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ABSTRACT 
In order to safe design and optimize performance of some 

industrial systems, it’s often needed to categorize two-phase 

flow into different regimes. In each flow regime, flow 

conditions have similar geometric and hydrodynamic 

characteristics. Traditionally, flow regime identification was 

carried out by flow visualization or instrumental indicators. In 

this research3 kind of neural networks have been used to 

predict system characteristic and flow regime, and results of 

them were compared: radial basis function neural networks, self 

organized and Multilayer perceptrons (supervised) neural 

networks. The data bank contains experimental pressure 

signalfor a wide range of operational conditions in which 

upward two phase air/water flows pass to through a vertical 

pipe of 5cm diameter under adiabatic condition. Two methods 

of signal processing were applied to these pressure signals, one 

is FFT (Fast Fourier Transform) analysis and the other is 

PDF(Probability Density Function) joint with wavelet 

denoising. In this work, from signals of 15 fast response 

pressure transducers, 2 have been selected to be used as feed of 

neural networks. The results show that obtained flow regimes 

are in good agreement with experimental data and observation. 

INTRODUCTION 
Two-phase flow is ubiquitous in many industrial processes 

such as petroleum, chemical engineering, metallurgy, and 

circumstance protection. Flow pattern monitoring plays an 

important role in process control, quality assurance and safety 

management for two-phase flow. Vertical two-phase flow may 

be categorized into four major flow regimes based on their 

appearances: bubbly, slug, churn, and annular. The main 

difference between slug and churn flow can be investigated as 

the turbulence and vibrations in churn flow are much higher 

than the slug flow. Normally, hydrodynamic and kinematic 

mechanisms change with these flow regimes. From the point of 

view of theoretical analysis, in a two-fluid model, almost every 

constitutive relation depends on flow regime because physical 

mechanisms vary with flow regime transitions. 
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Fig.1. Two phase flow regimes in vertical pipe: a. bubbly, b. slug, c. 

churn and d. annular. 
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In this regards, many works have been done to classify 

flow regimes. Different ways have been used for this 

classification such as neutron radio graph, impedance 

measurement, void fraction analysis and etc. Haojiang Wu et al. 

[1] measured differential pressure signals of oil-gas-water 

multiphase flow in a horizontal pipe with a piezo-resistance 

differential pressure transducer. They obtained the 

characteristic vectors of various flow regimes are from the 

denoised differential pressure signals with fractal theory. In 

their work the characteristic vectors of known flow regimes are 

fed into a neural network for training. Then, the characteristic 

vector of some kind of unknown flow regime of oil-gas-water 

multiphase flow is fed into the neural network and the neural 

network canautomatically send out the information in respect to 

the classification of flow regime. 

Mi et al. [2] focused on developing a methodology of 

online flow regime identification with neural network systems 

trained with input from numerical simulation, which is based 

on theoretical models and advanced experimental techniques. 

In their paper the applicability of both supervised and self-

organized neural networks for this method was tested. To train 

neural networks, they generated known input through 

numerical simulation of the impedance of idealized twophase 

flows. The carried out simulation was mainly based on two-

phase theoretical models, such as the drift flux model [3-4], the 

newly developed slug flow model [5] and two-phase 

experimental databases. In another work by T. Xie et al. [6] the 

feasibility of a transportable artificial neural network (ANN) 

based technique for the classification of flow regimes in three 

phasegas/liquid/pulp fiber systems by using pressure signals as 

input was examined. Local pressure fluctuations were recorded 

at three differentstations along the column using three 

independent but principally similar transducers. An ANN was 

designed, trained and tested for the classification of the flow 

regimes using as input some density characteristics of the 

normalized pressure signals and was shown to predict the flow 

regimes with good accuracy.In a recent work by Chunguo and 

Qiuguo [7], the gamma ray scattering energy spectrum detected 

by one detector was presented to distinguish the gas liquidtwo-

phase flow regime of vertical pipe. The simulation geometries 

of the gamma ray scattering measurement were built using 

Monte Carlo software GEANT4. Their results show that the 

scattering energy characters of homogeneous flow and annular 

flow have significantlydifferent. The scattering spectrum of 

slug flow is similar to annular flow for long gas slugs and 

similar to homogeneous flowfor short gas slugs. Also in their 

paper the RBF neural networks were used to predict the flow 

regime. Itwas demonstrated that the method of one detector 

scattering energy spectrum has the ability to identify the typical 

gas liquidflow regime of vertical pipe and fit the applications in 

engineering. 

In a work done by Julia et al. [8] a new approach has been 

used to identify both global and local flow regimes in atwo-

phase upward flow under adiabatic conditions. In this method, 

the bubble chord length distributions,which are measured 

simultaneously with three double-sensor conductivity probes, 

have been used to feed a self-organized neural network. 

Theglobal flow regime identification results show a reasonable 

agreement with the visual observation for all the flow 

conditions. Nonetheless, in this work only thelocal flow 

regimes measured at the center of the pipe agree with the global 

ones. Malayeri et al. [9] used radial basis function neural 

networks to predict cross-sectional and time-averaged void 

fraction at differenttemperatures. Their work was based on 

experimental measurements for a wide range of operational 

conditions in which upward twophaseair/water flows pass 

through a vertical pipe. In this article the independent 

parameters are in terms of dimensionlessgroups such as 

modified volumetric flow ratio, density difference ratio, and 

Weber number. Bai et al. [10] proposed the prerequisite to 

realize the online recognition.  Also they obtained recognition 

rules for partial flow pattern basedon the massive experimental 

data. They calculated standard templates for every flow regime 

feature with self-organization cluster algorithm. In this paper 

the multi-sensor data fusionmethod is presented to realize the 

online recognition of multiphase flow regime with thepressure 

and differential pressure signals, which overcomes the severe 

influence of fluidflow velocity and the oil fraction on the 

recognition. 

In another work an instantaneous and objective flow 

regime identification method for the two-phase flow is 

represented by Lee et al. [11]. The previous methods have been 

evolved to be an objective by replacing the heuristic 

determination using the sensor signals in terms of the statistical 

indexes. The design of the neural network fed by the 

preprocessed impedance signals of the cross-sectional void 

fraction is proposed in this paper to satisfy the requirement of 

both objective and an instantaneous identification. It was found 

that the proposed flow regime identifier could successfully 

identify the flow regime using the short term observation data 

within 1 second. they also found that other flow regimes have 

strong dependency on the pipe diameter and some phenomena 

related to the kinematic wave propagation which was not 

considered reasonably in the previous criteria. Li [12] 

attempted to combine Empirical Mode Decomposition (EMD) 

and back propagation (BP) neural network to solve two phase 

flow regime identification problem. Differential pressuresignal 

of two-phase flow, which is representatively non-stationaryand 

multi-component signal, contains muchinformation about flow. 

In mentioned work EMD is applied to differentialpressure 

signal to obtain frequency components withdifferent scales. 

The normalized energy of frequencycomponents is extracted as 

features. Five flow patternssuch as bubble flow, plug flow, 

stratified flow, slug flowand annular flow are investigated using 

BP neuralnetwork.  

In this work we present a new method of signal processing 

were applied to pressure signals of two phase flow which are 

obtained from a large scale vertical test apparatus. Then 

extracted characteristic of signals were fed to three different 

neural networks and their performance for predicting flow 

regimes were observed. From results, it is obvious that these 

methods are acceptable and accurate. 
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EXPERIMENTAL SET-UP 
The experimental apparatus is shown schematically in 

Fig.2. The air and water were used as the gas and liquid phases 

in the experiments. The water is pumped from the main tank by 

the centrifugal pump via the strainer. To prevent vibration of 

the system, two shock absorbers are placed at the inlet and 

outlet of the pump. The water flow rates were regulated by two 

globe valves and were measured by the calibrated magnetic 

flow meter [Siemens MAG5100] with an accuracy of 0.25%. 

The compressed air was fed by a compressor [Atlas Copco 

GA210] up to 6 bar continuously. The air flow rates were set 

and filtered by the Wilkerson filter and regulator and were 

measured by the calibrated Gas Turbine flow meter [Omega 

FTB-934] with an accuracy of ±1%. Air and water are mixed 

together in the plenum which is made of acrylic glass and 

placed at the bottom of the riser pipe. Compressed air is 

injected at the plenum by the porous stainless steel plate with 

108 holes of 0.5 mm diameter. The overall length and internal 

diameter of the riser pipe are 6 m and 50 mm, respectively. In 

order to have the capability of visual observation of the two 

phase flow patterns, the riser pipe is made of a transparent 

acrylic glass. The water flowed upward with air through the 

riser and would be separated in the separation tank at the top of 

the riser. The air was discharged to the atmosphere and the 

water was returned to the main tank or to the airlift tank. The 

temperature of the water was kept constant at the ambient 

condition. The pressure of the two phase flow is measured by 

the 16 pressure transmitters [INDUMART, PTF106-04G100] 

with accuracy of 0.3% at the different position along the riser.
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Fig.2. Schematic view for the experimental system
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All the above instruments own a specified signal (4-20 mA); 

these signals are scaled and fed for a rapid and wide band data 

acquisition card of type National Instrument, PCI-6255. 

Recorded data are stored for further post processing. The flow 

regimes were observed by a high speed CCD camera [CASIO 

F1] with 1200 frame per second. Images were captured at the 

height of 5.5 m with 60 fps and resolution of 6 Mega-pixels 

(2816×2112). The superficial air and water velocity were set to 

be 0.01-10 m/s and 0.1-5 m/s, respectively. 

In every test, the pressure fluctuations were recorded using 

the aforementioned pressure sensors, located at heights of 

140cm and 175cm from the inlet of the bubble column. 

Acquisition frequency and length of time series data are 

important factors for the estimation of statistical properties of 

random data. The sampling frequency was selected to be 100Hz 

so that the Nyquist rate exceeded the maximum frequency 

contained in the data, as [13] suggests that the most informative 

pressure fluctuations in the bubble columns occur in the range 

from 0 to 20 Hz. The record length of 1000 data points (10s 

duration) was chosen on the basis of preliminary experiments 

to satisfy wide-sense stationarity. 

SIGNAL PROCESSING 
Pressure fluctuations that result from the passage of gasand 

liquid pockets, and their statistical characteristics, 

areparticularly attractive for objective characterization of 

flowregimes because the required sensors are robust, 

inexpensiveand relatively well-developed, and therefore more 

likely tobe applied in the industrial systems [13].Power spectral 

density (PSD) and probability density function (PDF) of 

pressure drop fluctuations recorded by twopressure transducers 

were studied by Franca et al. [14],and more recently by Shim 

and Jo [15], for regime identification in gas–liquid two-phase 

flows. Based on theanalysis of experimental data in a horizontal 

tube, Francaet al. [14] noted that, although PSD and PDF could 

noteasily be used for regime identification, objective 

discriminationbetween separated and intermittent regimes 

mightbe possible by fractal techniques. Based on PSD and 

PDFanalyses, Shim and Jo [15] could characterize bubbly, 

churn, and slug flow patterns in low-flow experiments in a 

vertical tube. At high flow rates, however, their technique 

couldonly distinguish the bubbly flow regime. 

In Fig.3 pressure signals of first pressure transducer for 

different flow regimes are shown. As we see, these signals have 

different characteristic and they can be used for flow regime 

recognition. These are raw signals and must be denoised. 

Wavelet was used to denoising them. 

Fast Fourier Transform 
A Fast Fourier Transform (FFT) is an efficient algorithm to 

compute the Discrete Fourier Transform (DFT) and its inverse. 

There are many distinct FFT algorithms involving a wide range 

of mathematics, from simple complex-number arithmetic to 

group theory and number theory. 

A DFT decomposes a sequence of values into components 

of different frequencies. This operation is useful in many fields 

but computing it directly from the definition is often too slow 

to be practical. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig.3. Pressure signal of different flow regimes, a. bubbly, b. slug, c. 

churn and d. annular 

An FFT is a way to compute the same result more quickly: 

computing a DFT of N points in the obvious way, using the 

definition, takes O(N2) arithmetical operations, while an FFT 

can compute the same result in only O(N log N) operations. The 

difference in speed can be substantial, especially for long data 

sets where N may be in the thousands or millions—in practice, 
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the computation time can be reduced by several orders of 

magnitude in such cases, and the improvement is roughly 

proportional toN/log(N). This huge improvement made many 

DFT-based algorithms practical; FFTs are of great importance 

to a wide variety of applications, from digital signal processing 

and solving partial differential equations to algorithms for 

quick multiplication of large integers. The most well known 

FFT algorithms depend upon the factorization of N, but 

(contrary to popular misconception) there are FFTs with O(N 

log N) complexity for all N. Many FFT algorithms only depend 

on the fact that 𝑒−
2𝜋𝑖

𝑁  is an Nth primitive root of unity, and thus 

can be applied to analogous transforms over any finite field, 

such as number-theoretic transforms. Since the inverse DFT is 

the same as the DFT, but with the opposite sign in the exponent 

and a 1/N factor, any FFT algorithm can easily be adapted for 

it. 

An FFT computes the DFT and produces exactly the same 

result as evaluating the DFT definition directly; the only 

difference is that an FFT is much faster. In the presence of 

round-off error, many FFT algorithms are also much more 

accurate than evaluating the DFT definition directly. 

Let x0, ....,xN-1 be complex numbers. The DFT is defined by 

the formula 

 

𝑋𝑘 =  𝑥𝑛𝑒−𝑖2𝜋𝑘
𝑛

𝑁

𝑁−1

𝑛=0

 

 

Evaluating this definition directly requires O(N2) 

operations: there are N outputs Xk, and each output requires a 

sum of N terms. An FFT is any method to compute the same 

results in O(N log N) operations. More precisely, all known 

FFT algorithms require O(N log N) operations (technically, O 

only denotes an upper bound), although there is no proof that 

better complexity is impossible. 

The Fourier transform produces averaged spectral 

coefficients that are independent of time and is useful to 

identifydominant frequencies in a signal. When a Fourier 

spectrum from the signal displays more than one peak, 

theinformation on the frequencies, at which the peaks occur, 

with respect to time, i.e., frequency-time plots, is veryvaluable 

to the understanding of flow physics [16-18]. Thisinformation 

may be given in the short fast Fourier transform. However, FFT 

may suffer from some limitations as mentioned in [19-22], but 

in this work it does an acceptable work. 

Fig.4 shows a sample of the FFT of pressure signals for 

different flow regime. As it is seen any regimes has one or more 

dominant frequency in which the amplitude of FFT is 

maximum. The processing of more than 100 signals per each 

regime shows (Fig.4-a) that the dominant frequency of bubbly 

flow is about 1.5Hz. In spite of this fact two smaller peaks are 

seen in 11 and 15.2 Hz. With a good accuracy this trend repeats 

in other samples for bubbly flow. The amplitude of FFT 

coefficient in dominant frequency for different signals of 

bubbly flow is about 0.0315-0.367. 

Fig.4-b represents FFT for pressure signal of slug flow. It 

is seen that predominant frequency occurs in 3.8Hz with 

amplitude of 0.039. In other signals of this regime the dominant 

frequency changes from 3Hz to 5.8Hz. The maximum 

coefficient for slug varies in range of 0.0382-0.0411. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.4. FFT representation of pressure signals for different flow 

regimes, a. bubbly, b. slug, c. churn and d. annular 
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For turbulent churn flow (Fig.4-c) there’s 4-6 peaks in 

different frequency but in experiments the dominant frequency 

of pressure signals in this regime occurs at 11.5-12.5Hz. The 

nature of signals shows that the flow domain has a kind of 

complexity and different outstanding frequencies exist in flow. 

The reason can be presence of powerful turbulence in churn 

flow. In annular flow dominant frequencies are in range of 0-

10Hz. The number of peaks varies between 6 and 10. But the 

amplitudes and frequencies of these peaks are close. The 

location of dominant frequency changes for different run of 

annular flow but it is always below 7Hz. 

Probability Density Function 
In probability theory, a probability density function 

(abbreviated as PDF) of a continuous random variable is a 

function that describes the relative likelihood for this random 

variable to occur at a given point in the observation space. The 

probability of a random variable falling within a given set is 

given by the integral of its density over the set.On rare 

occasions the term ―probability distribution function‖ is used to 

denote the probability density function. However special care 

should be taken around this term, since the ―probability 

distribution function‖ may be used when the probability 

distribution is defined as function over general sets of values, 

or it may refer to the cumulative distribution function, or it may 

be a probability mass function rather than the density. 

A PDF is most commonly associated with 

continuousunivariate distributions. A random variableX has 

density ƒ, where ƒ is a non-negative Lebesgue-integrable 

function, if 

 

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 

 

Hence, if F is the cumulative distribution function of X, then 

 

𝐹 𝑥 =  𝑓 𝑢 𝑑𝑢
𝑥

−∞

 

 

and 

 

𝑓 𝑥 =
𝑑

𝑑𝑥
𝐹 𝑥  

 

Intuitively, one can think of 𝑓 𝑥 𝑑𝑥as being the 

probability of X falling within the infinitesimal interval 

[x, x + dx].This definition may be extended to any probability 

distribution using the measure-theoreticdefinition of 

probability. A random variableX has probability distributionX*P, 

the density of X with respect to a reference measure μ is the 

Radon–Nikodym derivative 

 

𝑓 =
𝑑𝑋 ∗ 𝑃

𝑑𝜇
 

 

That is, ƒ is any function with the property that 

𝑃 𝑋 ∈ 𝐴 =  𝑑𝑃
𝑋−1𝐴

=  𝑓𝑑𝜇
𝐴

 

 

for any measurable set A. The standard normal distribution has 

probability density 

 

𝑓 𝑥 =
𝑒−

𝑥2

2

 2𝜋
 

 

If a random variable X is given and its distribution admits a 

probability density function ƒ, then the expected value of X (if 

it exists) can be calculated as 

 

𝐸 𝑋 =  𝑥𝑓 𝑥 𝑑𝑥
∞

−∞

 

 

Not every probability distribution has a density function: 

the distributions of discrete random variables do not; nor does 

the Cantor distribution, even though it has no discrete 

component, i.e., do not assign positive probability to any 

individual point. 

Fig.5 demonstrates PDF of normalized pressure signals for 

different flow regimes. As we see for bubbly flow (Fig.5-a) 

maximum of PDF occurs in vicinity of 0.465bar. Another 

important note is that band width of PDF in bubbly flow is 

short. This trend is repeated for other normalized signals of 

bubbly flow. Fig.5-b shows the PDF of pressure signal in slug 

flow. In comparison with bubbly, the band width is larger and 

location of maximum PDF occurs at vicinity of 0.57bar. Also 

the maximum PDF of slug is approximately 0.015 and in 

bubbly is 0.04. For turbulent churn flow and annular flow 

(Fig.5-c-d) the location of maximum PDF moves to right. For 

churn flow it occurs at neighboring of 0.62bar and for annular 

flow it occurs at 0.75bar. The band width in annular flow is 

larger than churn flow and its peak has a lower quantity. 

The above analysis show that although raw pressure signal 

of flow has not capability of being used for regime detection 

but some simple signal processing techniques can be useful for 

feature extraction from this signals. The final features which 

were used as input of neural network are 3 dominant 

frequencies (if there’s not 3 dominant frequencies, others were 

set to zero), maximum PDF, location of maximum PDF and 

band width of PDF. 

NEURAL NETWORK ANALYSIS 
To avoid subjective judgment, artificial neural 

network(ANN) modeling hasbeen employed to implement non-

linear mappings frommeasurable physical parameters to flow 

regimes [2, 23-24]. Artificial neural networksare analytical 

tools that imitate the neural aspect of thehuman brain, whereby 

learning is based on experience andrepetition rather than the 

application of rule-based principles and formulas. An ANN 

6 Copyright © 2010 by ASME

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Continuous_probability_distribution
http://en.wikipedia.org/wiki/Continuous_probability_distribution
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Lebesgue_integration
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Interval_%28mathematics%29
http://en.wikipedia.org/wiki/Measure_theory
http://en.wikipedia.org/wiki/Measure_theory
http://en.wikipedia.org/wiki/Measure_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_distribution#Formal_definition
http://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_derivative
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Discrete_random_variable
http://en.wikipedia.org/wiki/Cantor_distribution


7 

consists of a layered network of neurons (nodes), with each 

neuron connected to a large number of others. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.5. PDF of normalized pressure signal of different flow regimes, a. 

bubbly, b. slug, c. churn and d. annular 

The input signal to the network is passed amongthe 

neurons, with each neuron calculating its own outputusing 

weighting associated with connections. Learning isachieved by 

the adjustment of the weights associated withinter-neuron 

connections. ANNs provide capabilities suchas learning, self-

organization, generalization (response tonew problems using 

incomplete information), and training;and are excellent for 

pattern recognition and trend predictionfor processes that are 

non-linear, poorly-understood,and/or too complex for accurate 

first-principle mathematicalmodeling. They seem ideal for 

applications to multiphase flow systems, and when properly 

designed and trained, canpotentially improve on-line 

monitoring and diagnostics.ANNs have recently been applied 

for the prediction ofcomplex thermal systems rather 

extensively. Although theapplication of neural networks to 

multiphase flow problemshas started only recently, the 

published studies haveclearly demonstrated their enormous 

potential [6]. 

Radial Basis Function Neural Network 
At present, the radial basis function network is one of the 

main fields of research in numerical analysis [25]. This network 

has a fast rate of learning and high accuracy. The construction 

of a radial basis function network in its most basic form 

involves three entirely different layers. The input layer is made 

of input nodes. The second layer is a hidden layer of sufficient 

dimensions, which serves a different purpose than in multi-

layer perceptrons, such as back-propagation networks. The 

output layer supplies the response of the network to 

theactivation patterns applied to the input layer. A 

typicalstructural form of a RBF with multiple inputs and 

oneoutput is shown in Fig.6. In contrast to the multi-

layerperceptrons, the transformation from input space to 

thehidden layer space is non-linear, whereas the 

transformationfrom the hidden layer space to the output spaceis 

linear.RBFs are used in designing the networks and 

aredeveloped in two phases, as follows 

1. The training or learning phase in which a set ofknown 

input//output patterns are presented to thenetwork. The 

weights are adjusted between thenodes until the desired 

output is provided. 

2. The generalization phase in which the network 

issubjected to input patterns that it has not seenbefore, but 

whose outputs are known and theperformance is 

monitored. 

 

Fig.6. Schematic of RBF neural network 
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Input and output variables in designing the networksare to 

be used in terms of dimensionless groups and normalized form. 

Selection of input and output variablesand of the data set for 

training should be donecarefully to cover the whole range of 

variables, sinceneural networks cannot be used reliably for 

extrapolations.In general, the majority of data are be used for 

training the network, and the remaining part for the 

generalization phase.More details about RBFs could be found 

in [25, 26]. Fig.7 demonstrates the training error for data sets of 

flow regimes. 

 

 
Fig.7. training error of RBF neural network for regime identification 

Self-Organized Neural Network 
The self-organizing networks are often used to form 

clusters. No information concerning the correct class is 

provided to these neural networks during training. A self-

organizing neural network is a two-layer network that can 

cluster input data into several categories that contain similar 

objects in the input data. The number of categories is specified 

subjectively. The classified results of the neural network can 

show the inherent relations among the patterns that feature the 

data involved. In this research, multiple self-organizing neural 

networks were employed to perform flow regime identification. 

In the system, there is only one neural network in the first layer, 

two output nodes of which are connected to the next layer. In 

the following layers, each neural network may have two output 

nodes. Once the system is set up and trained, an input may pass 

through a couple of layers to reach an ending node, 

corresponding to a specific pattern that the input should belong 

to. These multiple neural networks allow one to adopt more 

input variables since each unit may have as many as 20 input 

variables, and to make dominant input more effective around 

transition regions. Another advantage of the multiple neural 

networks over a single neural network is that physical 

understanding is embodied into each layer and each unit. In a 

sense of virtual classification, each unit may have its own very 

meaningful function [2]. Fig.8 shows a simple schematic of 

self-organized neural network. As shown in this figure, in the 

first layer, a self-organizing neural network was assigned with 

two output nodes to group any flow into one of two patterns. In 

other words, the first unit, U0, can divide the flow regime map 

into two parts. After training unit U0, the result showed that 

one output node corresponded to bubbly, annular and churn 

flows, while the other corresponded to slug flow. Unit U1 

further separated the first output node of unit U0 into two 

nodes: one corresponded to annular and churn flows, the other 

corresponded to bubbly flow. The first output nodes of unit U2 

was divided into two nodes corresponding to annular and churn 

flow, respectively. Accordingly, after training, the neural 

network classified these simulated input values to output nodes 

corresponding to four flow regimes. 

 

 

 

Fig.8. Schematic diagram for a four nodes self-organizing classifier of 

two phase flow  

Fig.9 shows the clusters of regimes which were obtained due to 

self-organizing mapping. It shows that the flow regimes were 

classified properly and there’s adequate distance between them.  

 
Fig.9. Two weight factors (from 6) and self organized mapping of 

regimes 
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Multi-Layer Perceptrons (Supervised) Neural 
Networks 

An MLP is a network of simple neurons called 

perceptrons. The basic concept of a single perceptron was 

introduced by Rosenblatt in 1958. The perceptron computes a 

single output from multiple real-valued inputs by forming a 

linear combination according to its input weights and then 

possibly putting the output through some nonlinear activation 

function. Mathematically this can be written as 

 

𝑦 = 𝜑   𝜔𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 = 𝜑 𝑤𝑇𝑥 + 𝑏  

 

where 𝑤 denotes the vector of weights, 𝑥 is the vector of 

inputs, 𝑏  is the bias and 𝜑 is the activation function.  

A single perceptron is not very useful because of its limited 

mapping ability. No matter what activation function is used, the 

perceptron is only able to represent an oriented ridge-like 

function. The perceptrons can, however, be used as building 

blocks of a larger, much more practical structure. A typical 

multilayer perceptron (MLP) network consists of a set of 

source nodes forming the input layer, one or more hidden layers 

of computation nodes, and an output layer of nodes. The input 

signal propagates through the network layer-by-layer. 

While single-layer networks composed of parallel 

perceptrons are rather limited in what kind of mappings they 

can represent, the power of an MLP network with only one 

hidden layer is surprisingly large. As Hornik et al. [27] and 

Funahashi[28] showed such networks, are capable of 

approximating any continuous function 𝑓: ℛ𝑛 → ℛ𝑚  to any 

given accuracy, provided that sufficiently many hidden units 

are available. 

MLP networks are typically used in supervised learning 

problems. This means that there is a training set of input-output 

pairs and the network must learn to model the dependency 

between them. The training here means adapting all the weights 

and to their optimal values for the given pairs. The criterion to 

be optimized is typically the squared reconstruction error 

 

  𝑓 𝑠 𝑡  − 𝑥 𝑡  
2

𝑡
 

 

The supervised learning problem of the MLP can be solved 

with the back-propagation algorithm. The algorithm consists of 

two steps. In the backward pass, partial derivatives of the cost 

function with respect to the different parameters are propagated 

back through the network. The chain rule of differentiation 

gives very similar computational rules for the backward pass as 

the ones in the forward pass. The network weights can then be 

adapted using any gradient-based optimization algorithm. The 

whole process is iterated until the weights have converged [25]. 

The MLP network can also be used for unsupervised 

learning by using the so called auto-associative structure. This 

is done by setting the same values for both the inputs and the 

outputs of the network. The extracted sources emerge from the 

values of the hidden neurons [29]. This approach is 

computationally rather intensive. The MLP network has to have 

at least three hidden layers for any reasonable representation 

and training such a network is a time consuming process. 

Fig.10 shows the training error for regime identification 

versus number of epochs. As we see the training error decreases 

with increasing number of epochs, but this trend exists if 

epochs were less than 200. For more number of epochs the 

training error gets a periodic form. 

 

 
Fig.10 Training error for MLP versus number of epochs 

Table 1 shows the results of checking data (more than 70 

checks for each regime) for three different ANNs. The contents 

of table are presented in term of accuracy for prediction. 

Table1. Accuracy of regime prediction for different ANNs 

ANN RBF SOM MLP 
bubbly 100% 100% 100% 

slug 97.6% 98.1% 96.9% 

churn 98.1% 98.9% 97.7% 

annular 97.1% 98.3% 96.2% 

 

Table 1 show that accuracy of flow regime identification of 

SOM (self organizing mapping) is better than two others 

ANNs. But considering a note is so important here, the main 

error which exists in regime prediction refers to pressure signal 

and its post processing not to ANNs. As our data for each 

regime are simply distinguishable AANs do their work 

correctly or almost correctly. Due to different operating 

conditions, some features of normalized pressure signal may 

cause confusion. 

CONCLUSION 
In this paper, flow pattern identification using RBF, SOM 

and MLP is discussed in detail. Some features of the 

differential pressure signal in different frequency scales is 

extracted as the characteristic of flow pattern and the mentioned 

neural networks completed excellently the classification task of 

flow pattern. Air-water two-phase flow experiment shows that 

neural network can characterize the complex relationship 

between flow pattern and the differential pressure signal with 

satisfactory accuracy. 
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