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ABSTRACT 
Thermal energy storage (TES) systems are commonly 

employed for enhancing the efficiency of commercial and 
residential heating and cooling systems, by matching thermal 
energy supply and demand during summer-winter, day-night, 
and peak-off-peak periods. TES in these systems is usually 
achieved by changing the temperature of materials (sensible 
systems) and/or inducing solid-liquid phase change (latent heat 
systems). Such systems are also categorized as seasonal (long-
term) and diurnal (short-term). In this work, the focus is on 
sensible diurnal TES systems consisting of rock beds, with air 
as the working fluid. They are relatively simple, easy to 
construct, inexpensive, and quite effective for many solar 
energy and building engineering applications. Numerous 
publications on rock-bed TES systems are available, but there 
is an urgent need for efficient computational methods for 
designing and optimizing them. The contributions of this work 
are the following: proposal of cost-effective mathematical 
models of fluid flow and heat transfer in rock beds; adaptation 
of a finite volume method (FVM) for the solution of this 
model; applications of this FVM to two test problems (with 
analytical solutions) and one demonstration problem; proposal 
of suitable thermofluid performance evaluation criteria for the 
rock-bed TES systems of interest; and presentation and 
discussions of the results. 

 
INTRODUCTION 

Examples of thermal energy storage (TES) systems date 
back to ancient civilizations and include the following: caves 
for living and storage of foods; use of winter ice for summer 
cooling and preservation of foods; adobe and other thick-
walled huts; and igloos. Over the last 60 years, TES units have 
been employed extensively for enhancing the efficiency of 
commercial and residential heating and cooling systems, by 
matching thermal energy supply and demand during summer-

winter, day-night, and peak-off-peak periods. TES devices have 
also been used for passive thermal control of electronics 
systems, spacecrafts in earth orbits, and transportation systems. 

In the aforementioned systems, TES is usually achieved 
by changing the temperature of materials (sensible systems) 
and/or by inducing solid-liquid phase change (latent heat 
systems). Commonly used media and systems for sensible TES 
include the following [Paksoy (2007)]: water contained in 
suitable tanks; bricks, stone, concrete, and metals particles in 
appropriate containers; Trombe walls; artificial rock beds in 
above-ground or underground containers; solar ponds; 
underground aquifers;  and underground boreholes. In solid-
liquid phase-change TES systems, ice-water, paraffins, and 
salts are commonly used [Zalba et al. (2003); Paksoy (2007); 
Mehling and Cabeza (2008)]. TES systems are also categorized 
as seasonal (or long-term) and diurnal (or short-term): the 
thermal energy charging (storage) and discharging (harvesting) 
periods in seasonal and diurnal TES systems are typically of the 
order of half-year and half-day, respectively. Detailed 
discussions and reviews of the aforementioned TES systems 
are available in the works of Dincer and Rosen (2002), and 
Paksoy (2007). 

In this work, the focus is on sensible diurnal TES systems 
consisting of rock beds, with air as the working fluid. Such 
systems are relatively simple, easy to construct, inexpensive, 
and quite effective for many solar energy and building 
engineering applications. In particular, attention here is devoted 
to mathematical models and computer simulations of air flows 
and unsteady forced convection heat transfer in the 
aforementioned TES systems. The commonly used media in 
rock-bed TES units are granite, limestone, marble, and 
sandstone, typically in the form of essentially uniform-sized 
pebbles of almost spherical shape. The development and 
implementation of cost-effective computational tools for the 
design of such TES units would have significant socio-
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economic and environmental benefits. These potential benefits 
constitute the main motivation for the work described in this 
paper. 

In the published literature, there are numerous 
publications on rock-bed TES systems: comprehensive reviews 
are available in Dincer and Rosen (2002), and Paksoy (2007). 
However, there is an urgent need for efficient computational 
methods for designing and optimizing these TES systems, and 
the goal here is to fulfill at least a part of this need. The specific 
contributions of this work are the following: proposal of cost-
effective mathematical models of fluid flow and heat transfer in 
rock beds, based mainly on the works of Darcy (1856), 
Brinkman (1947), Scheidegger (1974), Wakao and Kaguei 
(1982), Dullien (1992), Kaviany (1995), Whitaker (1996, 
1999), Nield and Bejan (1999), and Alzami and Vafai (2000); 
adaptation of a finite volume method (FVM) [Patankar (1980); 
Baliga and Atabaki (2007)] for the solution of these models; 
testing of this FVM using analytical solutions based on the 
works of Schuman (1929), Riaz (1977), and Haji-Sheikh 
(2006); applications of this FVM to a demonstration problem; 
proposal of suitable thermofluid performance evaluation 
criteria for the rock-bed TES systems of interest, borrowing 
some ideas from Rosen (1992), and Dincer and Rosen (2002); 
and presentation and discussions of the results. 
 
NOMENCLATURE 

, , ,
, ,

C E W

N S

a a a
a a b

 coefficients in the discretized equations (FVM) 

sfa   specific surface area [m – 1] 

fC   Frochheimer coefficient 

pc  specific heat at constant pressure [J/(kg.K)]  

COP coefficient of performance 
pd  mean effective particle diameter [m] 

E thermal energy [J] 
g acceleration due to gravity [m/s2] 
h convection heat transfer coefficient [W/(m2.K)] 
H half-height of rock bed [m] 
k thermal conductivity [W/(m.K)] 
K permeability [m2] 
L length of rock bed [m] 
m  fluid mass flow rate [kg/s] 
Nu Nusselt number 
p intrinsic-phase-average static pressure [N/m2]  
P  intrinsic-phase-average reduced pressure [N/m2] 
Pr Prandtl number 
Re Reynolds number 
S  volumetric (per unit volume) source term 
T  intrinsic-phase-average temperature [oC] 
V volume of the rock bed [m3] 

, ,v u v  Darcy (or superficial) velocity vector and its x- 
and y-direction components [m/s] 

W depth of the rock bed [m] 

x, y,  z Cartesian coordinates [m] 

Greek symbols 
α  thermal diffusivity [m2/s] 
ε  porosity 
φ  general specific (per unit mass) scalar dependent 

variable 
φΓ  diffusion coefficient associated with φ  

η  efficiency coefficient 
μ  dynamic viscosity [kg/(m.s)] 
ν  kinematic viscosity [m2/s] 
ρ  mass density [kg/m3] 

Subscripts 
ch charging mode 
disch discharging mode 
eff effective 
f fluid phase 
in inlet plane of the rock bed 
ini initial conditions 
s solid phase 
sf solid-fluid interface 

Superscripts 
o old or previous value in time 
P intrinsic-phase-average reduced pressure 

fT  intrinsic-phase-average temperature of fluid phase 

sT  intrinsic-phase-average temperature of solid phase 
u x-direction Darcy velocity component 
v y-direction Darcy velocity component 
 
MATHEMATICAL MODELS 

Cost-effective mathematical models of fluid flow and heat 
transfer in the rock-bed TES systems considered in this work 
are presented in this section. 

Problem Statement, Assumptions, and Volume-
Average Approach: A rock-bed TES system akin to those of 
interest in this work is schematically presented in Figure 1, 
along with an expanded view of a representative elementary 
volume (r.e.v.) within this bed, and related notation. The main 
TES component of this system consists of a close-packed bed 
of rocks, which are assumed to be essential spherical in shape 
and uniform in size. Hot or cold air is forced at a constant mass 
flow rate, , through this bed during the thermal energy 
storage (charging) or harvesting (discharging) operations, 
respectively. The rock bed is contained between two parallel, 
solid, impermeable plates. The length of the rock bed in the 
main air flow direction is L; the perpendicular distance between 
the inner surfaces of the parallel plates is 2H; and the width, W, 
of the rock bed in the direction perpendicular to the plane 
shown in Figure 1 is large compared to both L and 2H. 

m
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Figure 1: Schematic representation of a rock-bed TES system, a 
representative elementary volume, and related notation.  
 

Attention in this work is limited to problems for which 
the following assumptions apply: the rock bed is a 
homogeneous and isotropic porous medium, with constant 
porosity and permeability; the rock bed is fully saturated with 
air, which behaves as a Newtonian fluid; the thermophysical 
properties of the fluid ( fρ , fμ , , and fk ,p fc ) and the rocks 
( sρ , sk , and ) remain essentially constant, at suitable 
average values; and laminar fluid flow and forced convection 
heat transfer inside the rock bed. 

,p sc

One approach to the modeling of the rock-bed TES 
systems considered here is called the complete local or 
microscopic scale description, in which the Newtonian fluid 
flow in the pores of the porous medium, and the heat transfer in 
the fluid and the solid phases, are modeled using the continuity, 
Navier-Stokes, and energy equations, along with the no-slip, 
impermeability, continuity of temperature, and continuity of 
heat flux boundary conditions at all fluid-solid interfaces 
[Whitaker (1996, 1999); Scheidegger (1974); White (1991); 
Nield and Bejan (1992); Kaviany (1995)]. This approach is 
exact, but with currently available computers, it is far too time-
consuming for the simulation of most problems of practical 
interest. Furthermore, exact geometrical descriptions at this 
scale are also impractical for rock-bed TES systems, due to 
their high local heterogeneity [Dullien (1992)]. 

The commonly used way around the above-mentioned 
difficulty with the complete local description is to use a 
volume-average approach to obtain a practically viable set of 
governing equations. The governing equations of the complete 
local description of the fluid flow and heat transfer in the 
porous medium are formally integrated over a representative 
elementary volume (r. e. v.), akin to that depicted in Figure 1. 
The length scale, , of the r. e. v. is presumed to be much 
larger than the effective particle diameter, , but much 
smaller than the global scale of the domain under 

consideration, or 

d
pd

pd d L<< <<  [Whitaker (1999)]. Two types 
of average values are introduced for any physical variable ψ : 
the phase-average (also referred to as the superficial average) 
value denoted by ψ〈 〉 ; and the intrinsic-phase-average (also 
referred to simply as the intrinsic-average) value denoted by 

fψ〈 〉 . These average values are defined as follows: 
1 1; f

V V
fV V

ψ
f f

dV dVψ ψ ψ∫ ∫〈 〉 〈 〉  (1) 

In Eq. (1), V is the representative elementary volume and Vf 
represents the volume of the fluid phase contained within V. 
These two average values are related through the porosity, ε , 
by the Dupuit-Forchheimer relation [Nield and Bejan (1992)]: 

fψ ε ψ〈 〉 = 〈 〉 . In this paper, for simplicity in the notation and 
convenience in the presentation, the phase-average velocity 
vector is denoted by v , and its components in the Cartesian 
coordinate directions x, y, and z are denoted by u, v, and w, 
respectively; and the intrinsic-phase-average reduced pressure, 

fP , is indicated simply as P, where P = p gyρ+ , with p 
denoting the static pressure and g the acceleration due to 
gravity (directed in the negative y direction). It should be noted 
that in the published literature, the phase-average velocity, v , 
is also referred to as the seepage, filtration, superficial, and 
Darcy velocity [Nield and Bejan (1992)]. 

Continuity Equation: In the context of the above-
mentioned assumptions and notation, the continuity equation 
written in terms of the phase-average velocity vector, v , and 
the mass density of the fluid, fρ , can be cast in the following 
form [Nield and Bejan (1992)]: 

.( ) 0f vρ∇ =  (2) 
Momentum Equations: With regard to the conservation 

of momentum of the air flowing through the rock bed, both 
inertial and viscous effects are considered, and the so-called 
Darcy-Brinkman-Forchheimer equations [Nield and Bejan 
(1992)] are used. Several variants of these equations appear in 
the published literature, as discussed, for example, by Alazmi 
and Vafai (2000). Here, following the pioneering work of Vafai 
and Tien (1981) and the rigorous derivations provided by 
Whitaker (1996, 1999), the following form of these equations 
is employed: 

( ) 2
2

1 1 f
f

f F f

v P v
t

C
v v v

K K

μ
ρ

εε
μ ρ

∂
+ ⋅ = −∇ + ∇

∂

− −

v v
ε
⎡ ⎤∇⎢ ⎥⎣ ⎦  (3) 

In Eq. (3), fρ  is the density of the fluid; P is the intrinsic-

phase-average reduced pressure; fμ  is the dynamic viscosity 

of the fluid; ε  and K are the porosity and the permeability of 
the porous medium, respectively; and CF is a dimensionless 
form-drag coefficient that is often referred to as the 
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Forchheimer coefficient [Whitaker (1996, 1999)]. The 
permeability, K, is independent of the nature of the fluid but it 
depends on the geometry of the porous medium, as discussed, 
for example, in the works of Dullien (1979), Nield and Bejan 
(1992), and Kaviany (1995). The Forchheimer coefficient, CF, 
also depends on the geometry of the porous medium: related 
discussions are available in Nield and Bejan (1992), Kaviany 
(1995) and Alazmi and Vafai (2000). It should be noted that in 
the term , a Brinkman viscosity, 2( / )f vμ ε ∇ Bμ , or an 
effective viscosity, effμ , is sometimes used instead of ( / )fμ ε ; 
however, the theoretical developments of Whitaker (1999) 
show that this is unnecessary. Following the recommendations 
in Nield and Bejan (1992), the permeability, K , and the 
Forchheimer coefficient, FC , in Eq. (3) are related to the 
porosity, ε , and the effective particle diameter, Pd , as follows: 

3
2

2; ;
)

f f
p F

V V
K d

V
ε

ε 3

1.75

150
C

180(1
ε

f sV V ε

⎛ ⎞
⎜ ⎟+ −⎝ ⎠

= = = =  (4) 

The above-mentioned relation for the permeability, K, is often 
referred to as the Carman-Kozeny equation. 

With regard to the use of Eqs. (3) and (4) for thermofluid 
designs of rock-bed TES systems, it is important to note the 
following cost-effective simplification, the validity of which 
was established in this work: preliminary computations based 
on the full forms of Eqs. (3) and (4) indicated that for the flows 
of air in the TES systems of interest, if the inlet and outlet 
boundary conditions on the superficial velocity are maintained 
steady, then a steady-state distribution of  is achieved very 
rapidly after the start of the charging or discharging operations, 
compared to the overall time durations of these operations. 
Thus, the unsteady term, , in Eq. (3) can be 

dropped, and major reductions in the CPU times can be 
achieved in the computer simulations. 

v

t( / ) /vfρ ε ∂ ∂

Energy Equations: Two different volume-average 
approaches to the modeling of convection heat transfer in 
porous media are available in the literature: in one, which leads 
to the single-phase or one-temperature model, the averaging is 
done over a representative elementary volume (r.e.v.) 
containing both the fluid and solid phases, and it is assumed 
that the temperatures of these two phases are essentially in 
equilibrium locally; in the other approach, which results in the 
two-phase or two-temperature model, intrinsic-phase-averaging 
is done for both the fluid and solid phases, resulting in two 
separate energy equations and temperature distributions, one 
for each individual phase. For computer simulations of the 
charging and discharging operations of the rock-bed TES 
systems considered in this work, it is necessary to use the two-
phase or two-temperature model: thus, it is the one that is 
described in this section. However, one major simplification is 
invoked: it is assumed that thermal dispersion effects, caused 
by enhanced mixing of the working fluid in the tortuous flow 
paths and the wakes behind the particles that constitute the 
porous bed, are negligible. This assumption is valid when the 

Reynolds number based on the superficial velocity of the fluid 
flowing through the porous bed and the particle diameter is 
relatively low. If necessary, the thermal dispersion effects could 
be included using the recommendations available in the works 
of Nield and Bejan (1992) and Kaviany (1995). 

In the context of the aforementioned restrictions and 
assumptions, the two-temperature model adopted in this work 
consists of the following two intrinsic-phase-average energy 
equations, one for the solid phase and the other for the fluid 
phase [Nield and Bejan (1992); Kaviany (1995)]: 

Solid-phase energy equation: 

( )( ) ( ) ( ),1 s
P s eff s sf sf f ss

T
c k T h a T

t
ε ρ

∂
− = ∇⋅ ∇ +

∂
T−  (5) 

Fluid-phase energy equation: 

( ) ( )

( ) ( ),

f
P P ff f

f eff f sf sf s f

T
c c v T

t
k T h a T T

ε ρ ρ
∂

+ ⋅∇ =
∂

∇ ⋅ ∇ + −
 (6) 

In these equations, sT  and  are simplified notations for the 

intrinsic-phase-average temperatures, 

fT
s

sT  and 
f

fT , of the 

solid and fluid phases, respectively; ,s effk  and  are the 
effective thermal conductivities of the solid and fluid phases, 
respectively; 

,f effk

sfh  is an average heat transfer coefficient at the 
interface between the solid particles and the fluid; and sfa  is 
the specific solid-fluid interfacial area (that is, the total area of 
the solid-fluid interface per unit volume of the rock bed). 

Following the recommendations of Nield and Bejan 
(1992), and Kaviany (1995), the following expressions are used 
for ,s effk  and : ,f effk

( ), ,1 ;s eff s f eff fk k k kε ε= − =  (7) 

The interfacial convection heat transfer coefficient, , is 
calculated using an empirical correlation proposed by Wakao 
and Kaguei (1982). It is based on the so-called particle-to-fluid 
Nusselt number, 

sfh

sfNu , and is valid for values of the Reynolds 
number based on the particle diameter in the range 15 to 8500. 
This correlation is the following: 

1 3 0.62 1.1Pr Re
p

sf p
sf d

f

h d
Nu

k
= +  (8) 

In this equation,  is the local particle Reynolds number, 
and Pr is the Prandtl number of the fluid: 

Re
pd

,| |
Re ; Pr

p

f p f p
d

f f

v d c
k

ρ μ
μ

= f  (9) 

For close-packed beds of spherical particles, the specific solid-
fluid interfacial surface area, sfa , is given by the following 
equation [Nield and Bejan (1992)]: 
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( )6 1
sf

p

a
d

ε−
=  (10) 

Initial and Boundary Conditions: The initial and 
boundary conditions which are needed to complete the 
mathematical models for the fluid flow and heat transfer in the 
rock-bed TES systems of interest are problem dependent. Thus, 
they will be elaborated later in this paper, with respect to the 
test and demonstration problems considered. 
 
FINITE VOLUME METHOD 

A finite volume method (FVM) was used to solve the 
mathematical models described in the previous section. It is an 
adaptation of a well-established FVM described in the works of 
Patankar (1980), and Baliga and Atabaki (2006). As full details 
of this FVM are available in the aforementioned references, 
only brief overviews of its key steps are presented here. 

Domain Discretization: The Cartesian domains of 
interest are first discretized into contiguous rectangular control 
volumes that fill the domain exactly. Then, the nodes or grid 
points are located at the geometric centers of the control 
volumes, the centers of the control volume faces that coincide 
with the boundaries of the domain, and the corners of 
rectangular domain. The grid points or nodes lie on lines that 
are parallel to the coordinate axes, and these grid lines could be 
non-uniformly spaced. This domain discretization scheme is 
illustrated in Figure 2. All dependent variables are stored at the 
same set of nodes (co-located formulation). The thermophysical 
or effective properties that appear in the governing equations 
are also stored at the same set of nodes. 

 
 
Figure 2: Discretization of a rectangular calculation domain: 
dashed lines indicate control volume faces; solid dots indicate 
nodes or grid points; solid lines denote grid lines; and the 
hashed regions show two control volumes, one in the domain 
interior and the other adjacent to its boundary. 

Discretization of the Governing Equations: In the 
proposed FVM the governing differential equations are first 
integrated over the control volumes shown in Figure 2, and 
algebraic approximations to the integral conservation equations 
are then derived. These algebraic approximations are called the 
discretized equations. In the derivation of these discretized 
equations, the advection and diffusion terms are discretized 
using the hybrid scheme [Patankar (1980)], which is second-
order accurate at low velocities (strictly, at grid Peclet number 
values less than 2) and uniform grids or geometrically 
expanding grids with relatively low expansion factors (as was 
the case in computer simulations of the rock-bed TES systems 
of interest); second-order quadratic interpolation is used at the 
boundaries, and appropriately adjusted to incorporate the 
specified boundary conditions [Baliga and Atabaki (2006)]; the 
reduced pressure is interpolated using piecewise-linear 
functions between the nodes; in the mass flow rate terms, the 
velocity components are interpolated using the so-called 
momentum interpolation scheme [Rhie and Chow (1983)], to 
avoid undesirable checkerboard pressure and velocity 
distributions that would otherwise afflict this equal-order co-
located FVM [Patankar (1980)]; and the nodal values of 
thermophysical properties are interpolated to locations where 
the grid lines intersect the control-volume faces, using a 
resistance analogy (which reduces to the harmonic mean on 
uniform grids), as described in Patankar (1980). The fully-
implicit scheme is used for the discretization in time. 

Solution of the Discretized Equations: A sequential 
iterative variable adjustment procedure (SIVA) [Saabas and 
Baliga (1994); Baliga and Atabaki (2006)] was used to solve 
the nonlinear coupled sets of discretized equations for the 
steady-state nodal values of u, v, and P. These discretized 
equations were under-relaxed using an implicit scheme 
proposed by Patankar (1980), with the following under-
relaxation factors: 0.5u vα α= = , and 1.0Pα = . In each 
overall iteration of the SIVA scheme, decoupled and linearized 
sets of the discretized equations for each dependent variable of 
interest were solved iteratively using a line-Gauss-Seidel 
method. Full details of this method are available in the works 
of Patankar (1980), and Sebben and Baliga (1995). Overall 
convergence of the SIVA scheme was assumed to be achieved 
when suitably normalized absolute residues of the discretized 
equations for u, v, and P were all less than 10 – 4. 

For the computation of the unsteady nodal values of sT  
and , at each time step, the corresponding discretized 
equations were solved sequentially and iteratively, until the 
maximum values of suitably normalized absolute residues were 
all less than 10 – 4. In each overall iteration of this sequential 
solution procedure, the linearized and decoupled set of 
discretized equations for each dependent variable (

fT

sT  and ) 
were again solved using an iterative line-Gauss-Seidel method. 

fT
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TEST PROBLEMS 
s of the proposed FVM to two test 

probl

late 
Chan

t problem is given in 
Figur

The application
ems, the numerical results, and their comparisons to 

analytical solutions are concisely described in this section. 

Test Problem 1: Fluid Flow in a Parallel-P
nel Filled with a Porous Medium 
A schematic illustration of this tes
e 3. It involves steady, two-dimensional, laminar fluid 

flow in a parallel-plate channel filled with an isotropic, 
homogeneous, porous medium made up of close-packed 
spherical particles of diameter pd : L =  8.0 m, H =  0.5 m, and 

pd =  0.0254 m, 0.0381 m, 0 50 , and 0 5 m were 
idered. 

 

.0 8 m .063
cons

 
 

igure 3: Fluid flow in a parallel-plate channel filled with a 

is Newtonian, with constant density and 
dyna

lution in eveloped region: For 
the c

 equation c lified a

F
porous medium. 

The fluid 
mic viscosity. The Forchheimer term is assumed to be 

negligibly small, thus CF  = 0. The fluid enters the porous 
region with a uniform velocity, inu , and then flows through the 
channel in the porous regio Preliminary computations 
indicated that this fluid flow becomes fully developed within 5 
– 10 particles diameters from the inlet plane. In the fully-
developed region, ( )u fnc y= and v = 0. 

Analytical so the fully-d

n. 

onditions described above, in the fully-developed region, 
Eq. (2), is automatically satisfied; the y-momentum equation 
reduces to /P y∂ ∂  = 0, which, in conjunction with the 
condition )u = , leads to /dP dx  = constant; and the x-
momentum an be simp nd cast as follows: 

(fnc y

22
2fu dPε μ∂  2 0f u

K dxy
εμ ε− − =

∂
(11) 

The boundary conditions on u are the following: at y = 0, 

The ss variables are introduced: 
/u y∂ ∂ =  0; and at y = H, u = 0. 

 following dimensionle
* ( / )

; ; ;f uy Ku Da2 2( / )H DadP dx H H
μ ε εη = =

−
12) 

In this equation, Da is the Darcy number and 

γ= =  (

ε

Following Haji-Sheikh (2006), an analytical solution to 
this problem can be derived and cast in the following form: 

{ }
*

*

cosh( ) cosh( )

cosh( ) 1 tanh( ) /avav

u u
uu

γ γη

γ γ γ

⎡ ⎤−⎣= = ⎦
⎡ ⎤−⎣ ⎦

 (13) 

In this equation,  is the average value of  in the cross-
section of the channel: 

*
avu *u

1* * *
20

( / )
( / )

f in
av in

u
u u d u

dP dx H
μ ε

η= = =
−∫  (14) 

The maximum value of  occurs at the center of the channel 
(

*u
* *
max 0|u u η== ), and Eq. (13) can be recast as follows: 

*

*
maxmax

cosh( ) cosh( )

cosh( ) 1
u u

uu

γ γη

γ

⎡ ⎤−⎣ ⎦= =
⎡ ⎤−⎣ ⎦

 (15) 

At this stage, a near-boundary region in the vicinity of the 
surface of the upper wall of the channel is defined as follows: 

, 1edge NBη η≤ ≤ , where ,edge NBη  is the value of η  when 
* *

max( / ) (u u u max/ )u= =  0.99. Using Eq. (15), and introducing a 

term 0.01cα osh( ) 0.99γ⎡ ⎤+= ⎣ ⎦ , it can be shown that 

2
, ln 1edge NBη α α γ⎡ ⎤= + −

⎣ ⎦
 (16) 

Here, it should be noted that α >  1 in the problems of interest. 
Numerical details, grid checks, and results: Again, the 

fluid flow becomes fully developed within a few particle 
diameters downstream from the inlet plane. Thus, though the 
proposed FVM was used to solve the full two-dimensional 
problem, that included the developing region, attention in this 
test problem was focused mainly on the fully-developed region. 

Taking advantage of the symmetry surface at y = 0, the 
calculation domain was limited to 0 x L≤ ≤  and 0 y H≤ ≤

y NB CVs

. In 
the x direction, based on preliminary runs, a relatively modest 
grid of 20 uniform control volumes was found to be more than 
adequate, as attention was focused primarily on the fully 
developed region. In the y direction, the following domain 
discretization scheme was implemented:  control 
volumes were uniformly distributed in the near-boundary 
region, 

,N

,( )edge NB H y Hη ≤ ≤ , with ,edge NBη  calculated using Eq. 
(16); then, from ,( edge NBy )Hη=  to y = 0, the control-volume 
extents were successively increased using a geometric 
expansion scheme, with a geometric factor GF = 1.05; the yΔ  
value in the immediate vicinity of y = 0 was adjusted so that its 
lower face matched this location exactly, and, at the same time, 
its extent was not larger or smaller than 1.25 or 0.75 times, 
respectively, the previous value of yΔ . Several different values 
of  were tried and the corresponding numerical results 
in the fully-developed region were compared with those 
yielded by the analytical solution. The total number of grid 

,N y NB CVs

 is the porosity 
of the porous medium. Noting that the porous edium consists 
of close-packed spherical particles of uniform diameter 

m
pd , the 

porosity was assigned a constant (average) value of ε =  0.40. 
The values of K were calculated using Carman-Kozen elation 
given in Eq. (4). 

y r
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points in the x and y directions are indicated by L1 (= 22) and 
M1, respectively.  

In the above-mentioned comparisons, the absolute values 
of the percentage differences between the analytical and 
numerical results in the fully-developed region, Jδ , were 
computed for each grid point J in the y direction as follows: 

2,

100 xJ
av av avFVM anal anal I L J

u u u
u u u

δ
=

⎡ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= −⎢ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣

⎤
⎥
⎥⎦

 (17) 

In this equation, I = L2 indicates grid points in the last set of 
control volumes in the x direction, immediately adjacent to the 
outlet plane at x = L, which was in the fully developed region 
for all cases considered in this test problem. 
 
Table 1: Results for Test Problem 1: L = 8 m; and H = 0.5 m 

,y NB CVsN  
= 10 

,y NB CVsN  = 
20 

,y NB CVsN  = 
40 

pd  
[m] 

L1 

M1 maxδ  M1 maxδ  M1 maxδ

0.0254 22 90 1.18 114 0.36 148 0.10 

0.0381 22 81 1.18 105 0.36 139 0.10 

0.0508 22 76 1.18 99 0.36 133 0.10 

0.0635 22 71 1.18 95 0.37 129 0.11 

 

It should be noted that for fixed values of H and ,  the 
extent of the near-boundary region 

inu

,( )edge NBH Hη−  increases 
as pd  increases; thus, with the geometrically expanding grid 
tied to the y-extent of the uniform control-volumes in the near-
boundary region, M1 decreases as pd  increases, for a fixed 
value of . The results in Table 1 show that for each 
combination of L, H, 

,y NB CVsN

pd , and L1, as the grid is refined in the y 
direction, with progressively increasing values of  (= 
10, 20, and 40), 

, Vsy NB CN

maxδ  decreases monotonically, attesting to the 
consistency of the numerical solutions produced by the 
proposed FVM. For each of the four values of pd

max

 considered, 
with  = 20, the values of ,y NB CVsN δ  are all less than 0.37%. 
For the purposes of this project, this grid was considered to 
provide a good combination of computational costs and 
accuracy. 

The FVM and analytical solutions show that for a fixed 
value of H and progressively smaller values of  (= 0.0254 
m, 0.0381 m, and 0.0508 m), the (y/H)-extent of the near-
boundary region reduces as (

pd

pd /H) decreases. In the central 
portion of the channel cross-section, outside the near-boundary 
region, the superficial velocity profile is essentially uniform in 
the fully-developed region and one-dimensional (varying only 

with x) in the developing region. Advantage can be taken of 
these characteristics in computer-aided designs of rock-bed 
TES systems, by limiting the simulations to highly cost-
effective one-dimensional simulations. This point will be 
elaborated further in the context of the demonstration problem 
presented in the next section. 

Test Problem 2: Unsteady Heat Transfer in a Semi-
Infinite Porous Medium with Uniform Fluid Velocity and a 
Step Change in Inlet Fluid Temperature 

A schematic illustration of this test problem is given in 
Figure 4. It involves one-dimensional unsteady heat transfer in 
a semi-infinite porous medium, with uniform superficial fluid 
velocity (u = uin = constant throughout), and a step change in 
inlet fluid temperature, to a value greater than the initial 
temperature of the bed, Tin > Tini. 
 

 
 

Figure 4: Unsteady heat transfer in a semi-infinite porous 
medium with uniform fluid velocity and a step change in inlet 
fluid temperature. 
 

Following the analysis of Riaz (1977), attention in this 
test problem is limited to rock-bed TES systems in which the 
product of the interfacial heat transfer coefficient, sfh , and the 
specific area, sfa

f

, between fluid and the solid particles is very 
large: thus, T  = sT  = T. Furthermore, it is assumed that in the 

energy equation for the fluid, ( )P f
c Tε ρ ( /f )t∂ ∂  and 

,( f eff fk T / x)∂ ∂ ∂ are negligible. Thus, Eqs. (5) and (6) can be 
simplified, added up (with  = fT sT  = T), and expressed as 
follows, along with the initial and boundary conditions: 

( )( ) ( )1 (P Ps f

T Tc c uT
t x x x

ε ρ ρ ε1 ) sk∂ ∂ ∂ ⎡ ⎤⎡ ⎤− + = −⎢ ⎥⎣ ⎦
∂

∂ ∂ ∂ ⎣ ⎦∂
 (18) 

( )
( ) { }

( )

( )

0

, ,

0 0
,

(1 )
/

/( )

t ini

f p f s p s
inx x

s s p s

inix

T T

u c c
T x T T

k c

T T

ρ ε ρ

ρ

=

= =

→∞

=

⎛ ⎞⎡ ⎤−⎣ ⎦⎜ ⎟− ∂ ∂ = −
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

=

 (19) 

Again following Riaz (1977), the following characteristic 
parameters and dimensionless variables are introduced: 

2

( ) / (1 )( ) ; /( )

/( / ) ; /( / ) ; ( ) /( )
ch p f p s s s p s

s ch s ch ini in ini

v u c c k c

t v x v T T T T

ρ ε ρ α ρ

τ α ξ α

⎡ ⎤= − =⎣ ⎦
= = Θ = − −

 (20) 
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In this equation, vch represents the reduced velocity of a purely 
advective thermal wave moving through the rock bed; sα  the 
thermal diffusivity of the solid particles; (

is 
2/ )s ch  vα is a 

characteristic time; and ( / )s chvα  is a characteristic distance. 
Eqs. (18) and (19) are now recast as follows, respectively: 

2

2τ ξ ξ
∂Θ ∂Θ ∂ Θ

+ =
∂ ∂ ∂

 (21) 

0 0 00 ; ( / ) 1 ;  0xτ ξ ξξ= = =Θ = − ∂Θ ∂ = −Θ Θ =→∞  (22) 
The analytical solution is the following [Riaz (1977)]: 

( ) ( ){ }

( )

21 erfc exp 4
2 2
1 1 exp( )erfc
2 2

ξ τ τ ξ τ τ
πτ

ξ τξ τ ξ
τ

−⎛ ⎞
Θ = + − −⎜ ⎟

⎝ ⎠
+⎛ ⎞

− + + ⎜ ⎟
⎝ ⎠

 (23) 

Numerical details, grid checks, and results: In this 
problem, the temperature distribution is unsteady and one-
dimensional, and the extent of the domain is semi-infinite in the 
ξ  direction. However, the proposed two-dimensional unsteady 
FVM was set up to as follows: 0 28ξ≤ ≤

0 /ζ α≤ =

10

, with the boundary 
condition ; , with 

the adiabatic boundary conditions  

; and 0

( ) 28
/ 0

ξ
ξ

=
∂Θ ∂ =

0.4
/ 0

ζ =
=

( )( / )s chy u ≤

( )/ ζ∂Θ ∂

0.4

0ζ =
=

( )ζ∂∂Θ τ≤ ≤ . Preliminary runs indicated 
that at τ =  10, the extent of the thermal penetration depth is 
well short of ξ =  28, so the assumed the calculation domain is 
semi-infinite for all practical purposes. 

In the ξ  direction,  control volumes were 
uniformly distributed in the near-boundary region, 0 1

, NB CVsNξ

ξ≤ ≤ ; 
then, in the region 1 28ξ< ≤ , the control-volume extents were 
successively increased using a geometric expansion scheme, 
with a geometric factor GF = 1.05; the ξΔ  value in the 
immediate vicinity of ξ  = 28 was adjusted so that its right face 
matched this location exactly, and, at the same time, its extent 
was not larger or smaller than 1.25 or 0.75 times, respectively, 
the previous value of ξΔ . In the dimensionless y direction, 
( /( / )s chuyζ α= , only two uniform control volumes, each with 
ζΔ =  0.2, were used; and this number was sufficient, as in this 

test problem,  does not change in the Θ ζ  direction. In the 
FVM simulations, three different values of  (= 20, 40, 
and 100) and seven different values of the dimensionless time 
step, 

, NBNξ CVs

τΔ , ranging from 1 x 10 – 4 to 0.1, were tried. The 
corresponding numerical results were compared to those 
yielded by the analytical solution given in Eq. (23). 

In the above-mentioned comparisons, the absolute values 
of the percentage differences between the analytical and 
numerical results, normalized with respect to 1, were 
computed for each grid point I in the 

Θ =
ξ  direction as follows: 

, 2
( ) ( ) x 100I FVM analytical I J

δ
=

⎡ ⎤= Θ − Θ⎣ ⎦  (24) 

The values of max max( )Iδ δ=  at the dimensionless time 
0.1τ =  are presented in Table 2. In this table, L1, denotes the 

total number of grid points in the ξ  direction (equal to the total 
number of control volumes in this direction plus two). In the ζ  
direction, the total number of grid point in that direction was 
constant at M1 = (2 + 2) = 4. 
 
Table 2: Results for Test Problem 2 at 0.1τ =  
  

, NB CVsNξ  = 
20 

, NB CVsNξ = 
40 

, NB CVsNξ = 
100 

τΔ  

L1 maxδ  L1 maxδ  L1 maxδ

1x10-4 91 0.55 124 0.28 203 0.12 

2x10-4 91 0.55 124 0.29 203 0.12 

1x10-3 91 0.59 124 0.32 203 0.16 

2x10-3 91 0.63 124 0.37 203 0.20 

1x10-2 91 0.98 124 0.71 203 0.55 

2x10-2 91 1.40 124 1.14 203 0.98 

1x10-1 91 4.48 124 4.25 203 4.11 
 

The results in Table 2 show that as the dimensionless 
spatial grid and time step are refined, the maximum absolute 
percentage error, maxδ , decreases monotonically, attesting to the 
consistency of the numerical solution produced by the proposed 
FVM. For the combination , NB CVsNξ  = 40 (L1 = 124) and τΔ  
= 2 x 10 – 3, the value of maxδ  is 0.37%. For the purposes of t  
project, this combination of dimensionless spatial grid and time 
step was considered to provide a good combination of 
computational costs and accuracy. 

his

 
Figure 5: Numerical and exact distributions of Θ  as a function 
of ξ  for τ  = 0.1, 0.4, 1.0, 2.0, 6.0, and 10.0: the results 
displayed in this figure were computed with the combination 

, NB CVsNξ  = 40 (L1 = 124) and τΔ  = 2 x 10 – 3. 
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A graphical representation of the numerical and analytical 
results for  as a function of Θ ξ  are shown in Figure 5 for τ  = 
0.1, 0.4, 1.0, 2.0, 6.0, and 10.0: the results displayed in this 
figure were computed with the combination  = 40 (L1 
= 124) and 

, NB CVsNξ

τΔ  = 2 x 10 – 3. These results show excellent 
agreement between the numerical and analytical results (as was 
discussed earlier, maxδ  = 0.37%). 
 
DEMONSTRATION PROBLEM 

A schematic illustration of this demonstration problem is 
given in Figure 6. It involves a parallel-plate channel filled 
with close-packed rocks of essentially spherical shape and 
uniform diameter, pd . The plates are impermeable and 
separated by a perpendicular distance 2H. 

 

 
 
Figure 6: Schematic illustration of the demonstration problem. 
 

The rock bed is made of granite, as it is inexpensive, 
thermally stable, and widely available. Air is used for the 
charging and discharging operations. The thermophysical 
properties of this granite and air are given in Tables 3 and 4. 

 
Table 3: Thermophysical properties of granite (Tav = 30 oC) 
[Incropera and DeWitt (2002)] 
 

3[kg m ]ρ  [J kg K]Pc ⋅  [W/m.K]k  

2630 775 2.79 
 
Table 4: Thermophysical properties of air (Tav = 30 oC ; p = 1 
std atm)  [Incropera and DeWitt (2002)] 
 

3[kg m ]ρ  [J kg K]Pc ⋅  [W m K]k ⋅  [kg m s]μ ⋅  

1.08 1008 0.028 2.20 x 10 – 5 

 
The porosity of the rock bed (close-packed spherical 

particles of granite) is assigned the constant value of 0.40ε = . 
The volume and depth of the rock bed are fixed at V =  80 m3 
and  10 m, respectively. Three combinations of L and H 
are considered:  8 m and 

W =
L = H =  0.5 m;  6 m and L = H =  

2/3 m; and  4 m and L = H =  1 m. For each of these 
combinations, four different particle diameters are investigated:  

pd  = 0.0254 m, 0.0381 m, 0.0508 m, and 0.0635 m. 

During the charging operation, the air enters the rock bed 
with a uniform velocity, , on its left side, develops as it 
flows through it from the left to the right, and exits on its right 
side; and during the discharging operation, the air enters the 
rock bed with a uniform velocity, , on its right side, 
develops as it flows through it from the right to the left, and 
exits on its left side. In both the charging and discharging 
operations, the volume flow rate of the air is maintained 
constant at  = Q  =  = 1 m3/s. Thus, 

,in chu

,air ch

,in dischu

,air dischairQ
/(2

Q

, , )in ch air chu Q WH= , , ,in chv = 0 , , /(2 )air chu Q Win disch H= − , 
and ,in dischv 0= . At the top and bottom walls of the channel, the 
air velocity (superficial) is assigned the value of zero (no-slip 
and impermeability conditions); and at the outlet plane, in both 
the charging and discharging operations, the viscous transport 
of momentum is assumed to be negligible compared to its 
advection transport, which corresponds to the well-established 
outflow boundary treatment [Patankar (1980)]. 

The intrinsic-phase-average temperature of the air ( ) at 
the inlet plane during the charging and discharging operations 
was maintained constant at  50 oC and T

fT

t, ,f ch inT = , ,f disch inle =  10 
oC, respectively. Initially, the rock bed and the air inside it are 
assigned a uniform temperature of ,s iniT  = T  = ,f ini iniT =  30 oC. 
With respect to the intrinsic-phase-average temperature of the 
air, , at the outlet plane, in both the charging and discharging 
operations, the conduction transport of thermal energy is 
assumed to be negligible compared to its advection transport, 
again following the outflow boundary treatment [Patankar 
(1980)]. The top and bottom walls of the channel are assumed 
to be adiabatic in this demonstration problem, with respect to 
both 

fT

sT  and , mainly to concentrate attention on the storage 
aspects of the rock bed, rather than the rates of heat loss from it 
to the ambient (which, in practice, would be negligible 
compared to the rates of charging and discharging of thermal 
energy to and from the rock bed, if it is well insulated). In the 
same spirit, with respect to the intrinsic-phase-average 
temperature of the rock bed, 

fT

sT , the inlet and exit planes of the 
rock bed are also assumed to be essentially adiabatic. 

In this demonstration problem, the durations of the 
charging and discharging operations,  and , respectively, 
are each 12 hours, and follow one another. For the above-
mentioned conditions, with repeated charging and discharging 
cycles, the intrinsic-phased-average temperature of the rock 
bed, and also its thermal energy storage and harvesting 
characteristics, take on a time-periodic behavior. Based on 
preliminary computer simulations, using the FVM described 
earlier, it was established that the aforementioned time-periodic 
behavior is well established when the number of charging-
discharging cycles ( ) reaches a value between 5 and 10. 
Thus, the final simulations were conducted with  ( )  
= 13, for each of the 12 cases investigated: the three 

cht discht

ch dischN +

ch disch totalN +
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combinations of L and H ( L  8 m and = H =  0.5 m; L =  6 m 
and H =  2/3 m; and  4 m and L = H =  1 m); and for each of 
these three combinations, four values of particle diameter: pd  
= 0.0254 m, 0.0381 m, 0.0508 m, and 0.0635 m. 

The air flow rates and inlet conditions used in this 
demonstration problem correspond to a rough (first design 
pass) model of a solar energy application with the following 
characteristics: 100 flat-plate collectors, each with an effective 
area of 1 m x 1m; average solar irradiation of 500 W/m2; 
collector efficiency of 50%; and average air temperature 
increase of 25 oC as it flows through the collector. The rock 
(granite) bed volume used in this problem is roughly 2.5 times 
the minimum volume that is needed to sensibly store the full 
amount of collected solar thermal energy with a rock-bed 
temperature increase of 40 oC. 

Performance indicators: The performance of the rock-
bed thermal energy storage system considered in this 
demonstration problem is assessed with respect to two key 
indicators, namely, an efficiency coefficient, η , and a 
coefficient of performance, . For each charging period, 

, the efficiency coefficient, 
COP

cht chη , is the total thermal energy 
stored, , divided by the maximum thermal energy that could 
have been stored; and for each discharging period, , the 
efficiency coefficient, 

chE

discht

dischη , is the total thermal energy 
harvested, , divided by the maximum thermal energy that 
could have been harvested. Thus, 

dischE

( ) )(,air c

= ch
ch

h P chf

E
Q c t

η
ρ chT −

(

dischT
 (25) 

( ) ),

disch

chf

E

(ε ρ

disc
disch P hQ c T

η
ρh

air

=

,ch I
ging Vol B

ch

ndisch I
harging Vo

=

=

∑ ∑

∑ ∑

discT −

)

)

P s

o
P s

c T

c T

⎡
⎢ − −⎢
⎢⎣

⎡
⎢ − −⎢
⎢⎣

discht

( )

,

,

I J

s I J
T

 (26) 

( )( ( ) )

( ) )

1,

1, ,

1

1

ch

o
s

n n J
char ed n

dis

n J
disc l Bed

E

T y W

E

y

ε ρ
=

=

Δ

Δ

( ) (

( ) (

s I

s I

x

x

Δ J

J

n

WΔ

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

 (27) 

In Eq. (27), I and J are the indices of the grid point in each of 
the control volumes into which the calculation domain is 
discretized; xΔ  and yΔ  are the x- and y-extents of the control 
volumes; W is the width of the rock bed (= 10 m in this 
demonstration problem); nch and ndisch are the total number of 
time steps in each charging and discharging operations, 
respectively; ,( )s I JT  is the intrinsic-phase-average temperature 
of the rock bed at the grid point (I,J) at the end of time-step n; 
and ,( )o

s I JT  is the intrinsic-phase-average temperature of the 
rock bed at the grid point (I,J) at the start of time-step n. 

For each charging period, , the coefficient of 
performance, , is the total thermal energy stored, , 
divided by the total pumping work that is needed to push the air 
through the rock bed; and for each discharging period, , 
the coefficient of performance, , is the total thermal 
energy harvested, , divided by the total pumping work 
that is needed to push the air through the rock bed. Thus,  

cht

dischP

chCOP

E

chE

discht
CO

disch

( ){ }
( ){ }

ch ch chch

disch disch dischdisch

COP E Pumping Power t

COP E Pumping Power t

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 (28) 

Numerical details: Making use of the symmetry surface 
at y = H (see Figure 6), only the bottom-half of the channel was 
included in the calculation domain: 0 x L≤ ≤  and 0 y H≤ ≤

,edge NB

. 
In the y direction,  control volumes were uniformly 

distributed in the region , with 
,y NB CVsN

{ }0 ( )≤ ≤ ,1 edge NBy Hη− η  

calculated using Eq. (16); then, from  to y 
= H, the control-volume extents were successively increased 
using a geometric expansion scheme, with a geometric factor 
GF = 1.05; if in this geometric expansion scheme, 

{ }, )NBy H(1= − eη dge

yΔ ≥  H/40, 
then it was fixed at this value (H/40); the yΔ  value in the 
immediate vicinity of y = H was adjusted so that its upper face 
matched this location exactly, and its extent was not larger or 
smaller than 1.25 or 0.75 times, respectively, the previous value 
of yΔ . Based on the results of Test Problem 1,  = 20 
was used in this demonstration problem.  

,y NB CVsN

In the x direction, based on the results of Test Problem 2, 
the following grid was implemented and used during both the 
charging and discharging operations: ,x NB CVsN   = 20 control 
volumes were uniformly distributed in a near-boundary region, 

20 x λ≤ ≤ ; then, in the region 2 / 2x Lλ < ≤ , the control-
volume extents were successively increased using a geometric 
expansion scheme, with a geometric factor GF = 1.05; if in this 
geometric expansion scheme, xΔ ≥  L/80, then it was fixed at 
this value (L/80); the xΔ  value in the immediate vicinity of x  
= L/2 was adjusted so that its right face matched this location 
exactly, and its extent was not larger or smaller than 1.25 or 
0.75 times, respectively, the previous value of xΔ ; and finally, 
a mirror reflection of the grid in the region 0 / 2x L≤ ≤  was 
used to discretize the calculation domain in the region 

/ 2L x L≤ ≤ . In this grid design, following Riaz (1977), the 
extent of the near-boundary region, 2λ , was calculated 
according to the following equation: 

2 ,( ) /(inlet f p f sf sfu c a h )λ ρ=  (29) 
The solid-fluid interfacial heat transfer coefficient, sfh , and 
specific area, sfa , were calculated using Eqs. (8) to (10). 

Based on the results of Test Problem 2, the time step in 
this demonstration problem was chosen in accordance with the 
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following scheme: in the time period , 500 
uniform time steps were employed; then the time steps were 
successively increased using a geometric expansion scheme, 
with a geometric factor GF = 1.05; if in this geometric 
expansion scheme,  (note  43,200 s), 
then it was fixed at this value ( ); and the  value in 
the immediate vicinity of t N  (again, note that here, 

 43,200 s) was adjusted to fit this time exactly, 
while ensuring that its extent was not larger or smaller than 
1.25 or 0.75 times, respectively, the previous value of 

0 characteristict t≤ ≤

ch discht t= =
tΔ

t

/144cht tΔ ≥
t

ch=
/144ch

disch cht+

ch discht t= =

Δ . The 
characteristic time, ,  was computed using the 
following equation [Riaz (1977)]: 

characteristict

,(1 ) /( )characteristic s p s sf sft c a hε ρ= −  (30) 
As was discussed earlier, when the value of  and also 

the outflow condition are maintained uniform throughout the 
charging operation (as is the case in this demonstration 
problem), the distribution of the superficial fluid velocity 
within the rock bed may be assumed to be essentially steady. A 
similar statement also applies to the discharging operation. 
Thus, for each case considered, at the start of the simulations, 
the steady-state distributions of the superficial velocity 
components, u and v, were computed and stored for both the 
charging and discharging arrangements. These stored 
distributions of u and v were then used repeatedly during the 
successive charging and discharging operations. 

inu

Results: The variations with time of the intrinsic-phase-
average temperature of the rock bed, sT , at three specific points 
corresponding to  y = H and x = 0, L/2 (roughly), and L are 
plotted in Figure 7, for the case in which L = 6 m, H = 2/3 m, 
and  0.0254 m. These results clearly show that for 

, 
pd =

5disch ≥chN + sT  varies periodically with , for all practical 
purposes. Similar results were obtained for all other 
combinations of L, H, and 

t

pd  considered in this demonstration 
problem. 
 

 
Figure 7: Variations with time of sT  at three specific points 
corresponding to  y = H and x = 0, L/2 (roughly), and L, for L = 
6 m, H = 2/3 m, and  0.0254 m. pd =

Results for , chE chη , and  at the end of the tenth 
charging-discharging cycle ( ), when the rock bed 
is in its time-periodic behavior, are presented in Table 5 for all 
12 cases considered in this Demonstration Problem. These 
results indicate that the 

chCOP

disch+ =10chN

chη  (which equals dischη  in the time-
periodic regime of this rock bed) is greater than 90% for the 
cases considered, and attains its highest value ( chη  = 95.9%) 
for the combination L = 8 m, H = 0.5 m, and pd =  0.0254 m. 
The values of  (which equals  in the time-
periodic regime of this rock bed) are all greater than 500, and 
attains the high (but not the highest) value of 503.2 for the 
combination L = 8 m, H = 0.5 m, and 

chCOP dischP

pd

CO

=  0.0254 m. 
Therefore, this is the recommended combination if the selection 
criteria demand the highest value of chη  with a reasonably high 
value of . However, if the selection criteria require the 
highest value of  along with a reasonably high value of 

chCOP

chCOP

chη , then the recommended combination is L = 4 m, H = 1 m, 
and pd =  0.0635 m, for which chη  = 90.6% and  = 
10027.72. 

chCOP

 
Table 5: Results for the Demonstration Problem 
 

L [m] dp [m] Ech [MJ] ηch COPch COP1D, ch 1 2D D−Δ

4 0.0254 1908.9 0.942 3135.1 3135.4 0.010

 0.0381 1887.7 0.932 5394.8 5400.4 0.104

 0.0508 1862.6 0.919 7714.4 7727.5 0.169

 0.0635 1835.9 0.906 10027.7 10046.5 0.188

6 0.0254 1933.9 0.954 1091.8 1092.2 0.034

 0.0381 1915.2 0.945 1815.4 1818.4 0.161

 0.0508 1893.7 0.935 2545.1 2550.4 0.208

 0.0635 1870.9 0.923 3267.0 3275.4 0.257

8 0.0254 1943.8 0.959 503.2 502.9 0.063

 0.0381 1927.7 0.951 819.6 821.2 0.191

 0.0508 1908.7 0.942 1135.8 1138.7 0.254

 0.0635 1889.3 0.932 1448.5 1452.9 0.307

 
Also presented in Table 5, are the results for 1 ,D chCOP  

(obtained by assuming that both the fluid flow and heat transfer 
inside the rock-bed TES system employed in this demonstration 
problem are essentially one-dimensional) and 1 2D D−Δ , which is 
the absolute value of the percentage difference between the 
values of  (obtained with the two-dimensional chCOP
simulations) and 1 ,D chCOP . The values of 1 2D D−Δ  are all less 
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than 0.31%. These results show clearly that the one-
dimensional simulations are a very cost-effective tool for the 
thermofluid design optimization of this rock-bed TES system. 

 
CONCLUSION 

The main co
proposal of cost-effective mathematical models of fluid flow 
and heat transfer in rock beds; adaptation of a finite volume 
method (FVM) for the solution of this model; applications of 
this FVM to two test problems (with analytical solutions) and 
one demonstration problem; proposal of suitable thermofluid 
performance evaluation criteria for the rock-bed TES systems 
of interest; and presentation and discussions of the results. 
Energy storage efficiencies and coefficients of performance 
were proposed as suitable thermofluid performance indicators 
for these systems. The results of the test problems showed that 
the proposed FVM produces consistent and accurate solutions. 
The results of the demonstration problem show how the 
proposed mathematical models and FVM can be used to study 
and optimize the performance of rock bed storage systems. The 
results of the demonstration problem were also used to show 
that simple one-dimensional unsteady models of the fluid flow 
and heat transfer in the rock-bed TES systems of interest would 
be adequate and very cost-effective for computational 
optimization of their thermofluid design. 
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