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ABSTRACT 
Loop heat pipes (LHPs) are devices in which capillary 

forces in a wick and liquid-vapor phase-change phenomena are 
used to achieve continuous and relatively high rates of transfer 
of thermal energy from a heat source to a heat sink. Quasi one-
dimensional models of the fluid flow and heat transfer within 
LHPs, with empirical correlations as inputs, are commonly 
used as the basis of cost-effective computer simulations for the 
design and optimization of these devices for specific 
applications. The focus in this work is on laminar fluid flows in 
straight rectangular vapor grooves of flat evaporators used in 
LHPs. The pressure drops for such fluid flows are computed in 
available quasi one-dimensional models of LHPs using 
correlations for a friction factor that applies strictly only in the 
fully-developed region of flows in straight rectangular ducts 
with impermeable walls. The resulting errors can become 
serious if the pressure drop in the vapor grooves is a significant 
contributor to the overall pressure drop in the LHP. Thus, to 
enhance the capabilities of current quasi one-dimensional 
models of LHPs, more accurate correlations for predicting the 
aforementioned pressure drop are needed. In this work, a three-
dimensional parabolic finite volume method is used to simulate 
laminar Newtonian fluid flows in straight rectangular vapor 
grooves of flat evaporators, for a representative range of LHP 
operating conditions. The mathematical model, computational 
methodology, results, and suitable correlations for the pressure 
drops are presented and discussed in this paper. 

INTRODUCTION 
Loop heat pipes (LHPs) are devices in which capillary 

forces in a wick and liquid-vapor phase-change phenomena are 
used to achieve continuous transfer of thermal energy from a 
heat source to a heat sink, with no mechanical moving parts, no 
special external power inputs, and relatively small temperature 

drops over long distances. Furthermore, the heat transfer rates 
that are achievable with LHPs are typically one to three orders 
of magnitude larger than those possible with either single-phase 
convection systems or solid thermal conductors for 
corresponding thermal boundary conditions. For these reasons, 
since the invention of LHPs in the former Soviet Union in the 
1970s, there has been a great deal of interest in mathematical 
models of these devices and also their applications in a 
multitude of heat-exchange systems. In particular, quasi one-
dimensional models of the fluid flow and heat transfer within 
LHPs, with empirical correlations as inputs, are commonly 
used as the basis of cost-effective computer simulations for the 
design and optimization of these devices for specific 
applications. Detailed descriptions and reviews of LHPs are 
available in Chi (1976), Silverstein (1992), Faghri (1995), 
Maydanik (2005), Launay et al. (2007), Vlassov and Riehl 
(2008), and Vasiliev et al. (2009), for example. 

The focus in this work is on laminar flow of vapor in 
straight rectangular grooves of flat evaporators used in LHPs, 
similar to those shown schematically in Figure 1. The problems 
of interest can be modeled as flows in a straight rectangular 
duct with one end blocked and a uniform (or average) injection 
velocity, vinj, imposed on the bottom lateral surface, as shown 
schematically in Figure 2. The pressure drops for such fluid 
flows are computed in available quasi one-dimensional models 
of LHPs using correlations for a friction factor that applies 
strictly only in the fully-developed regions of flows in straight 
rectangular ducts with impermeable walls [Kaya and Hoang 
(1999); Maydanik (2005); Atabaki (2006); Atabaki et al. 
(2007); Launay et al. (2007)]. This approach is inapplicable or 
ad hoc, at best, with respect to the vapor flows illustrated in 
Figure 2. The resulting errors can become serious if the 
pressure drop in the vapor grooves is a significant contributor 
to the overall pressure drop in the LHP. Thus, to enhance the 
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capabilities of current quasi one-dimensional models of LHPs, 
more accurate correlations for predicting the aforementioned 
pressure drop are needed. 

 

 
(a) 

 
(b) 
Figure 1: (a) schematic representation (not to scale) of a loop 
heat pipe with a flat evaporator; and (b) details of the flat 
evaporator section. 

 
In the published literature, there are many papers related to 

laminar fluid flows in straight ducts with an inlet velocity 
imposed at one end, blowing or suction along one or more 
lateral surfaces, and an outflow condition at the other end: 
examples include the works of Berman (1953), Taylor (1956), 
Yuan and Finkelstein (1958), Kinney (1968), Bundy and 
Weissberg (1970), Pederson and Kinney (1971), Raithby 
(1971), Raithby and Knudsen (1974), Rhee and Edwards 
(1981), Ku and Leidenfrost (1981), Hwang et al. (1993), Yuan 
et al. (2001), and Beale (2005). In the vapor flows of interest, 
however, as shown schematically in Figure 2, one end of the 
rectangular duct is blocked (there is no inlet velocity at this 
end). Furthermore, in the aforementioned works, there are no 
correlations that can be readily adapted for accurate application 
in quasi one-dimensional models of LHPs. There are also many 
published papers on vapor flows in heat pipes, akin to that 
shown schematically in Figure 3: examples include the works 

of Busse (1967, 1973), Tien and Rohani (1974), Chen and 
Faghri (1990), and Leong et al. (1996). However, in the vapor 
flow passage of heat pipes, both ends are blocked and there is 
blowing and suction along the lateral surface, as is clear from 
the schematic in Figure 3, and these boundary conditions are 
not the same as those in the vapor flow grooves of LHP 
evaporators (Figure 2). In this work, a three-dimensional 
parabolic finite volume method is used to simulate laminar 
Newtonian fluid flows akin to that shown schematically in 
Figure 2, for parameter ranges representative of LHP operating 
conditions. The mathematical model, computational 
methodology, results, and suitable correlations for the pressure 
drops are presented and discussed in this paper. 

 
(a) 

 
(b) 
Figure 2: (a) schematic representation of vapor flow in 
rectangular grooves of a flat evaporator of an LHP; (b) cross-
sectional (y-z plane) view of this flow.  
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Figure 3: Schematic representation of a typical heat pipe 
[Atabaki (2006)]. 
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NOMENCLATURE 

c sA −  cross-sectional area (= ab) of the duct, Figure 2 
AR aspect ratio (= a/b) of duct cross-section, Figure 2 

hD  hydraulic diameter, equation (10) 
f  friction factor, equation (14) 

appf  apparent friction factor, equation (16) 
m  total mass flow rate at z, equation (8)  
p perturbation pressure, equation (1) 
p* dimensionless p, equation (3) 
P  reduced pressure 
P  cross-sectional average value of P, equation (1) 

*P  dimensionless P , equation (3) 
Re

hD  Reynolds number at z, equation (12) 

Reinj  injection Reynolds number, equation (3) 
u, v, w components of the velocity in the x, y, and z 

directions, respectively 
injv  injection velocity, Figure 2 

U, V, W dimensionless forms of u, v, w, equation (3)  
avw  cross-sectional average value of w, equation (8) 

avW  dimensionless form of , equation (8) avw
x, y, z  Cartesian coordinate directions, Figure 2 
X, Y, Z  dimensionless forms of x, y, z, equation (3) 
z+  dimensionless z (= ) ( / ) / Re

hh Dz D

Z +  dimensionless z, equation (13) 

Greek symbols 

α  under-relaxation factors 
μ  fluid dynamic viscosity 
ρ  fluid mass density 

Subscripts 

av cross-sectional average value 
F.D. pertaining to the full-developed region  
inj pertaining to injection 

MATHEMATICAL MODEL 
In the range of operating conditions of the LHPs 

considered in this work, the geometry of the vapor grooves in 
the flat evaporator and the magnitude of the flow rate in them 
are such that the corresponding Reynolds number based on the 
maximum value of the mean velocity and the hydraulic 
diameter is 2000 or lower, so the flow remains laminar 
throughout. The vapor is assumed to be a Newtonian fluid with 
constant density and dynamic viscosity (evaluated at the 
average values of the pressure and bulk temperature). For any 
specified overall rate of heat input, the temperature, Tw, of the 
upper half of the metallic flat evaporator body, which houses 
the rectangular vapor grooves (see Figure 1), is essentially 
constant. Furthermore, the total pressure drop in the vapor 
grooves is typically a relatively small fraction of the average 

absolute pressure. Thus, the saturation temperature, Tsat, at the 
liquid-vapor interface adjacent to the upper surface of the wick 
(see Figure 1) and the temperature difference (Tw – Tsat) that 
drives the phase-change process are essentially constant. 
Therefore, the mass flux of the vapor and the corresponding 
injection velocity, , on the bottom surface of each groove 
may be considered to be essentially uniform. 

injv

The following additional assumptions are also invoked: the 
vapor flow is steady; there exists a predominant flow along the 
vapor groove, and no flow reversal is encountered in that 
direction; the diffusion (or viscous) transport in the mainstream 
direction is negligible compared to the corresponding advection 
transport and the cross-stream diffusion transport; and the 
downstream pressure field has negligible influence on the 
upstream flow conditions. With these assumptions, the vapor 
flows of interest in this work can be characterized as three-
dimensional parabolic, as discussed in the seminal work of 
Patankar and Spalding (1972). 

With reference to the Cartesian coordinate system and 
notation shown in Figure 2, the components of the velocity 
vector in the x, y, and z directions are denoted by u, v, and w, 
respectively. The symbols ρ  and μ  are used to denote the 
mass density and dynamic viscosity of the fluid, respectively. 
The reduced pressure is denoted by P, and following Patankar 
and Spalding (1972), it is expressed in terms of its cross-
sectional average value, P , and a perturbation component 
about this average, p, as follows: 

1( , , ) ( ) ( , , ) ; ( ) ( , , )
c sc s A

P x y z P z p x y z P z P x y z dxdy
A

−−

= + = ∫ (1) 

In this equation, c sA −  is the cross-sectional area of the duct. 
Again following Patankar and Spalding (1972), it is assumed 
that ( / )p z∂ ∂  << /dP dz , and the following approximation and 
expressions apply: 

/ / ; / / ; / /P z dP dz P x p x P y p y∂ ∂ = ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂  (2) 

At this stage, with reference to the Cartesian coordinate 
system and notation shown in Figure 2, the following 
dimensionless variables and parameters are introduced: 

* 2 * 2

/ ; / ; / ; /
/ ; / ; /

/(0.5 ); /(0.5 ); Re /
inj inj inj

inj inj inj inj

X x b Y y b Z z b AR a b
U u v V v v W w v

p p v P P v v bρ ρ ρ μ

= = = =
= = =

= = =

         (3) 

Here, AR is the aspect ratio of the rectangular cross-section of 
the duct, and Re  is the injection Reynolds number. In the 
context of the aforementioned assumptions and in terms of the 
dimensionless variables and parameters given in equation (3), 
the differential equations that govern the vapor flows of interest 
can be cast in the following forms [Patankar and Spalding 
(1972); Jesuthasan and Baliga (2009)]: 

inj
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Continuity: 

0U V W
X Y Z
∂ ∂ ∂

+ + =
∂ ∂ ∂

               (4) 

x-momentum: 

* 2

2 2

( ) ( ) ( )

1
Reinj

UU VU WU
X Y Z

p U
X

2U
X Y

∂ ∂ ∂
+ + =

∂ ∂ ∂
⎛ ⎞∂ ∂ ∂

− + +⎜ ⎟∂ ∂ ∂⎝ ⎠

           (5) 

y-momentum: 

* 2

2 2

( ) ( ) ( )

1
Reinj

UV VV WV
X Y Z

p V
Y

2V
X Y

∂ ∂ ∂
+ + =

∂ ∂ ∂
⎛∂ ∂ ∂

− + +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎞
            (6) 

z-momentum: 

* 2

2 2

( ) ( ) ( )

1
Re

∂ ∂ ∂
+ + =

∂ ∂ ∂
⎛ ⎞∂ ∂

− + +⎜ ⎟∂ ∂⎝ ⎠inj

UW VW WW
X Y Z

dP W W
dZ

2

X Y

         (7) 

In addition to the above-mentioned equations, the overall 
or total mass flow rate through the duct at each value of the 
main-stream coordinate (z) must be respected. With reference 
to the notation given in Figure 2, and with the assumption of 
uniform injection velocity, , this mass flow rate is given by 
the following equation: 

injv

( ) ( ) , or

/ ( / )

ρ ρ ρ
−

−= = =

= = =

∫
c s

c s inj av
A

av av inj

m wdA az v ab w

W w v z b Z
           (8) 

The five equations (4) to (8) form a parabolic system in the 
main-stream coordinate direction, Z, with five unknowns, U, V, 

W, *p , and *( /dP dZ− ) . To specify the problem completely, 
the boundary conditions and the dimensionless parameters (AR 
and ) must be specified. Once the problem description is 
complete, the parabolic model allows a marching solution 
procedure in the Z direction, so the solution can be advanced 
step-by-step along the duct, from Z = 0 to Z = L/b, as described 
in detail in the seminal work of Patankar and Spalding (1972) 
and also in the recent work of Jesuthasan and Baliga (2009). 

Reinj

In this work, with respect to the problem schematic given 
in Figure 2(a), and the dimensionless variables and parameters 
given in equation (3), the following boundary conditions apply: 

* *

*

At 0, 0
At 0.5 , 0; / / 0
At 0, 0
At 1, 0
At 0, 0,

At 0,
ref

ref

X U V W
X AR U V X W X
Y U V W
Y U V W
Z U V W P P

X Y p p

= = = =
= = ∂ ∂ = ∂ ∂ =
= = = =
= = = =

= = = = =

= = =

          (9) 

The boundary conditions at X = 0.5AR correspond to the 
longitudinal, vertical, symmetry surface at that location. In the 
parabolic mathematical model, in the main-stream direction, 
boundary conditions are needed only at Z = 0. With respect to 
the boundary conditions on *P  and , as the fluid density 
(

*p
ρ ) is assumed to be essentially constant, only the drops in the 

fluid pressure (that drive the fluid flow) matter, and not its 
absolute value [Patankar (1980)]. In the proposed parabolic 
model, as is indicated in equation (9), the values of 
dimensionless cross-sectional average and perturbation 
pressures are assigned suitable reference values ( refP  and ) 
at the convenient locations Z = 0, and X = Y = 0. 

*
refp

 
NUMERICAL SOLUTION METHOD 

A co-located finite volume method (FVM) was used to 
solve the three-dimensional parabolic mathematical model 
described in the previous section. It incorporates key concepts 
borrowed from the seminal and well-established three-
dimensional parabolic, staggered-grid, FVM of Patankar and 
Spalding (1972). Its formulation is closely related to that of the 
three-dimensional parabolic, co-located, control-volume finite 
element method (CVFEM) of Jesuthasan and Baliga (2009), 
and the two-dimensional elliptic, co-located, FVM described by 
Baliga and Atabaki (2006). As full details of these numerical 
methods are available in the aforementioned references, only a 
very brief overview of the main features of the FVM used in 
this work are presented in this section. 

In the three-dimensional parabolic FVM used in this work, a 
step-by-step marching procedure in the axial direction is used to 
solve the problems of interest, from the Z = 0 to Z = L/b  (the exit 
plane of the duct). In each step, the solution is advanced from an 
upstream cross-section of the duct, located at Z, to the next 
downstream cross-section, located at Z + ZΔ . Each cross-section 
(X-Y plane) of the duct is first discretized into contiguous 
rectangular control volumes that fill the domain exactly. Then, 
nodes or grid points are located at the geometric centers of the 
control volumes, the centers of the control volume faces that 
coincide with the boundaries of the domain, and the corners of 
rectangular domain. The grid points or nodes lie on lines that 
are parallel to the coordinate axes, and these grid lines could be 
non-uniformly spaced. This discretization of the duct cross-
section is illustrated in Figure 4. The boundaries of the cross-
sectional control volumes associated with corresponding pairs 
of upstream and downstream nodes are joined to form 
rectangular parallelepiped control volumes of extents XΔ , 
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YΔ , and ZΔ  in the X, Y, and Z coordinate directions, 
respectively. All dependent variables and the fluid 
thermophysical properties are stored at the same set of nodes 
(co-located formulation) in the upstream (Z) and downstream 
(Z + ZΔ ) cross-sections. 

The governing differential equations are first integrated 
over the control volumes, and algebraic approximations to the 
integral conservation equations are then derived. These 
algebraic approximations are called the discretized equations. 
In the derivation of these discretized equations, the X- and Y-
direction advection and diffusion transport terms are 
discretized using the hybrid scheme [Patankar (1980)], which is 
second-order accurate at low velocities (strictly, at grid Peclet 
number values less than 2) and uniform grids; and a second-
order quadratic interpolation is used at the cross-sectional 
boundaries, and appropriately adjusted to incorporate the 
specified boundary conditions [Baliga and Atabaki (2006)]. 
The reduced perturbation pressure, , in the cross-section (X-
Y plane) is interpolated using piecewise-linear functions 
between the nodes. In the mass flow rate terms, the U and V 
velocity components are interpolated using the so-called 
momentum interpolation scheme [Rhie and Chow (1983)], to 
avoid undesirable checkerboard-type pressure and velocity 
distributions that would otherwise afflict this equal-order co-
located FVM [Patankar (1980)]. In the X-Y plane, the nodal 
values of 

*p

ρ  and μ  are interpolated to locations where the grid 
lines intersect the control-volume faces, using a resistance 
analogy (which reduces to the harmonic mean on uniform 
grids), as described in Patankar (1980). In this work, however, 
this is a moot point as ρ  and μ  are assumed to stay 
essentially constant. In the main-stream (Z) direction, a fully-
implicit discretization scheme is used [Patankar (1980)] at each 
axial step, ZΔ . 

 
Figure 4: Discretization of a rectangular cross-section of the 
duct at each axial (z) location: dashed lines indicate control 
volume faces; solid dots indicate nodes or grid points; solid 
lines denote grid lines; and the hashed regions show two 
control volumes, one in the domain interior and the other 
adjacent to its boundary. 

To advance the solution from an upstream cross-section at 
Z to the next downstream cross-section at Z + ZΔ , an overall 
sequential iterative solution procedure was used to solve the 
nonlinear coupled discretized equations. This procedure 
incorporates elements of the sequential iterative variable 
adjustment (SIVA) procedure proposed by Saabas and Baliga 
(1994) and the semi-implicit method for pressure-linked 
equations revised (SIMPLER) of Patankar (1980). In each 
overall iteration of this procedure, decoupled and linearized 
sets of the discretized equations for U, V, W, and  were 
solved iteratively using a line-Gauss-Seidel method. Full 
details of this method are available in the works of Patankar 
(1980), and Sebben and Baliga (1995).The discretized 
equations for U, V, and  were under-relaxed using an 
implicit scheme proposed by Patankar (1980), with the 
following under-relaxation factors: 

*p

*p

0.8U Vα α= = , and 
* 1.0pα = ; no under-relaxation was used or necessary in the 

solution of the discretized equations for W  and * /dP dZ . At 
each axial step, convergence of the aforementioned overall 
sequential iterative solution procedure was assumed to be 
achieved when suitably normalized absolute residues of the 
discretized equations for the dependent variables were all less 
than 10 – 4. 

Before using the aforementioned three-dimensional parabolic 
FVM to investigate the fluid flows of interest, its validity was 
established by applying it to developing laminar flow in straight 
ducts of rectangular cross-section, with impermeable walls and 
aspect ratio AR = 1 and 5, and comparing the results to the 
corresponding numerical solutions given in Curr et al. (1972) and 
Shah and London (1978). Results obtained with uniform grids of 
21 x 21, 41 x 41, 61 x 61, and 81 x 81 nodes in the full extent of 
the cross-sectional plane (X-Y), and dimensionless axial step sizes 
of  = 1 x 10{( / ) / Re }

hh Dz z D+Δ = Δ –3, 5 x 10–4, and 5 x 10–5, 

were used in these comparisons. Here, Re /
hD av hw Dρ μ=  is the 

Reynolds number,  is the average axial velocity of the fluid in 
the duct cross-section, and  is the hydraulic diameter: 

avw

hD

4 / [2( )] [2 / (1 )]= + = +hD ab a b AR AR b          (10) 

Predictions yielded by the aforementioned FVM for the 
variation of { } { }2

0Re ( ) / 0.5 Re
h happ D z z h av Df P P z D wρ== −  with 

z+ , with uniform cross-sectional grids of 21 x 21, 41 x 41, 61 x 
61, and 81 x 81 nodes, and  = 5 x 10z+Δ -5, and also the results of 
Curr et al (1972), are given in Figure 5, for AR = 1 and 5. These 
plots show that the results yielded by the 41 x 41, 61 x 61, and 81 
x 81 cross-sectional grids essentially coincide (within the 
resolution of the plots) and compare very well with the results of 
Curr et al (1972): quantitatively, the maximum percentage 
absolute differences between the results yielded by the cross-
sectional grids of 41 x 41 and 81 x 81 nodes were 0.156% and 
1.09% for AR = 1 and 5, respectively; and the maximum 
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percentage absolute differences between the results yielded by the 
cross-sectional grid of 41 x 41 nodes and those of Curr et al. 
(1972) were 0.97% for both of the aforementioned values of AR. 
The same results yielded by the FVM with a cross-sectional grid 
of 41 x 41 nodes and   = 1 x 10z+Δ -3, 5 x 10-4, and 5 x 10-5 are 
shown in Figure 6 for AR = 1, along with the results of Curr et al. 
(1972): the maximum percentage absolute difference between the 
results obtained with  = 1 x 10z+Δ -3 and 5 x 10-5 was 1.72%; and, 
as was stated earlier, the maximum percentage absolute difference 
between the results obtained with  = 5 x 10z+Δ -5 and those of 
Curr et al. (1972) was 0.97%. 

 

 
Figure 5: Variations of  with  for developing 
laminar flow in straight ducts of rectangular cross-section, with 
impermeable walls and aspect ratio AR = 1 and 5: FVM results 
obtained with four different cross-sectional grids and 

Re
happ Df z+

z+Δ  = 5 x 
10-5; and the results of Curr et al. (1972). 

The FVM predictions for developing laminar flow in a 
straight duct of square cross-section (AR = 1) and impermeable 
walls, obtained with a uniform cross-sectional grid of 41 x 41 
nodes and  = 5 x 10z+Δ –5, were also in excellent agreement with 
the experimental results of Goldstein and Kreid (1967) and 
Beavers et al. (1970), as shown by the plots in Figure 7. 
Quantitatively, the absolute differences between the FVM 
predictions and the corresponding experimental results were well 
within the error bands reported by Goldstein and Kreid (1967) and 
Beavers et al. (1970). 

 

 
Figure 6: Variations of  with Re

happ Df z+  for developing 
laminar flow in straight ducts of rectangular cross-section, with 
impermeable walls and aspect ratio AR = 1: FVM results obtained 
with a cross-sectional grid of 41 x 41 nodes and three different 
values of z+Δ ; and the results of Curr et al. (1972). 

 

 
 

Figure 7: Variations of  and max( / avw w ) 2( ) /(0.5inlet av )P P wρ−  
with z+  for developing laminar flow in straight ducts of 
rectangular cross-section, with impermeable walls and aspect ratio 
AR = 1: FVM results obtained with a cross-sectional grid of 41 x 
41 nodes and z+Δ  = 5 x 10-5; and the experimental results of 
Goldstein and Kreid (1967) and Beavers et al. (1970). 
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The results presented in Figures 5 – 7 confirm the consistency 
and validity of the FVM. 

RESULTS AND DISCUSSIONS  
The problems of interest involve laminar fluid flows in 

straight vapor groves of rectangular cross-section in flat 
evaporators of loop heat pipes (LHPs), akin to the one shown 
schematically in Figure 1. The schematic representation of such 
a flow in one rectangular vapor groove is shown in Figure 2. 
Keeping practical applications in mind, the following values of 
the dimensionless parameters, AR and , were considered 
in this work: 

Reinj

 1, 2, and 5
Re 0.1, 1, 10, and 100inj

AR
AR

=
× =

          (11) 

In the longitudinal direction of the duct, with uniform rate of 
injection into the duct (  = constant), the mass flow rate 
increases linearly with z, as shown by the expression given 
earlier in equation (8). Thus, in each of the 12 cases 
investigated, to ensure that the fluid flow remained laminar 
throughout the duct, the local value of the Reynolds number, 

injv

Re
hD , based on the average value of the axial velocity, , 

and the hydraulic diameter, , at the exit plane (z = L) was 
limited to 2000. Thus, using the expressions for  and  
given in equations (8) and (10), respectively,  

avw

hD

avw hD

[( / ) ][2 / (1 )]
Re 2000

ρρ
μ μ

+
= = ≤

h

injav h
D

z b v AR AR bw D     (12) 

In terms of the injection Reynold number, Re , and the 
dimensionless variable Z defined in equation (3), equation (12) 
can be expressed as follows: 

inj

2 2 Re 2000
1 1

ρ
μ

+ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

inj
inj

v bz AR ARZ Z
b AR AR

≤      (13) 

In the light of this equation, the local Reynolds number, Re
hD , 

can be interpreted as a new dimensionless axial coordinate, 
Z + , for the fluid flows of interest (see Figure 2). It should be 
noted that Z +  is different from the dimensionless axial 
coordinate / Re

hDz Z+ =  which is used in the mathematical 
description of developing fluid flows in straight ducts with 
impermeable walls. In this work, for each case of interest, the 
computations were carried out in the region . 0 20Z +≤ ≤ 00
 The seminal works of Berman (1953), and Yuan and 
Finkelstein (1958) have shown that steady laminar flows in 
straight ducts with uniform injection from one or more 
longitudinal walls become fully developed after a sufficient 
longitudinal distance from the inlet plane, in the sense that the 
velocity components normalized with respect to the local 
longitudinal average velocity, , become invariant with the 

axial coordinate, z. Taking guidance from these works, it was 
expected that the flows of interest (see schematic in Figure 2) 
would also be come fully developed after a sufficient 
longitudinal distance from the blocked end (at z = 0) of the 
duct. The numerical results of this investigation confirmed 
these expectations, as will be discussed later in this section.  

avw

  

 

 

 
Figure 8: Variation of  with ( /CL avw w ) Z + . 

In the computer simulations using the aforementioned 
three-dimensional parabolic FVM, in all cases considered, 
using guidance from the results of the test problems discussed 
in the previous section, a uniform 41 x 41 nodes grid in the X-Y 
plane was used. In the longitudinal (z) direction, as was discussed 
in the previous paragraph, fully-developed conditions are 
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established after a sufficient distance form the block end (at z = 0). 
Preliminary trial computations indicated that this fully developed 
region is essentially established for values of Z +  greater than 
300 (or lower) in each of the 12 cases considered. In this 
investigation, a uniform axial step size of Z +Δ  = 5 was used in all 
of the final numerical simulations. Grid checks done for AR = 1 
and  = 100 indicated that this axial step size yields 
results in the developing region that are within 5% of the 
essentially grid-independent results: the essentially grid-
independent results were computed using the Richardson 
extrapolation technique. 

ReinjAR×

Axial Velocity Profiles 
The variation of ( ) with /CL avw w Z + , where  is the 

axial velocity component at the centerline of the duct, is 
presented in Figure 8 for AR = 1, 2, and 5, and 

CLw

ReinjAR×  = 
0.1, 1, 10, and 100 

As is seen from the results in Figure 8, ( ) 
achieves essentially constant values for values of 

/CL avw w
Z +  greater 

than 300 (or lower) in each of the 12 cases considered. The 
values of ( ) at all other points in the duct cross-section 
(x-y plane) exhibited similar behavior. These results clearly 
show the establishment of the fully-developed region that was 
discussed earlier. 

/ avw w

For the duct of square cross-section (AR = 1), the variation 
of   in the vertical longitudinal symmetry surface, 
(x/b) = 0.5(a/b) = 0.5AR, at four different axial locations, 

( / )avw w
Z +  = 

5, 10, 100, and 1000, are presented in Figure 9 for ReinjAR×  = 
100 (high injection rate). These results show that the ( /  
profiles are skewed towards the upper wall, (y/b) = 1.0, and 
become essentially invariant with axial distance for 

)avw w

Z + ≥  100, 
indicating the establishment of the fully developed region. 

 

 
Figure 9: Profiles of ( /  in the vertical longitudinal 
symmetry surface, (x/b) = 0.5(a/b) = 0.5AR, at four different 
dimensionless axial distances for AR = 1 and  = 100. 

)avw w

ReinjAR×
 

Table 1: Values of . .( Re )
hD F Df  

 
 
 
 

 

 

 
Figure 10: Variation of  with . .( Re ) /( Re )

h happ D D F Df f Z + . 
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Friction Factor Values in the Fully-Developed Region 
The friction factor is defined as follows [White (1991)]: 

{ } { }2( / ) 0.5ρ= − h avf dP dz D w           (14) 

In the fully developed region, the product . .( Re )
hD F Df  

becomes a constant. The values of this product for each of the 
12 cases considered in this work are presented in Table 1. 

The . .( Re )
hD F Df  values in Table 1 can also be predicted 

with excellent accuracy using the following correlations 
(values of the correlation coefficient, R2, are given along with 
the correlations): 

2
. .

2
. .

2
. .

For 1:
( Re ) 5.8309( Re ) + 56.908; R =0.9997

For 2 :
( Re )  5.118( Re ) + 62.192; R =0.9999

For 5 :
( Re )  3.0894( Re )  76.282; R =1.0

h

h

h

D F D inj

D F D inj

D F D inj

AR
f AR

AR
f AR

AR
f AR

=

= ×

=

= ×

=

= × +

     (15) 

Axial Variation of Apparent Friction Factor 
 The dimensionless reduced pressure drop in the duct is 
expressed in the form of an apparent friction factor as follows: 

{ } { }2
0( ) / 0.5app z z h avf P P z D wρ== −            (16) 

Results pertaining to the variation of  

with the dimensionless axial coordinate 
. .( Re ) /( Re )

h happ D D F Df f

Z +  defined in equation 
(13) are presented in Figure 10, for AR = 1, 2, and 5, and 

 = 0.1, 1, 10, and 100. These results also show the 

establishment of a full-developed region for values of 

ReinjAR×

Z +  
greater than 300 (or lower), with  
asymptoting to the theoretical fully-developed value of 0.5 for 
all of the cases considered. 

. .( Re ) /( Re )
h happ D D F Df f

CONCLUSION 
In this work, a three-dimensional parabolic model of 

steady, laminar, vapor flow in straight rectangular grooves of 
flat evaporators used in loop heat pipes (LHPs) was presented 
first in this paper. Next, an overview of the formulation of a 
finite volume method (FVM) for the solution of this 
mathematical model was presented. Following that, the results 
obtained for 12 different cases for the problem of interest (AR = 
1, 2, and 5; and  = 0.1, 1, 10, and 100) were 
presented and discussed. These results clearly show that a 
fully-developed region is established a sufficient distance 
downstream of the blocked end of the rectangular duct, for 

ReinjAR×

Z +  
greater than 300 (or lower) for the cases considered. The values 
of . .( Re )

hD F Df  presented in Table 1, the corresponding 
correlations given in equation (15), and the  

 results presented in Figure 10 (and 
suitable curve fits to these results, if needed) could be used to 
enhance the capabilities of current quasi one-dimensional 
models of LHPS. 

. .( Re ) /( Re )
h happ D D F Df f
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