
exchanger geometry and the relative thermal conductivities of
the solid(s) and the fluid. (That these conductivities depend upon
temperature has not been taken into account.)

Amplification
Several simulations of the initial amplification phase have

been performed, corresponding to three mean pressure condi-
tions, a given temperature difference imposed between heat ex-
changers, and in some cases, different values of the impedance
(load).

For mean pressure, and temperature difference, the choice
was based upon the reference experiment [8]. In some cases, the
impedance (f ) was chosen so that the amplification was clearly
visible. Relating this value of the load impedance to the experi-
ment is complex; this is currently under study.
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FIGURE 7. p̃re f = 150kPa, time history of acoustic pressure for the
three heat-exchanger models. Top: entire run; Middle: detail at begin-
ning of run; Bottom: entire run, log-lin scale

Effect of the heat exchanger model. A comparison
of the three exchanger models is shown in Fig. 7 (time history of
the acoustic pressure) and Fig. 8 (time history of the axial veloc-
ity at the right side of the heat exchanger section). This compari-
son was performed for the case∆T = 450K, p̃re f = 1.5×105Pa,
with a load kept at a constant valuef = 100. The results obtained
for the two models with solid plates and either temperature or
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FIGURE 8. p̃re f = 150kPa, time history of axial velocity at right of
the heat exchanger section, for three heat-exchanger models

heat flux prescribed, are superimposed on the figures. The re-
sults obtained for the ”ideal” heat exchanger model are slightly
different, especially for pressure and initially, which starts by de-
viating slightly from zero, Fig. 7 (middle). Later in the amplifica-
tion process, this deviation disappears, and the acoustic pressure
term p(1) returns to an oscillation around 0. If plotted on a log-
lin scale, the linear part of the curves are almost parallel, showing
that the growth rates are very close.

At higher pressure ˜pre f = 4.4× 105Pa, but otherwise the
same values as above,∆T = 450K and loadf = 100, a compari-
son between the three exchanger models is shown in Fig. 9 (time
history of acoustic pressure). The reference fluid density is now
three times the previous one. In this case, the two models with
solid plates and either temperature or heat flux prescribed still
give almost identical results, but the ideal heat exchanger model
now shows amplification occurring later than the other two mod-
els. However, the growth rates, as seen in Fig. 9 (bottom) on the
log-lin plot, are very similar.

This is a little surprising since ideal exchangers should in-
tuitively drive larger amplification. However, the driving term
at each time step comes from integrating the heat flux over the

6 Copyright c© 2010 by ASME



-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  50  100  150  200  250  300  350  400  450  500

p(1
)

t

given flux
given T

ideal

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  50  100  150  200  250  300  350  400  450  500

p(1
)

t

given flux
given T

ideal

FIGURE 9. p̃re f = 440kPa, time history of acoustic pressure for the
three heat-exchanger models, starting from heat conduction temperature
field, f = 100

entire heat exchanger section, and in the case of the ideal heat
exchanger, only the plates contribute to the heat flux. The model
used here may not be the adequate model for ideal exchange.

Unstable Mode Selection. Results shown in
Fig. 10, 11 and 12 correspond to simulations at three dif-
ferent mean pressures, ˜pre f = 4.4× 105Pa, 2.4× 105Pa and
1.5× 105Pa. The heat exchanger conditions were set so that
the temperature difference between the hot and the cold heat
exchanger was 450K in all cases. Initial temperature fields cor-
responded to the steady heat conduction temperature distribution
described in the previous section. The value of the loadf was
chosen such that the initial amplification is clearly visible, and
thus a different value was chosen in each case. For higher mean
pressure, ˜pre f = 4.4×105Pa, Fig. 10, the most unstable mode is
very close to the fundamental in a tube at ambient (cold) temper-
ature, with period of oscillations close to 2 in the current scaling.
For the lower value of the mean pressure, ˜pre f = 1.5× 105Pa,
Fig. 11, the most unstable mode is close to the first harmonic,
with period of oscillations close to 1. For the intermediate value
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FIGURE 10. p̃re f = 440kPa, time history of acoustic pressure (detail
on right figure)
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FIGURE 12. p̃re f = 240kPa, time history of acoustic pressure (detail
on right figure))

of the mean pressure, ˜pre f = 2.4× 105Pa, Fig. 11, both the
fundamental and the first harmonic are unstable. These results
are in agreement with marginal curves obtained by [8]. These
curves show the instability of the fundamental and harmonic
modes as a function of∆T and p̃re f , indicating the presence
of 3 zones. For high mean pressure, only the fundamental is
unstable, for low mean pressure, the first harmonic is the most
unstable, and for a narrow range of intermediate mean pressure,
both fundamental and harmonic modes are unstable. Current
results are consistent.

CONCLUSION
Direct simulation of a complete thermoacoustic engine was

performed. Based upon a multiple scale analysis, the global com-
pressible flow problem is reduced to a dynamically incompress-
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ible problem in the heat exchangers, with boundary conditions
derived from linear acoustics in the resonator.

Three models of heat exchangers were implemented, yield-
ing similar results. The model was used to study several fea-
tures of the engine, including the influence of the mean pressure.
Results show that the approach will yield valuable information
on the operation of the engine, which remains otherwise rather
opaque. While the current approach still requires relatively large
simulations, as the current results show, it is possible to use the
model in a parametric study, which will help understanding trade
offs.
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