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ABSTRACT
We present the development and application of an immersed

boundary (IB) method for the simulation of incompressible flow
inside and around complex geometrical shapes and cavities. The
IB method is based on a volume-penalization method that is ap-
plied throughout the domain, rendering the velocity in stationary
solid parts negligibly small, while the flow in the open parts of
the domain is governed by the Navier-Stokes equations. The flow
solver is based on a skew-symmetric finite-volume discretization
in combination with explicit time-stepping for the convective and
viscous fluxes, and implicit time-stepping for the IB forcing term.
The complex domain is characterized in terms of a so-called
‘masking function’ which equals unity in the solid parts and zero
in the open parts of the domain. The focus is on the accuracy
with which gradients of the solution close to solid walls can be
approximated using the IB methodology. We investigate this for
flow through a model of an aneurysm as may develop in the cir-
cle of Willis in a human brain, and to flow in a structured porous
medium composed of a regular spatial arrangement of square
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rods. The shear stress acting on the vessel walls in case of flow
through an aneurysm, and the permeability of the porous ma-
terial, are analyzed. The computational method converges as a
first order method for Poiseuille flow, with a considerable influ-
ence derived from the precise definition of the masking function
near solid-fluid interfaces. We identify the best masking func-
tion strategy and show that for plane Poiseuille flow even sec-
ond order convergence may be obtained. Qualitatively reliable
results are obtained already at modest resolutions of 8-16 grid
cells across a characteristic opening in the flow domain, e.g., the
vessel diameter or the size of the gap between individual square
rods.

INTRODUCTION
The prediction of flow that arises inside and around solid ob-

jects with a complex shape is a key application area for immersed
boundary (IB) methods [1]. IB methods allow for the computa-
tion of flows in complex geometries, e.g., cerebral aneurysms [2]
and porous media [3]. For brain aneurysms there is a growing
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medical need to predict the flow behavior and shear stresses in
order to more completely plan and foresee the effect of surgical
intervention. These stresses are thought to be related to the like-
lihood of long-time rupture of aneurysms. Likewise, the com-
putation of transport in porous media is of great importance to
process engineering, particularly aimed at (i) a more complete
control of the conditions and (ii) better use of scarce resources.

In this paper we discuss a basic volume-penalization IB
method and its application to flow in complex cavities and around
a staggered arrangement of square rods. The flow domain is
characterized by a so-called ‘masking function’ in which solid
and fluid parts are identified by a value of ‘1’ or ‘0’ respectively.
This method of representing a complex shaped domain allows for
a range of sources for specifying the geometry. In various tech-
nological applications the design of the flow domain is known
from its CAD file – this is a very precise source for the specifica-
tion of the masking function. In certain applications, e.g., when
complex porous media are involved, consisting of biomass, it is
possible to extract detailed information about the inner structure
of a block of porous material using micro-CT scanning. This
yields a large number of slices through a porous block, allowing
an approximate identification of the fluid and the solid parts. In
medical applications the shape of cerebral aneurysms developing
in patients can be inferred from three-dimensional rotational an-
giography. This provides a detailed impression of the complex
cavity and vessel structure that may be under risk of rupture.

The accuracy with which the flow field in a complex ge-
ometry can be computed on the basis of an IB method depends
strongly on the spatial resolution of the smallest details of the
domain, as captured by the masking function. As in some cases
the domain may not be specified beyond a rather modest spatial
resolution, the issue of sensitivity of predictions on the quality
of the geometrical characterization is important to include. It
is particularly relevant to find out what ‘robust’ conclusions can
be drawn from simulations, and what aspects remain unclear be-
cause of uncertainties in the actual flow conditions and the geom-
etry. This issue can be addressed in detail using computational
modeling.

The convergence of IB-predictions toward the actual solu-
tion of the Navier-Stokes equations is a key element that decides
about the usefulness of this approach for realistic applications.
We analyze this in detail for Poiseuille flow, both in a plane chan-
nel and in a cylindrical tube. The precise definition of the mask-
ing function in the near-wall region is shown to have a consider-
able influence on the error-levels that can be attained. For plane
Poiseuille flow it is shown that the approximation of the no-slip
condition at a solid wall may be implemented such that the ac-
curacy of the overall method is lifted from first to second order.
The non-alignment of the geometry with the Cartesian grid is
shown to imply only first order convergence in case of flow in a
cylindrical tube. Also in this example, the precise definition of
the masking function can strongly reduce the error-level – a def-

inition in which the numerical flow domain is entirely inside the
physical flow domain of the problem considered is found to be
beneficial for reducing the error levels.

The flexibility of the IB method is illustrated with two ap-
plications; one with a biomedical context, concerning flow in a
cerebral aneurysm, and one from modern process engineering,
involving the prediction of flow in a porous medium. We adopt
an energy-conserving finite-volume discretization that is, by con-
struction, stable on any spatial resolution [4]. In these applica-
tions only the masking function needs to be specified properly
and the spatial resolution should be fine enough to capture, at
least qualitatively, the smallest geometrical details. From the
study of Poiseuille flow we infer that about 16 grid points per
‘opening’ in the flow-domain suffices to obtain reliable predic-
tions. This brings a large range of laminar and transitional flow
in realistically complex flow geometries within reach of large-
scale computing. In this way, numerical flow simulation in com-
bination with the IB approach can provide reliable information
about the inner working of flow equipment that would otherwise
not be attainable from physical experimentation. Such computa-
tional modeling can help improve process-engineering steps and
support surgical interventions in case of medical applications.

The organization of this paper is as follows. We first present
a brief sketch of the IB method that is adopted. Then we proceed
with a discussion of the convergence of numerical predictions to
the exact analytical solution in case of Poiseuille flow. We con-
sider both plane channel flow and flow in a cylindrical tube. The
application of the IB method to flow in cerebral aneurysms and
flow through structured porous media is included to illustrate the
flexibility of the method. Concluding remarks will be gathered
in the final section.

IMMERSED BOUNDARY METHOD
In this section we give a brief review of the volume-

penalization immersed boundary (IB) method that is considered
in this paper. We focus on incompressible fluids whose dynamics
is governed by the conservation of mass and momentum:

∂ ju j = 0, (1)

∂t ui +∂ j(u jui)+∂i p−
1

Re
∂ j jui− fi = 0; (2)

where ∂t and ∂ j denote partial derivatives with respect to time
t and spatial coordinate x j, u j denotes the velocity component
in the x j direction and p is the pressure. The Reynolds num-
ber Re = UL/ν is a measure for the relative importance of the
nonlinear convective fluxes and the linear viscous fluxes [5]; it
is expressed in terms of a reference velocity scale U , a reference
length-scale L and the kinematic viscosity ν = µ/ρ with molecu-
lar viscosity given by µ and the fluid mass-density ρ . The forcing
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fi can be used to represent a variety of physical mechanisms that
influence the evolution of the flow. Here, we will use this forc-
ing for another purpose, i.e., to approximate no-slip conditions at
solid boundaries that are contained in the domain [1].

The IB method enjoys a growing interest in the field of com-
putational science. It provides a strong alternative to conven-
tional numerical simulation methods in case flow in and around
very complex spatial shapes in a flow domain is considered.
Conventional methods adhere to computational meshes that are
body-fitted – for complex flow domains the gridding of the flow
domain becomes very time consuming. The task of generating
grids that yield an accurate discrete computational model is cor-
respondingly difficult, up to the point of becoming impractical.
Instead, the IB method can be formulated entirely in terms of a
uniform Cartesian grid. The geometry over and through which
the flow takes place is simply immersed in a ‘block’ of physical
space. These striking differences in the computational strategies
also imply important consequences for the accuracy with which
flow near solid boundaries may generally be captured. Conven-
tional body-fitted methods allow, in principle, for a precise rep-
resentation of no-slip conditions at the body. In contrast, the
accuracy achieved by an IB method generally suffers from the
non-alignment of the interface between solid and fluid regions
with the Cartesian grid. This is even more challenging if, next to
the flow velocity, information about the gradient of the velocity,
or of a passive scalar such as temperature or chemical species,
are desired. For such situations we identify spatial resolution re-
quirements that are needed to yield reliable results.

We employ a basic IB method in which the forcing term fi

represents a volume penalization. The impenetrability of a solid
wall to fluid flow is approximated by direct penalization of the
flow from entering the solid domain. This is represented here by
a forcing term

fi =
1
ε

Γ(x)ui(x, t), (3)

in which the control parameter ε � 1 (a typical value used is
ε = 10−10) and Γ(x) denotes the so-called ‘masking function’ or
‘phase indicator’ which assumes the value ‘1’ in case the point
x belongs to a solid part of the flow domain and ‘0’ in case it is
located in an open fluid-filled part of the domain. In this way the
entire flow domain Ω is decomposed into a solid part Ωs and a
fluid part Ω f ; while in Ω f the forcing is absent and the original,
incompressible Navier-Stokes equations govern the flow, the var-
ious fluxes in the momentum equation are entirely overruled by
the IB forcing inside Ωs. The form of the forcing fi inside the
solid part implies that the velocity components ui are negligible;
if at some location in the solid ui would, for some reason, have
become non-zero then the forcing drives the local velocity very
fast back to negligible values. In the region near the interface
between the solid and the fluid parts of the domain the velocity

field would be forced to negligible values within a very thin strip
of the grid. A sufficiently small value of ε will imply a very
localized region in which a non-trivial flow in Ω f connects to a
solution with negligible values in Ωs. This rough sketch identi-
fies that the simple volume forcing (3) can indeed approximate a
no-slip boundary condition, localized within the grid-scale.

The equations resulting from the introduction of the forcing
(3) in the Navier-Stokes equations need to be treated numerically.
We adopt a finite-volume discretization that preserves the skew-
symmetry of the nonlinear convective fluxes and the positive-
definite dissipative nature of the viscous fluxes [4]. In particular,
this method can be shown to be stable on any (coarse) resolution,
without having to resort to artificial dissipation that would smear
out small-scale details in a numerical solution. This is particu-
larly important in case turbulent flow is simulated with dynami-
cally important fluid motions on a wide spectrum of scales. Also
for laminar flows in a complex porous medium the use of such a
discretization is important since a wide range of flow-scales can
emerge from the passage of a flow through a fine ‘maze’ of ob-
structing elements. In order to capture, e.g., forces on the solid
parts of the domain, or, heat transfer characteristics from the fluid
to the solid, the treatment of the small near-wall flow structures
is essential. A second order accurate method for the fluxes is
employed, implemented on a staggered grid. The effect of these
fluxes is integrated in time using an explicit time-stepping al-
gorithm of Adams-Bashforth type [6]. The contribution of the
forcing term f is integrated implicitly in time, which overcomes
severe stability problems that would arise with explicit methods
as ε � 1.

The staggered grid arrangement poses the particular ques-
tion how exactly the masking function Γ should be defined.
Globally, Γ is easily defined as indicated above. However, there
is some freedom in its definition on grid-scale near a solid-fluid
interface. In this paper, first, we choose to work with an indi-
vidual grid cell as the smallest elementary unit; this implies that
a grid cell is considered either as part of the solid or as part of
the fluid. If the center of the cell is solid or fluid, then we as-
sign this property for the entire grid cell. Second, we need to
identify which component of the solution is used as basis for the
masking function. In fact, as all three velocity components ui

and the pressure p are defined on their respective grids, one may
consider Γui or Γp. Also, combinations of these are possible in
principle, e.g., the sum of all velocity-based masking functions.
We choose to work with Γp in most applications, which defines
the precise location (within the resolution of the adopted grid)
of the solid-fluid interface in a ‘staircase’ approximation. Using
the inter-relation between Γp and Γui , one may readily infer the
velocity-based masking functions from the pressure-based repre-
sentation. The use of Γp uniquely defines the geometry of the
flow domain and is not biased toward one of the coordinate di-
rections, as would be the case with one of the Γui .

In the next section we will consider the performance of the
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IB method in combination with the skew-symmetric discretiza-
tion and determine the accuracy of predictions in relation to the
spatial resolution that is used.

VALIDATION AND CONVERGENCE
The convergence of the volume-penalization IB method is

studied on the basis of laminar Poiseuille flow in a straight chan-
nel and in a cylindrical tube. This represents a set of test-cases
of growing complexity, for which the exact analytical solution
is available as point of reference. For the channel flow we will
determine the importance of approximating the no-slip condition
exactly at the solid wall, or shifted by half a grid cell. The cylin-
drical tube application tests the IB method for geometries that are
not aligned with the Cartesian grid; this test-case will establish
that the error-level depends considerably on the precise incorpo-
ration of the cylindrical wall.

Plane Poiseuille flow is one of the few exact solutions to the
incompressible Navier-Stokes equations [7]. The basic geometry
consists of two infinitely extended parallel plates. The flow is in
the streamwise x1 direction, while the wall-normal and spanwise
coordinates are denoted by x2 and x3 respectively. The parallel
plates are located at x2 = 0 and x2 = 1. In a non-dimensional
form the velocity profile is given by u2 = u3 = 0 and

u1(x2) = 4Umaxx2(1− x2), (4)

where Umax is the maximal velocity in the flow, arising at the
center-plane between the two parallel plates. The velocity Umax

corresponds directly to the external pressure gradient that is im-
posed to maintain the flow. In case of flow through a cylinder
aligned with the x1 axis, the Poiseuille profile is given by

u1(r) = Umax(1− r2), (5)

where 0 ≤ r ≤ 1 is the radial coordinate. These two parabolic
profiles provide strict tests for the IB method; in the following
we investigate the achieved accuracy as a function of spatial res-
olution.

By defining the masking function appropriately, an IB model
can be obtained with which the analytical Poiseuille flow can be
approximated numerically. We consider the plane Poiseuille flow
first. In Fig. 1 we collect predictions of the streamwise veloc-
ity profile obtained at a range of resolutions in the wall-normal
direction. We illustrate two ways of approximating the no-slip
condition at the solid wall. In the first method we assume the
solid walls at x2 = 0 and x2 = 1 to coincide with a surface of the
pressure control volume – this implies that the condition for the
wall-normal component u2 = 0 is imposed exactly at the wall,
but that the no-slip approximation for the dominant streamwise
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FIGURE 1. Streamwise velocity component u(y) at various spatial
resolutions ny and Re = 1. In (a) we show the convergence toward the
Poiseuille profile in the reference case in which no-slip conditions for
the streamwise velocity are imposed at half a grid cell inside the wall,
in (b) the no-slip conditions were imposed exactly at the location of the
wall. Symbols correspond to the choice of ny = 2k with k = 2, . . . ,7.

velocity component is off by half a grid cell. We refer to this as
the ‘reference’ method. In the second method we identify the lo-
cation of the wall with the center of the pressure control volume.
Shifting by half a grid cell we now impose u1 = 0 exactly at the
wall and approximate the wall-normal condition with half a grid
cell inaccuracy. For both methods of imposing the no-slip bound-
ary condition, we observe a clear convergence of the numerical
results toward the analytical solution. On closer inspection it ap-
pears that the convergence toward the exact solution is faster with
the ‘shifted’ method, compared to the ‘reference’ method.

The convergence of the numerical solution toward the exact
solution for the plane Poiseuille flow can be quantified in terms
of the discrete l2 or l∞ (max-) norms. The findings for the two
methods of imposing the no-slip boundary conditions in our IB
method are collected in Fig. 2. The general impression seen in
Fig. 1 is now confirmed. The simulation error on any grid res-
olution is considerably lowered if the no-slip condition for the
dominant streamwise velocity component is imposed exactly at
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FIGURE 2. Convergence rates of the error between the analytical
and the numerical solution in l∞ (circles) (or max-) norm and l2-norm
(squares) for increasing resolution in the wall-normal direction ny. The
results in (a) correspond to the reference method with no-slip conditions
for the streamwise velocity component imposed half a grid cell inside
the wall and in (b) the no-slip conditions imposed exactly at the location
of the wall.

the solid wall, instead of approximately shifted by half a grid
cell. In addition to the level of error, we also observe that the
rate of convergence increases from first order to second order (in
the max-norm) in case the no-slip condition for the streamwise
velocity component is imposed exactly at the wall. This property
is currently being investigated in more detail in order to develop
near-wall treatments that converge as a second order method for
general, smooth geometries. This generalized algorithm is con-
sidered for skewed and curved geometries and will be published
elsewhere.

The convergence of the IB method toward the Poiseuille ve-
locity profile is investigated next for laminar flow in cylindri-
cal tubes. Motivated by the results for the plane channel flow,
we identify three methods of identifying the masking function.
These are sketched in Fig. 3; we refer to these as ‘inner’, ‘mid-
dle’ and ‘outer’, depending on the criterion when exactly a grid
cell is counted as part of the solid region. In the ‘inner’ strategy
a grid cell is considered part of the fluid region if all four of its
corner-points are in the fluid. The ‘middle’ strategy also includes
grid cells that share 3 of its corner points with the fluid and the
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FIGURE 3. Definition of the ‘inner’ (a), ‘middle’ (b) and ‘outer’ (c)
strategy for defining the masking function across a cylindrical tube. Ei-
ther all four grid points are in the fluid (a), or at least three (b) or at
least two (c) to distinguish the different strategies. Grid cells that are
identified with the fluid region are drawn in solid lines.

‘outer’ strategy further allows grid cells with only 2 corner points
in the fluid. We performed simulations on a range of grids for this
flow problem and investigated the accuracy of predictions for the
inner-middle-outer strategies.

The convergence of the numerical results, as measured in the
discrete l∞-norm, is collected in Fig. 4. We observe that all three
strategies display first order convergence. This appears consis-
tent with the results obtained for the plane channel flow in case
the no-slip condition is imposed within half a grid cell of the
solid wall. In case of a cylindrical tube, the non-alignment of the
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FIGURE 4. Convergence of the discrete l2-norm of the error in the nu-
merical solution compared to the exact Poiseuille profile as a function of
the spatial resolution N. The solid curve denotes first order convergence
and the labels are such that ‘squares’ denote the ‘outer’, ‘asterisks’ the
‘middle’ and ‘circles’ the ‘inner’ strategy for the definition of the mask-
ing function.

Cartesian grid with the precise geometry implies that the approx-
imate no-slip condition in the IB method is in all points within
half a grid cell. We observe a strong dependence of the level of
the error on the masking strategy, with a strong improvement in
the l∞-norm if we adopt the ‘inner’ strategy for defining the fluid
part of the domain. If we use a masking function for the fluid re-
gion that is entirely inside the cylinder wall, i.e., the fluid domain
is ‘retracted’ by about half a grid cell from the actual location of
the cylinder wall, then the predictions at all resolutions are more
accurate. This relation between the error-level and the precise
definition of the masking function near solid walls will be ex-
ploited to achieve higher accuracy in more general geometries –
this is a topic of ongoing investigations.

FLOW IN MODEL ANEURYSMS
The application of the IB method to flow inside curved ves-

sels and model aneurysms, as may develop in a human brain, is
presented in this section. We consider simple geometrical shapes
and investigate the flow field and the corresponding shear stress
that arises.

In Fig. 5 we display an impression of the developing flow in
a curved cylindrical vessel and in a model aneurysm that contains
in addition a spherical cavity. The flow is simulated at a Reynolds
number of Re = 100, and the unsteady solution is followed time-
accurately. The effect of the IB masking function for the solid
region is clearly observed in terms of the regions of ‘essentially’
zero velocity outside the flow domain. The connection with the
flow inside the tube appears to be correctly captured – the ap-
proximate no-slip condition is expressed in a very narrow strip of
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FIGURE 5. Snapshot of the developing flow inside a curved cylindri-
cal tube, without (a) and with (b) a spherical cavity attached. The flow
is visualized in a cross-section through the geometry, by plotting the
velocity vectors corresponding to the u1 and u2 velocity components.

the Cartesian grid, as is desired from the IB volume-penalization
method. The addition of a spherical cavity is seen to affect the
flow in the curved tube, which leads to the development of a de-
tached ‘jet’ that proceeds to flow toward the wall of the cavity,
producing a vortical structure that fills a large part of the spher-
ical cavity with a detached, recirculating flow. The occurrence
of such flow structures contributes to an increase of the average
‘residence time’ of blood inside the flow domain, expressing a
deterioration of the quality of transport of nutrients and waste
products to and from the tissue surrounding the aneurysm. This
can be an important indicator for the rate at which health risks
may develop.

The main challenge for the IB method in case of flow
through model aneurysms is in capturing the flow near the
boundary; which is required to compute the shear stress. We
define the shear stress in terms of the gradient of the velocity.
The rate of strain tensor SSS is such that

Si j =
1
2

(

∂iu j +∂ jui

)

. (6)
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FIGURE 6. Predicted shear-stress distribution over the vessel wall of
a model aneurysm, composed of a curved cylindrical tube onto which a
spherical cavity is attached. The unsteady flow that develops at Re = 100
is simulated time-accurately and a characteristic impression of the shear
stress is shown. The spatial resolution is 64×64×64.

The shear stress ξ is a measure for the off-diagonal components
of SSS. We introduce Ξi j = Si j if i 6= j and Ξii = 0. Then,

ξ 2 = Ξi jΞi j = ΞΞΞ : ΞΞΞ. (7)

The distribution of the shear stress ξ across the vessel wall is
an important indicator for the forces that act on the wall. This
makes the shear stress a key quantity of relevance for the predic-
tion of long-term risk of rupture of the aneurysm wall. In Fig. 6
the normalized shear-stress distribution is shown at a character-
istic stage in the development of the flow. We observe that the
detached jet that was discussed above, impinges on the wall of
the spherical model aneurysm and creates a region of intensified
shear stress. The shear-stress ξ is also quite large in the curved
cylindrical tube that is connected to the sphere. The IB method
appears to provide a reliable impression of the distribution of the
shear stress, showing the flexibility of the approach. A detailed
analysis of the accuracy with which ξ is predicted requires a full
grid-refinement study, which will be the subject of an upcoming
publication.

FLOW IN STRUCTURED POROUS MEDIA
Laminar flow in a complex porous medium can be simu-

lated in full detail using the IB method. We consider configu-
rations that are composed of square rods placed in periodic ar-
rangements. We show the flexibility of the IB method in dealing
with such flow problems and quantify the overall permeability
that is obtained at a range of Reynolds numbers.

2H

H
y

x (a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

(b)

FIGURE 7. In (a) we define a periodic unit of a staggered arrange-
ment of square rods. In (b) a snapshot of the developing flow in this
structured porous medium is shown, simulated at Re = 600. The spatial
resolution in the plane shown is 128×64.

For porous media simulations, the intricate geometry of the
medium requires an IB approach to compute local velocity and
pressure. In Fig. 7(a) we show the definition of the flow domain
in terms of the periodic unit in which the square rods are ar-
ranged. Only a two-dimensional cross-section is shown; the full
geometry is treated in three spatial dimensions. In this geometry
the IB method can readily yield an impression of the developing
flow as shown in Fig. 7(b). At a Reynolds number of Re = 600
(based on the volume-average velocity |〈u〉| and the height H)
we observe that a rather intricate pattern of vortical flow struc-
tures emerges, that appears to be well captured by the current IB
method, based on the pressure-based masking function.

Various macroscopic properties of the flow through a struc-
tured porous medium can be extracted on the basis of the avail-
able microscopic flow predictions. As an illustration, we con-
sider the large-scale permeability of this model porous medium
at various Reynolds numbers. In Fig. 8 we show the macroscopic
pressure gradient that develops across a periodic unit when a flow
is maintained in the x1-direction. We compare simulation results
obtained at two spatial resolutions. The agreement illustrates
the accuracy of the simulations in case of slow flow, i.e., low
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FIGURE 8. Dimensionless macroscopic pressure gradient in the x1-
direction as a function of the Reynolds number (a) and the correspond-
ing permeability in the x1-direction (b). The dashed line represents
numerical simulation results at a resolution of 64× 64 (marked with
squares) and 128×128 (marked with circles).

Reynolds numbers. For a related ‘in-lined’ arrangement [8, 9]
the computed macroscopic pressure gradient was compared to
the Darcy-Forchheimer expression, showing a close agreement.

CONCLUDING REMARKS
We discussed the development and grid-convergence of a

volume-penalizing immersed boundary method, applied to com-
plex flow domains motivated by cerebral aneurysms and arrange-
ments that model a structured porous medium. The focus was on
the accuracy with which flow near a solid boundary can be sim-
ulated, e.g., in view of the desire to predict shear-stresses at the
wall of blood vessels. It was shown that the definition of the
masking function can have a large influence on the level of the
simulation error, and even on the order of accuracy of the overall

method, in case of plane channel flow. This aspect will be uti-
lized in the future to achieve higher order convergence for more
general, smooth flow domains. Moreover, we aim to explicitly
incorporate physical conservation principles into the near-wall
treatment in the computational model and investigate which of
these properties is most decisive for the quality of the results.

The application of the IB approach to model aneurysms and
flow through a structured porous medium illustrates the flexibil-
ity of this IB method in handling flow through very complex flow
domains. At modest Reynolds numbers, as considered in this pa-
per, the relatively coarse representation of the solid-fluid inter-
face was shown not to negatively affect the flow prediction too
strongly near a solid wall. In future extensions we plan to in-
corporate flow-structure interactions for cerebral aneurysms, to
study pulsatile flow in flexible geometries. This implies the use
of a time-dependent masking function with its own dynamics in
which material properties of the brain tissue surrounding the ves-
sel structures needs to be incorporated. Flow through a structured
porous medium will be extended to incorporate heat and mass
transfer, fully coupled to the gas-flow through the fluid domain.
In all these extensions the accuracy of the solution, and its spatial
derivatives, near the solid-fluid interface are key elements. The
freedom in the detailed definition of the masking function near a
wall will be exploited to enhance the accuracy of predictions.
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