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ABSTRACT
A regular pattern of turbulent and quasi-laminar fluid mo-

tion is known to appear in plane Poiseuille flow near the low-
est Reynolds number for which turbulence can be sustained. We
focused on this transitional structure called the turbulent stripe
and investigated its energy transport process, using a direct nu-
merical simulation. We obtained the budget for Reynolds stresses
including v′w′ and w′u′. The spatial outline of the energy trans-
port with respect to the turbulent stripe is proposed. The tur-
bulent energy is produced in both the turbulent region and the
quasi-laminar region, and the energy transfer between these two
regions is found to be small.

INTRODUCTION
In the present work, we consider a plane Poiseuille flow.

This flow is characterized by a single non-dimensional param-
eter, i.e., the Reynolds number, defined as Reτ = uτδ/ν, where
δ is the half gap between the plates, uτ is the friction velocity,
and ν is the kinematic viscosity of fluid. Although a turbulent
channel flow, as one of the canonical wall turbulence, has been
studied in a wide-range of the Reynolds number by a number
of researchers, both computational and experimental studies on
the subcritical transitional channel flow are few in number and
rarely demonstrated spatially intermittent turbulence in the chan-
nel flow.

∗Address all correspondence to this author.

The intermittent turbulent structure, that emerges in various
sheared flows at transitional Reynolds numbers, has been inves-
tigated. Recently, the turbulent structure similar to the puff in
a transitional pipe flow was found in a transitional channel flow
by Tsukahara et al. [1–4] through a direct numerical simulation
(DNS). This structure is called the “turbulent-stripe” structure
(TSS), consisting of a turbulent region and a quasi-laminar re-
gion, each with a stripe pattern. Further observations of the TSS
as well as that in a plane Couette flow have been reported in these
years [6–8]. Barkley & Tuckerman [6] carried out simulations of
the turbulent Couette flow in a computational domain, which was
inclined with respect to the mean flow direction. They revealed
that once the Reynolds number, based on the channel width and
the wall velocity, decreased from 500 to 350, turbulent and quasi-
laminar regions spontaneously appeared and remained in coexis-
tence. In their study, the turbulent statistics were spatially aver-
aged along the stripe pattern, and the secondary flows were inves-
tigated in detail. The experiments [9, 10] of Taylor-Couette flow
first showed this kind of intermittent turbulent structure called
the spiral turbulence, which was laminar and turbulent regions
coexist in a spiral shape. In our previous studies, we performed
the direct numerical simulations of a turbulent Poiseuille flow us-
ing an extremely large computational domain and found that, in
the low Reynolds numbers of Reτ = 56–80, the Poiseuille flow
contained several localized turbulent bands, as similar to those
observed in the plane Couette and the Taylor-Couette flows. In
the flow, the quasi-laminar and turbulent regions was found to

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-31122 
 



CL

x,u

y,v z,w

Lx

Lz

uδ

Figure 1. Flow configuration and coordinate system.

form the stripe pattern, which inclined at 24◦ against the stream-
wise direction and maintains itself over a long time. However,
the self-sustaining mechanism of the TSS has not been fully un-
derstood.

In the present work, we performed DNS of a turbulent
Poiseuille flow at a low Reynolds number. We investigated the
self-sustaining mechanism of the TSS by analyzing energy bud-
gets of Reynolds stresses. In addition, we applied the rheoscopic-
fluid visualization technique [13] to visualize the flow field and
compared with experimental observations [14]. A rheoscopic-
fluid is one that allows the viewer to see the features of the flow
directly, as explained in a later section.

DNS DETAILS
The objective flow field is a channel flow, as given in Fig. 1.

Throughout this paper, x (u), y (v) and z (w) denote the stream-
wise, wall-normal and spanwise directions (velocities), respec-
tively. The mean flow is driven by the uniform pressure gradi-
ent. It is assumed to be fully developed in the streamwise and
spanwise directions. Periodic boundary condition is imposed in
the horizontal directions, and non-slip condition is applied on
the walls. The fundamental equations are the continuity and the
Navier-Stokes equations:

∂u+
i

∂x∗i
= 0, (1)

∂u+
i

∂t∗
+u+

j
∂u+

i
∂x∗j

= −∂p+

∂x∗i
+

1
Re

∂
∂x∗j

(
∂u+

i
∂x∗j

)
+δ1i. (2)

where δ1i corresponds to the mean pressure gradient, and quan-
tities with the superscript of + indicate those normalized by the
wall variables. They are normalized by the characteristic velocity
uτ from the mean pressure gradient, the channel half width δ, the
fluid viscosity ρ, and the kinematic viscosity ν. For the spatial
discretization, the finite difference method is adopted. Further
details of the method can be found in our previous reports [1, 2].

Uniform grid mesh is used in the streamwise and spanwise di-
rections, and non-uniform mesh in the wall-normal direction. At
Reτ = 80, the wall-normal grid spacings are Δy+ = 0.22–3.59,
which correspond to 0.13η–1.25η (η is referred to as a local Kol-
mogorov scale). These grid spacings are finer than ones used
by Abe et al. [5], whose grid resolutions were approximately
equal to 0.3η–1.6η. A fully-developed flow field at a moder-
ate Reynolds number was used as the initial condition. Note
that various statistical data and visualized fields have been ob-
tained after the flow field reached statistical-steady state. As
for two-dimensional contours shown after, quasi-mean velocities
and budgets of Reynolds shear stresses are averaged for a time
of 150δ/uτ (i.e., 9600ν/u2

τ ; 40 wash-out times). We employed a
computational domain of Lx×Ly×Lz = 51.2δ×2δ×25.6δ with
1024× 96× 512 grids. This size of the domain can capture a
single localized turbulent region, i.e., a single turbulent-laminar
band, in order to discuss the mechanism through which the TSS
sustains itself.

RESULTS AND DISCUSSION
In the present study, we confirmed the appearance of a TSS

at low Reynolds number of Reτ = 80. In the following sections,
we shall recapitulate the rheoscopic-fluid visualization technique
to extract TSS in the flow field and compare them with those ob-
served by experimental study. After that, some details are pre-
sented to show mechanisms of the TSS through analysis of the
budget of the transport equations for Reynolds stresses. Finally
we will describe an outline of the spatial transport of turbulent
kinetic energy concerning the structure.

DNS visualization
Figure 2(a) displays a snapshot of the flow with iso-surfaces

of the streamwise velocity fluctuation at Reτ = 80 (Rem = 2400),
in which positive and negative fluctuations clearly exhibit a snap-
shot of large-scale oblique pattern. To make a comparison with
experimental flow visualization using flake particles, the fluid is
visualized as a rheoscopic fluid and by volume rendering. It is
known that a flake particle follows a direction of a local shear
layer so that the normal vector of a flake n is formulated by the
following equation,

n = 2Duû− (ûTDuû
)

û (3)

where u is the fluid velocity, û is the unit vector of u, and Du
is the strain-rate tensor. Angles of the light-source and observa-
tion directions are referred as θ and φ, respectively. From the
relationship between three vectors of n, θ, and φ, the intensity of
reflected light can be evaluated.

Figures 2(c) and 2(d) show the present results of volume-
rendering visualization, and Fig. 2(b) shows an experimental ob-
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Figure 2. Comparison of visualization results on turbulent stripe. (a) Iso-surface of fluctuation velocity, red is u′+ > 2; blue is u′+ <−2. (b) Experimental
visualization. (c) Numerical rheoscopic fluid visualization (θ = −45 degree and φ = 90 degree). (d) Numerical rheoscopic fluid visualization (θ = 45
degree and φ = 90 degree). The visualized areas are of 51.2δ×25.6δ in (a,c,d) and of 164δ×82δ in (b).

servation by Hashimoto et al. [14]. Figure 2(c) is given for
θ = −45◦ and φ = 90◦—note that an angle of 0◦ corresponds
to the z axis in the z-y plane—, while Fig. 2(d) is for θ = 45◦
and φ = 90◦. In the present results using a rheoscopic fluid in the
same experimental condition of the light source and the camera
angle, the turbulent region is found to be bright and the quasi-
laminar region is relatively dark. From this method, fine-scale
vortices can be observed clearly in the localized turbulent re-
gion. On the other hand, large-scale streaks are found in the
quasi-laminar region, and they are elongated in the streamwise
direction, revealing the existence of longitudinal vortices there:
see Fig. 2 (b). Although the present method is useful as an
index by which the turbulent region and the quasi-laminar re-
gion are distinguished, the relationship between the brightness
and the flow state (laminar or turbulent) in the numerical visu-
alization is inconsistent with the experimental results. This is
because the large-scale streaks in the quasi-laminar region are
dominant, since the reflected light intensities from fine-scale ed-
dies are rather weak in experimental observation.

Ensemble-averaged flow field
The oblique pattern of TSS captured in the present DNS is

confined by the periodic boundaries in both streamwise and span-
wise directions, and parallel to a diagonal of the domain, as given
in Fig. 2(a). As can be seen from the figure, the TSS is elongated

across the domain in its diagonal direction. Let us define z′ as
the coordinate parallel to the diagonal line. A spatial-averaged
value in the z′ direction and a fluctuation from the mean value
are defined as:

ui
z′(x,y) =

1
T

1√
L2

x +L2
z

Z Z
ui(x+ t ·um,y,z′, t)dz′dt,

u′i(x,y,z) = ui(x,y,z)−ui
z′(x,y), (4)

while the usual averaging in x-z plane (z′-averaging) is;

ui(y) =
1
T

1
Lx ·Lz

Z Z Z
ui(x,y,z, t)dxdzdt,

u′′i (x,y,z) = ui(x,y,z)−ui(y). (5)

By assuming homogeneity of the TSS in the z′-direction and
its propagation speed equal to the bulk mean velocity um, the
ensemble-averaged velocity fields with respect to the TSS are
obtained. This z′-averaging can remove the large-scale fluctua-
tion (due to the TSS) from the fluctuating component.

The mean-velocity distributions in the x-y plane are shown
in Figs. 3(a), (b) and (c), which represent the streamwise, wall-
normal and spanwise components, respectively. Moreover, the
flow field can be classified to four regions as the following:
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Figure 3. Quasi-mean flow in an (x-y) frame of reference moving with the turbulent stripe: (a) quasi-mean streamwise velocity, (b) quasi-mean wall-normal
wise velocity, (c) quasi-mean spanwise velocity.

the upstream high-momentum (around the vertical-line III), the
downstream low-momentum region (I), a strong-turbulent zone
(IV), and a weak-turbulent zone (II) appear. The dotted line
designates the edge of the high-speed fluid region. It is found
that the large-scale regions of high- and low-speed fluctuations
appear occupying the whole width in the wall-normal direction.
The intrusion of high-speed fluid is clearly observed in Fig. 3(a),
where the high-speed fluid indicated in red are squeezed into
the upstream interface at the core region, and an internal strong
shear layer (∂u′/∂y) is generated there. In the near-wall region,
however, the high-speed fluids collide with the low-speed flu-
ids ahead, which generated the flow toward channel center. The
quasi-mean wall-normal velocity, shown in Fig. 3(b), is as large
as 0.06 around the turbulent region, while the mean wall-normal
velocity in the fully turbulent channel flow should be zero. As
shown in Fig. 3(c), at around the upstream interface, a significant
negative spanwise flow is generated at the channel center, while
the positive spanwise flow is generated in the near-wall region at
around the downstream interface.

Budgets of reynolds stress

Each budget term of the transport equation for Reynolds
stress u′+i u′+j , in the fully-developed channel flow field, can be

expressed as

D
Dt

(
u′+i u′+j

)
= Pi j +Ti j +Di j +Πi j − εi j, (6)

where the terms on the right-hand side are described as follows:

Production : Pi j = −
(

u′+i u′+k
∂u+

j

∂u+
k

+u′+j u′+k
∂u+

i

∂u+
k

)
(7)

Turbulent Diffusion : Ti j = − ∂
∂u+

k

(
u′+i u′+j u′+k

)
(8)

Molecular Diffusion : Di j =
∂2

∂u+2
k

(
u′+i u′+j

)
(9)

VPG : Πi j = −
(

u′+j
∂p′+

∂x+
i

+u′+i
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j

)
(10)

Dissipation rate : εi j = 2
(

∂u′+i
∂x+

k

)(∂u′+j
∂x+

k

)
(11)

Here, the VPG term denotes the velocity pressure-gradient cor-
relation term. In Fig. 4, we plotted the budget of the Reynolds
stress u′u′, as a function of the dimensionless wall distance y+,

4 Copyright c© 2010 by ASME



0 20 40 60 80

-0.2

-0.1

0

0.1

0.2

0.3 Production

Dissipation

Turbulent diffusion

Viscous diffusion

Residual

VPG

y+

L
os

s 
   

 G
ai

n

Figure 4. Budget of Reynolds stress u′u′: line, averaging in x-z plane;
symbol, averaging in z′ direction.
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Figure 5. Quasi-mean flow in an (x-y) frame of reference moving with the
turbulent stripe: (a) quasi-mean streamwise velocity, (b) turbulent kinetic
energy, (c,d) advection term of budgets for Reynolds stresses u′u′ and
v′v′.

for the result calculated by the z′-direction averaging and those
by the x-z plane averaging. The budget of Reynolds stresses for
v′v′ and w′w′ (not shown here) did not show a significant dis-
crepancy between the two averaging, but the budget of u′u′ did.
The production term is found to be decreased in the case of z′-
averaging, due to canceling the large fluctuation of the TSS. The
dissipation and the diffusion terms in the near-wall region are
also decreased. However, the VPG term does not depend on the
averaging procedure, and thereby the budgets both for v′v′ and
w′w′ are not difference between the two averaging.

Figure 5(a) reveals that large-scale regions of the high- or
low-speed fluctuation appear occupying the whole width in the
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Figure 6. Quasi-mean flow in an (x-y) frame of reference moving with
the turbulent stripe: (a) quasi-mean wall-normal velocity, (b) VPG term
of budget for Reynolds stress w′u′, (c,d) production term of budgets for
Reynolds stresses v′w′ and w′u′.

wall-normal direction. In the area from (I) to (III), the reduction
in the turbulent kinetic energy is caused by the local acceleration
of the mean flow.

As a result of using ensemble-averaged, a secondary flow
with the wall-normal and spanwise components is found to oc-
cur, as given in Fig. 3. Therefore, we calculated the budget for
Reynolds stresses v′w′ and w′u′. It can be expected that the tur-
bulent kinetic energy should be transferred between the quasi-
laminar region and the turbulent region. Figures 5(c) and 5(d)
show the advection terms of the budget for u′u′ and v′v′. The
kinetic energy is found to be transferred back and forth of the
turbulent regions: in the vicinity of the wall, the energy is trans-
ferred from the upstream to the downstream of the turbulent re-
gion, while in the core region, the energy is transferred in the op-
posite direction. The spatial energy transport will be discussed
again later.

Figure 6(a) shows the contour of the quasi-mean velocity in
wall-normal direction, and other figures show the contours of the
VPG term for w′u′ (b) and of the production terms for v′w′ (c)
and w′u′ (d). As seen in Figs 6(b), (c) and (d), the production
of the Reynolds stresses as well as their redistribution are signif-
icant in the turbulent region (III–IV–I). In Fig. 6(b), it is found
that the turbulent energy is exchanged by the VPG term between
the turbulent and the quasi-laminar regions. As can be seen from
Figs. 6(c) and 6(d), the productions for v′w′ and w′u′ are signifi-
cant in the turbulent region.

To discuss statistical characteristics of the quasi-laminar and
turbulent regions, a criterion should be determined to distinguish
between them. Barkley & Tuckerman [6] distinguished local tur-
bulent regions by integrated turbulent kinetic energy, and they
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Figure 7. Budget of Reynolds stress divided turbulent region and quasi-
laminar region. (a) Reynolds stress u′u′, (b) Reynolds stress v′v′, (c)
Reynolds stress w′w′.

confirmed the validity of this criterion. In this study, we em-
ployed a similar procedure to yield statistics in the localized tur-
bulent (or quasi-laminar) region. Figures 7(a), (b) and (c) show
the budget of Reynolds stress (u′u′,v′v′ and w′w′) averaged in

Turbulent
region

Quasi-Laminar
region

Quasi-Laminar
region

Channel center

Production

Dissipation

Diffusion

High-speed fluid

Advection

Low-speed fluid

x

y

Figure 8. Schematic of the turbulent-energy transport in channel flow.

quasi-laminar or turbulent region. In the figures, the production,
dissipation and VPG terms in each Reynolds stress are shown. It
can be clearly seen that all the terms for the quasi-laminar region
are significantly smaller than those in the turbulent regions, and
the peak location of each term tends to shift to the channel center.
These behaviors are similar to those by a typical low-Reynolds-
number effect, by which the viscous sub-layer should be thick-
ened. The energy balance for the Reynolds stress of u′u′ is found
to be almost identical between the turbulent region at Reτ = 80
and the (fully-turbulent) flow field at Reτ = 180, see Fig. 7(a). In
particular, the VPG terms for these two cases are in good agree-
ment. Therefore, it can be conjectured that the turbulent region
maintains itself as similar to a flow at higher Reynolds numbers.
In Fig. 7(c), the production term is negative value. This result
indicates that the turbulent energy is changed to the mean-flow
kinetic energy.

Finally, we discuss how the TSS is related to the energy-
transport process between the mean flow and the turbulent ki-
netic energy, and how the large-scale flow structures are related
to the exchange of turbulent kinetic energy between the turbu-
lent and quasi-laminar region. Figure 8 shows a schematic of
the energy-transport process between the quasi-laminar and tur-
bulent regions. As mentioned previously, the advection velocity
of turbulent region can be assumed to be constant over the en-
tire channel and equal to balk mean velocity. In the region away
from the wall, especially, at the channel center, the turbulent re-
gion moves slower than the quasi-laminar region, and thereby
it impinges on a downstream quasi-laminar region. In contrast,
near-wall low-speed streaks in the turbulent region are shifted
leftward in the figure, where a frame of reference moves with
the TSS, and then some fluctuations occurs in the quasi-laminar
region.

Figure 9 shows the transport of turbulent energy from the
production to dissipation. About 63% of the total turbulent ki-
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Figure 9. Schematic of the turbulent-energy transport process between
quasi-laminar and turbulent regions.

netic energy in the flow field is generated in the turbulent region
and the other 37% in the quasi-laminar region. Here, note that
the sum of produced turbulent energy from the mean-flow en-
ergy is 100%. In the turbulent region, 20% of the u′u′ energy
is redistributed to w′w′, and other 5% is to v′v′. It is interesting
to note that the energy transferred by the advection term to the
quasi-laminar region is only 3%. The turbulent energy in each
region is almost dissipated there, but 2% is changed adversely to
the mean flow.

CONCLUSIONS
A direct numerical simulation is carried out to investigate

turbulent structures in the turbulent plane Poiseuille flow at a
very low-Reynolds number in the transitional regime. The flow
accompanied by localized quasi-laminar and turbulent regions
gave rise to the turbulent-stripe structure. The fluid is visual-
ized as a rheoscopic fluid, in which imaginary flake particles are
suspended and by volume rendering. Using this method, quasi-
laminar and turbulent regions are adequately distinguished from
each other. It is found by conditionally ensemble-averaging that
the turbulent region is flanked by the high- and low-speed fluid,
which appear on the upstream and downstream sides of the turbu-
lent region, respectively. The spatial outline of the energy trans-
port with emphasis on the turbulent stripe is proposed. The tur-
bulent energy is produced in both the turbulent region and the
quasi-laminar region, and the energy transfer between these two
regions is found to be small.
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