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ABSTRACT
A novel methodology is presented for the numerical treat-

ment of multi-dimensional pdf (probability density function)
models used to study particle transport in turbulent bound-
ary layers. A system of coupled Fokker-Planck type equations
is constructed to describe the transport of phase-space condi-
tioned moments of particle and fluid velocities, both streamwise
and wall-normal. Unlike conventional moment-based transport
equations this system allows for an exact treatment of particle
deposition at the flow boundary. Moreover, the equations in the
system are linear and can be solved in a sequential fashion; there
is no closure problem to address.

A Hermite-Discontinuous Galerkin scheme is employed to
treat the system. The choice of Hermite basis functions in combi-
nation with an iterative rescaling approach, allows for efficient
discretization of the, effectively, 5-dimensional phase-space do-
main. Results demonstrate the effectiveness of the methodology
in resolving distributions near an absorbing boundary.

INTRODUCTION
The formulation of probability density function (pdf) mod-

els to describe the transport of dispersed particles in turbulent
flow is well established, and such models have provided valuable
insights in the study of this type of multiphase flow. In this con-
text a pdf model refers to a differential equation for an ensemble-
average pdf that defines the joint distribution of various particle
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variables. Two distinct but closely related types of pdf mod-
els have been developed in recent years; these can be classi-
fied as particle-pdf equations and particle-fluid-pdf equations.
The modern development of particle-pdf equations is largely at-
tributable to the work of Reeks [1], extending the earlier work
of Buyevich [2]. In its basic form this approach considers the
joint distribution of particle position xp(t) and velocity vp(t)
and constructs an equation for the corresponding pdf p(x,v, t).

The development of particle-fluid-pdf equations, sometimes
referred to as generalized Langevin models, is due primarily to
the work of Simonin and Minier [3], and builds on Lagrangian
models for turbulence. In the particle-fluid approach the local
fluid velocity up(t) experienced by a particle is treated as an ad-
ditional variable, and the particle-fluid-pdf equation determines
the corresponding pdf φ(x,v,u, t).

While there is a significant body of work concerned with
the formulation of both particle- and particle-fluid-pdf equations
there are, in contrast, very few studies concerned with the direct
numerical treatment of these pdf models. The most evident rea-
son for this is the high dimensionality of the phase-space that
requires discretization. Consequently, in the application of pdf
models it has become common practice to reduce these to sys-
tems of mass, momentum and stress type transport equations in-
volving moments of the phase-space variables. However, this
reduction comes at a price; the resulting systems are nonlinear,
and require closure. Further, in general it is not possible to trans-
late particle-surface interactions into exact boundary conditions
for the moments. All this is in marked contrast to the pdf models,
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which are essentially linear and closed, and which can accommo-
date complex particle-surface interactions in a natural and exact
way. Therefore, notwithstanding the challenge imposed by high
phase-space dimensionality, there is a need for efficient numeri-
cal methods that can treat pdf models applied to regimes where
particle-surface interactions are critical, and where moment clo-
sure modelling is difficult. The most obvious of such regimes are
turbulent boundary layers.

Previous work on the numerical treatment of pdf models in
turbulent boundary layers has, to the authors’ knowledge, fo-
cused exclusively on particle pdf equations [4, 5].

The application of the particle-fluid pdf model to turbulent
boundary layers is outlined in the next section. Next, an im-
portant innovation is introduced that permits a reduction of the
phase-space dimensionality of the pdf model. This results is
a system of Fokker-Planck type pdf equations which preserve,
despite the reduced dimensionality, essential information about
both stream-wise and wall-normal features of the underlying pdf.
The numerical treatment of this system of Fokker-Planck equa-
tions is considered in the subsequent section where a Hermite-
Discontinuous Galerkin (H-DG) numerical approach is devel-
oped.

PARTICLE-FLUID PDF MODEL FOR TURBULENT
BOUNDARY LAYERS

As noted already, pdf models are particularly well suited to
the study of particle transport in boundary layer flows since these
models allow non-trivial particle-surface interactions to be accu-
rately formulated as pdf equation boundary conditions. Particle
deposition (adhesion) at a flow boundary is not only a commonly
occurring and important case but also, from a numerical perspec-
tive, one of the most challenging since it can result in the pres-
ence of large gradients within particle velocity distributions. It is
this type of particle-surface interaction that is considered here.

Attention is restricted to simple versions of the particle-fluid
pdf model. In particular, only those forms relevant to dilute sys-
tems are considered. Consequently no consideration is given to
turbulence attenuation (two-way coupling) or particle-particle in-
teractions. Further, only models relating to mono-disperse sys-
tems are considered and, allied to this, it is assumed that the tra-
jectory xp(t) of an individual particle can be described by a sim-
ple equation of motion (Stokes drag)

ẍp = v̇p = β
(
U(xp, t)− vp

)
+ g, (1)

where β = 6πµa/m represents the particle relaxation rate with
µ the fluid viscosity, a the particle radius, and m the particle
mass. U(x, t) denotes the underlying fluid velocity field. Al-
though simple, equation Eqn. (1) does represent an important and
commonly used model for particle motion in gas-solid flows, and
so the corresponding pdf models are of considerable utility.

The formulation of particle-fluid pdf equations proceeds by
modelling the normalized fluctuating fluid velocity along par-
ticle trajectories. Decompose the fluid velocity U into mean
and fluctuating components, U = 〈U〉+ U ′, and then write
u(x, t) = Q(x) ·U ′(x, t) where Q = diag(σ−1

1 , σ−1
2 ) repre-

sents the velocity normalization matrix, where the characteris-
tic velocity scalings σi = σi(x) are defined in terms of the tur-
bulent fluid stresses, σ2

i = 〈U ′
iU

′
i〉. The normalised fluctuating

fluid velocity along a particle trajectory, up(t) = u(xp, t), is
then modelled via a stochastic differential equation of the form,
see e.g. [6],

u̇p = G(xp,up) + Γ, (2)

where Γ is zero-mean Gaussian stochastic field, having second-
order moments

〈Γ(x, t)Γ(x, t′)〉 = δ(t− t′)Σ(x). (3)

The rate matrix α is of the form α(x) = diag(τ−1
1 , τ−1

2 ), with
the τi(x) representing decorrelation time scales for the compo-
nents of up. Following [7], Σ(xp) is specified by

Σ = α · 〈uu〉+ 〈uu〉 ·α>. (4)

The term G consists of a response term and a correction term to
prevent spurious drift, see [8]. Also following [7] it is given by

G(x,u) = −α(x)·u +∇ · 〈U ′u〉. (5)

Then the pdf Φ(x,v, u, t), defining the joint distribution of
xp, vp,up as determined by Eqn. (1), Eqn. (2), takes the form
of a Fokker-Planck equation [9]

∂

∂t
Φ +

∂

∂x
·Φv +

∂

∂v
·FΦ +

∂

∂u
·GΦ = D :

∂2

∂u2
Φ, (6)

where F = β
(〈U〉+ Q−1 ·u− v + vg

)
and D = 1

2Σ. The
gravitational settling velocity is represented by vg = g/β.

The general flow configuration is depicted in Fig. 1. At-
tention is restricted to stationary and x1 invariant solutions
to Eqn. (6). The flow is considered to be statistically sta-
tionary, with the streamwise directed mean fluid flow velocity
〈U〉 = (〈U1〉, 0), the fluid Reynolds stresses 〈U ′U ′〉, and inte-
gral time scales for the fluid τi all treated as only x2 dependent.
The boundary layer profiles of these flow statistics, which are
inputs into the model given by Eqn. (6), have been constructed
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FIGURE 1. BOUNDARY LAYER CONFIGURATION.

from fits to the DNS data of [10]. The fluid time scales are taken
from [11].

Particles in this boundary layer flow that strike the surface at
x2 = X0 stick and, consequently, there is no reflux of particles
from this surface. This translates into the following boundary
condition for Eqn. (6) at X0,

Φ = 0, for v2 > 0, all v1, u1, u2. (7)

The location of X0 is interpreted as the point that is one particle
radius away from the wall (at x2 = 0). In wall units this particle

radius is given by X0 =
√

9
2β−1ρf/ρp, where ρf , ρp represent

the material densities of, respectively, the fluid and the particles.
It is also necessary to attach a boundary condition to Eqn. (6)

at x2 = X , which represents some prescribed interface between
the turbulent core and the near wall region in which the pdf model
is applied. With the bulk flow treated as a source for the particles
entering the domain X0 < x2 < X the interface condition at
x2 = X will be of the form

Φ = ΦX(v,u), for v2 < 0, all v1, u1, u2 , (8)

where ΦX represents the joint particle-fluid velocity distribu-
tion that is characteristic of the bulk flow. Appropriate models
for this distribution can be derived by assuming it to be both
temporally and spatially invariant. Then, from the correspond-
ing form of Eqn. (6), the Gaussian distribution is obtained for
ΦX(v, u). This Gaussian is expressed in terms of the phase-
space variable z = (v,u), and is centered on the associated
mean ẑ = (〈U〉(X) + vg,0). Expressions for the elements of
the covariance matrix Θ, which describes correlations in the fluc-
tuating particle and fluid velocities in the bulk flow are presented
in block form as

Θ11 =
[

η1σ
2
1 ησ1σ2r

ησ1σ2r η2σ
2
2

]

X

, Θ22 =
[

1 r
r 1

]

X

, (9)

Θ12 = Θ>
21 =

[
η1σ1 η2σ1r
η1σ2r η2σ2

]

X

(10)

where ηi = (1 + Si)−1, η = 1
2 (η1 + η2), with Si = (βτi)−1

the particle Stokes number associated with the fluid time scale
τi, and r = 〈U ′

1U
′
2〉/σ1σ2 is the fluid correlation coefficient.

TREATMENT OF THE STREAMWISE VELOCITY DI-
MENSIONS

The domain of Φ, however, is still a five-dimensional phase-
space and, from a computational perspective, this poses a serious
limitation on the numerical resolution that can be realised from
a discretization of this form of the model. Previous work has
considered a further reduction of phase-space dimensions by re-
stricting attention to the wall normal velocity variables, v2 and
u2: By integrating equation (6) over v1 and u1 a model is ob-
tained for the marginal pdf φ =

∫∫
Φdv1du1. However, while

this approach provides a reduced model that still allows for ex-
act modelling of particle absorption, it is clear that the level of
information obtainable from the model is limited. In particular
it provides no information about the streamwise features of the
original pdf Φ. To overcome this an extension of the approach is
proposed which includes, in addition to the marginal pdf φ, the
following marginal moments of Φ

Υn,m(x2, v2, u2) =
∫∫

vn
1 um

1 Φ(x2, v, u)dv1du1 . (11)

Note that Υ0,0 = φ(x2, v2, u2). The higher-order moments,
(n,m) 6= (0, 0), provide information about streamwise particle-
fluid velocity moments. Specifically

Υn,m(x2, v2, u2) = φvn
1 um

1 (12)

where · denotes a phase-space conditioned average:

f(x,v,u)(x2, v2, u2) = 〈f(xp(t), vp(t),up(t))〉s . (13)

The subensemble 〈·〉s is over those phase-space trajectories
(xp,vp, up) for which x2(t) = x2, v2(t) = v2, and u2(t) = u2.
The more familiar spatially conditioned averages, giving the
mean-field values of the particle-fluid variables, are related to
the phase-space conditioned averages Υn,m by

vn1
1 um1

1 vn2
2 um2

2 (x2) =
1
ρ

∫∫
vn2
2 um2

2 Υn1,m1dv2du2 , (14)

where ρ(x2) =
∫∫

φdv2u2 denotes the particle number density.
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Transport equations for the Υn,m follow easily from (6) and
have the general form,

∂

∂x2
v2Υn,m +

∂

∂v2
F2Υn,m +

∂

∂u2
G2Υn,m =

D22
∂2

∂u2
2
Υn,m + Sn,m. (15)

Equation (15) is a Fokker-Planck equation for Υn,m with an ad-
ditional source term Sn,m. This has the form

Sn,m = n(β〈U〉+ g1)Υn−1,m + nβσ1Υn−1,m+1

+ m(m− 1)D11Υn,m−2 + m
d〈U ′

2u1〉
dx

Υn,m−1

− 2mD12
∂

∂u
Υn,m−1 − (nβ + mα1)Υn,m . (16)

Several crucial points are of note with regard to the system of
equations given by Eqn. (15) and Eqn. (16). Firstly, exact bound-
ary conditions for all of the Υn,m can be constructed. This
follows immediately from the definition of the Υn,m and the
fact that Φ is specified (for v2 ≷ 0) at the domain boundaries.
Secondly, Eqn. (15) is linear in Υn,m and, while these equa-
tions are coupled, the form of the Snm allows these equations
to be solved sequentially; each equation in the sequence de-
pending only, through Snm, on the previously computed solu-
tions. Specifically, the system can be solved explicitly in the
order Υ0,m, m = 0, . . . , M ; Υ1,m, m = 0, . . . ,M − 1; Υ2,m,
m = 0, . . . , M − 2 etc.

NUMERICAL METHOD
The conservative and linear convection-diffusion equations

defined by Eqn. (15) exhibit specific features that complicate the
construction of a numerical scheme. For example the coefficients
v2,F2,G2 vary over the range 〈−∞,∞〉 so that convection or
diffusion dominates in different parts of the domain. Secondly,
diffusion is only present in the fluid velocity dimension. Further-
more, solutions to Eqn. (15) typically vary from smooth near-
Gaussian distributions to highly peaked profiles near the wall
where the turbulence is small, in particular with respect to the
dimensions corresponding to the normal components of particle
velocity and position. It is these characteristics that motivate the
use of (nodal) Discontinuous Galerkin methods [12] being flexi-
ble and able to handle convection dominated systems to represent
the solution in (x2, v2)-space. With respect to the fluid veloc-
ity dimension the solution is often strongly localised near a sur-
face in phase space, in particular when the particle response time
τp = β−1 6À 1. For spatially invariant systems, for example, this
surface is given by the plane u2 = (v2 − vg2)/σ2. Therefore, the

fluid velocity dimension is mapped such that Υ̃n,m is localised
around ũ2 = 0, and has unit variance,

ũ2 =
u2 − u0(x2, v2)

σu(x2, v2)
. (17)

It is anticipated that Υ̃n,m remains near-Gaussian in the scaled
fluid velocity dimension ũ2, also close to the wall. Therefore, a
Hermite spectral method is used, see [4]. This results in a system
of Nu coupled linear convection equations.

The computational domain is further defined in terms of the
scaled coordinates

(x̃2, ṽ2) =
(

2x2 − (X + X0)
X −X0

,
v2

σp2

)
, (18)

to map (x2, v2)-space to a standard rectangle. σp2 = σ2
√

η2 rep-
resents the approximate particle velocity RMS at x2 = X as
in Eqn. (9). This domain is divided in an unstructured trian-
gular mesh of M elements, generated using the freely available
DistMesh software, [13]. The also freely available Matlab im-
plementation of the two-dimensional nodal DG method, [12], is,
in adapted form, used to construct linear algebraic equations for
ˆ̃Υ

n,m

of the form

(A0 + An,m)· ˆ̃Υ
n,m

= bn,m
bc + ˆ̃S

n,m

, (19)

in which, for efficiency reasons, the global matrix is decomposed
in a (n,m)-specific diagonal matrix Am,n and in matrix A0, that
is independent of n,m and, hence, has to be constructed only

once. The conditioned moments, ˆ̃Υ
n,m

, are now calculated se-

quentially for all n,m of interest, starting with ˆ̃Υ
0,0

. The matrix
is for the configurations considered here sufficiently sparse and
banded to allow direct matrix inversion.

What remains is the specification of the coefficients
u0(x2, v2) and σu(x2, v2) in Eqn. (17). Ideally they would be
defined as the conditional mean and RMS of Υ0,0, with respect
to dimension u2 and for given v2, so

u0 =
1
p

∫
u2Υ0,0du2, σ2

u =
1
p

∫
(u2 − u0)2Υ0,0du2,

p =
∫

Υ0,0du2. (20)

If the configuration is relatively simple, e.g. when the turbulence
is taken homogeneous throughout the full domain, or when the
particles are heavy, τp = β−1 À 1, then the specific relation for
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the coefficients may be based on the spatially invariant distribu-
tion φ(v2, u2). In this case the coefficients (20) are given by

u0 =
v2 − vg2

σ2
, σu =

√
τp

τp + τ2
. (21)

For more complicated systems the scaling coefficients are calcu-
lated iteratively. In each iteration the system is slightly changed
by increasing the ’degree of turbulence inhomogeneity’, repre-
sented by fluid weight 0 < wf < 1. That is the adopted fluid

statistics, 〈Ũ ′U ′〉, τ̃f , are defined as the weighted mean of the
original fluid statistics and their value at x2 = X ,

〈Ũ ′U ′〉|x2 = wf 〈U ′U ′〉|x2 + (1− wf )〈U ′U ′〉|X , (22)
τ̃f (x2) = wfτf (x2) + (1− wf )τf (X). (23)

For example, zero fluid weight implies homogeneous turbulence
in the entire domain, whereas wf = 1 means the real fluid statis-
tics. The scaling parameters for the next iteration are redefined

based on the current solution ˆ̃Υ
0,0

, starting with wf = 0.
In practise, however, calculating the scaling coefficients

u0(x2, v2), σu(x2, v2) as in (20) is in parts of the domain
too strongly affected by numerical noise, for example when
Υ0,0 → 0, or by small overshoots near under-resolved gradients
in the solution. Therefore a least-squares approach is employed:
u0, σu2 are approximated by continuous piecewise polynomial
basis that is linear in each element. To find the associated coef-
ficients we define for all MNxv nodes i in the (x̃2, ṽ2)-plane the
integrals

p̂i =
∫

Υ0,0
i du2, p̂ui =

∫
u2Υ

0,0
i du2,

p̂uui =
∫

u2
2Υ

0,0
i du2, (24)

and discard all three if, for given i, p̂i is smaller than a certain
threshold, p̂i < pc (typically pc = 10−2). In addition, it is re-
quired that the ratio of the N th

u and the 1st coefficient of the
Hermite functions at node i be smaller than 1/N2

u . The dis-
carded values p̂i, p̂ui, p̂uui are replaced by, respectively, pc,
pcũ0, pc(σ̃2

u + ũ2
0), with ũ0, σ̃u approximations in the previous

iteration. Let Lij be the jth basis function evaluated at node i.
Then the associated coefficients cu,j , cσ,j are specified by the
least squares solutions to, respectively,

∑

j

p̂iLijcu,j = p̂ui, (25)
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FIGURE 2. PDF FOR: τp = 300 (TOP), τp = 10 (BOTTOM).

and

∑

j

p̂2
i Lijcσ,j = p̂i

(
p̂uui − p̂u

2
i

)
. (26)

Estimates of the scaling coefficients at node i are then given by

u0,i =
∑

j

Lijcu,j , σ2
u,i = max


∑

j

Lijcσ,j , 10−3


 . (27)

RESULTS
We consider the boundary configuration as sketched in

Fig. 1. The value for the boundary layer thickness, in wall units,
is set to X = 100. Following [11], [14] we take ρp/ρf = 770.
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FIGURE 3. PARTICLE CONCENTRATION IN THE BOUNDARY
LAYER FOR DIFFERENT τp.

The calculations have been carried out using fourth order ele-
ments and 8 Hermite functions. The solution Υ0,0 is calculated
in 10 iterations in which the fluid weight, see Eqn. (22), is in-
creased from wf = 0 to wf = 0.999. The reason for limiting the
fluid weight (not setting wf = 1) is to moderate the sharp peak
near the wall slightly, see Fig. 2. Then less elements are required
to represent the solution such that direct matrix inversion is still
feasible without compromising the characteristics of the solution
too much. The numerical method has been assessed by grid re-
fining, and by comparing the moments of various solutions to
the associated random walk simulation. The results were close
to identical, as they should be. Probably the best test for the nu-
merics is to verify whether the particle current, ρv2, is constant
throughout the boundary layer. The maximum deviation from
the spatially averaged current was observed for τp = 10 and was
less than 1% of the mean current. It is noted that all variables are
expressed in wall units.

Figure 2 presents the equilibrium particle pdfs correspond-
ing to two different values of τp. Since the range of the pdf is too
large for clear visualisation the quantity log(p + 1) is presented
instead of p itself. The figure shows that particles enter the do-
main at x2 = 100 for v2 < 0, and subsequently move towards
the wall via, mainly, a diffusive mechanism. Closer to the wall,
at about x2 = 20, the fluid RMS decreases rapidly.

The effect is that the particles cannot follow the close-to-
equilibrium state and start moving in free flight. Most of the
heavy particles (τp = 300, see Fig. 2 (top)) have enough mo-
mentum to reach the wall, even the ones that have a relatively
low speed. Only very slow particles get trapped near the wall,
and slowly drift towards absorption at x2 = X0. This results in
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FIGURE 4. NORMALISED VELOCITY DISTRIBUTION AT THE
WALL (x2 = X0) FOR DIFFERENT τp.
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FIGURE 5. STREAMWISE PARTICLE VELOCITY IN THE
BOUNDARY LAYER FOR DIFFERENT τp.

a small build-up of particles near the wall at low velocity. For
lighter particles (τp = 10, see Fig. 2 (bottom)) only the fast par-
ticles reach the wall in free flight while most will be trapped.
This results in a strong build-up which is also clearly visible in
Fig. 3, where the particle concentration in the boundary layer
is shown. In the figure the small build-up of heavy particles is
not visible because their weight is too low to contribute signif-
icantly to the averages. The normalised particle velocity distri-
bution at x2 = X0, presented in Fig. 4, illustrates this process
as well. That the concentration peaks just off the wall is quali-
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tatively in agreement with DNS data, [15], although in the paper
this effect occurs at much smaller τp. Also, [15] report a concen-
tration build-up that is larger than that in Fig. 3 for small parti-
cles; values of τp > 25 have not been considered in the paper.
It is expected that agreement is better when the fluid weight is
wf = 1.

The streamwise particle velocity v1 in the boundary layer is
visualised in Fig. 5. Small particles follow the mean fluid veloc-
ity, 〈U1〉, well. Since their normal velocity v2 is very low near the
wall there is enough time to accommodate to the fluid velocity.
Heavy particles, in contrast, cross the near wall region quickly
and maintain their streamwise momentum, see also Fig. 6. It can
also be observed in Fig. 6 that the model predicts a strong in-
crease of the streamwise velocity RMS at x2 = X0 compared to
σp1. The same effect can be viewed in Fig. 7 (top). It is noted that
the normal component of the particle velocity RMS, Fig. 7 (mid-
dle), is smaller than one at x2 = X , in particular for large τp.
This due to the boundary condition at x2 = X . For small parti-
cles the influence of the wall on the pdf is small at x2 = X , since
their mean free path is much smaller than X = 100. This is not
true for large particles. Therefore the imposed velocity distribu-
tion at x2 = X , Eqn. (8), is unlikely to be fully consistent with
the distribution that one would expect when the domain had not
been truncated but coupled to the core of the flow for x2 > X .
Consequently σp2 overestimates the normal component of the
particle velocity RMS.

DISCUSSION
A Hermite-Discontinuous Galerkin scheme is has been pre-

sented to treat a system of coupled fluid-particle pdf equations
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to describe the transport of phase-space conditioned moments of
particle and fluid velocities, both streamwise and wall-normal.
The choice of Hermite basis functions and an iterative rescal-
ing approach, allow for efficient discretization of the, effectively,
5-dimensional phase-space domain. Examples have shown the
effectiveness of both the numerical scheme and the phase-space
transport equations. The method provides a computationally ef-
ficient way to study particle transport in boundary layers. The
method produces smooth solutions compared to the associated
random walk simulation. This facilitates numerical differentia-
tion of the pdf, a useful property for constructing closure rela-
tions for transport equations for mass, momentum, and kinetic
stress.

Future development of the methodology include different
boundary conditions, such as partially absorbing walls, and
rough walls, and effects of gravity.
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