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ABSTRACT 
Time Resolved Digital Particle Image Velocimetry 

(TRDPIV) was used in conjunction with spectral analysis to 
study the effects of Leading Edge Blowing (LEB) flow control 
on the near-wake of a circular cylinder.  The airfoil was placed 
1.9 circular cylinder diameters downstream, effectively acting 
as a splitter plate.  Spectral measurements of the TRDPIV 
results indicated that the presence of the airfoil decreased the 
Strouhal number from 0.19 to 0.12 as anticipated. 

When activated the LEB jet organized the circular cylinder 
wake, effectively neutralizing the effect of the splitter plate and 
modifying the wake so as to return the Strouhal number to 0.19.  
Thus the circular cylinder wake returned to its normal shedding 
frequency, even in the presence of the airfoil.  Evidence 
presented in this study supports the notion that the LEB jet 
directly excites the circular cylinder shear layers causing 
instability, roll up, and subsequent vortex shedding. 

 
INTRODUCTION 

The interaction of an airfoil with incident vortices or wakes 
has received great attention over the years.  These phenomena 
are of practical significance for engineering applications as it is 
commonly encountered in fluid-structure interactions and the 
resulting fluctuating loads exerted on a structure can contribute 
to detrimental effects, fatigue or even catastrophic failure ([1]; 
[2]).  Many studies have focused on the far-wake interaction 
between airfoils and vortices, examples of which are the 
excitation of a helicopter blade due to an upstream rotor wake 
[3] or the vibration of the rotor due to the inlet guide vane wake 
commonly found in turbomachinery ([4]; [5]).  For the purpose 
of reducing the unsteady loading on helicopter blades, a 
multitude of strategies have been proposed to mitigate the 
unsteady loading of the airfoil as a result of this blade vortex 
interaction (BVI).  These strategies include methods for 
increasing the stand-off distance between a vortex and the 

airfoil [6], flow control to decrease the strength of the incident 
vortices [7], or airfoil surface modifications such as porous 
leading edge surfaces which have been shown to reduce the 
radiated pressure field [8].  Recent work by the authors reported 
on a flow control scheme based on Leading Edge Blowing 
(LEB) that successfully reduced the transfer of energy from an 
unsteady vortical flow field to an airfoil [9].  The LEB jet was 
able to reduce airfoil vibrations by creating a virtual leading 
edge upstream of the physical leading edge displacing the 
upcoming vortices further from the airfoil surface and resulting 
in a 38% reduction of induced vibrations based on the root-
mean-square of the airfoil velocity oscillation amplitude.  In 
these experiments, the airfoil leading edge was located 5.8 
diameters downstream of the vortex generator and thus 
constituted a far-field BVI. 

Herein we extend the previous study by focusing on the 
near-field interaction between the airfoil, the circular cylinder 
wake and the LEB jet.  Experiments were conducted with the 
airfoil leading edge located at 1.9 diameters downstream of the 
circular cylinder.  Therefore the airfoil is within the mean 
closure point of the wake and can behave almost like a splitter 
plate disruption the wake of the circular cylinder.  Splitter 
plates mounted to a cylinder have been largely researched as a 
passive mechanism to reduce base drag [10], suppress shedding 
in the wake of the circular cylinder [11], control noise due to 
circular cylinder shedding ([12]; [13]), and as a means to study 
the circular cylinder vortex shedding processes ([14]; [15]).  
Current understanding suggests that the interaction of the 
cylinder shear layers is a fundamental process that contributes 
to the absolute instability in the wake and controls the shedding 
process.  Lin et al [16] and Unal and Rockwell [17] have also 
considered the effects of convective instability on the shedding 
process. 

The effect of splitter plates on suppression of the vortex 
street has been well documented.  Grove et al [18] studied the 
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effect of splitter plates of length 2D to 4D (where D is the 
circular cylinder diameter) and found their effect to be a 
maximum when the near side of the splitter plate was located 
2D to 3D downstream of the circular cylinder.  The experiments 
of Unal and Rockwell [19] suggest a minimum length scale for 
the development of the absolute instability and subsequent 
vortex formation.  Additionally, they note that the vortex 
formation process is possibly influenced by the vorticity 
dynamics downstream, such as could be caused by 
impingement of vortices on the airfoil.  This type of interaction 
has been well studied ([20]; [21]).  However, the focus of this 
paper is on the effect of LEB flow control on the near-wake 
structure and little attention is paid to possible feedback 
mechanisms through vortex impingement on the airfoil. 

The idea of downstream disturbances affecting the vortex 
formation process is particularly relevant to the current study 
because the turbulent planar jet used for LEB has been shown 
to display rich physics such as coherent structures ([22]; [23]) 
which closely resembles that of a von Karman vortex street. 
Additionally, strong interactions exist between these structures 
within the plane jet, which are thought to give rise to the 
familiar flapping mode often observed [24].  In this paper we 
will show that the interaction of the planar jet and the circular 
cylinder wake has significant effect on the organization of the 
wake and can reverse the ability of the splitter plate to modify 
the near wake structure. 

Since the airfoil is close to the circular cylinder, it is also 
possible that the LEB jet could strike the lee side of the circular 
cylinder and contribute to the global instability of the system.  
Jet impingement on circular cylinders has been studied in the 
past for both plane ([25]; [26]) and round ([27]; [28]; [29]) jets; 
however these studies have been limited to jets impinging on a 
circular cylinder or convex/concave surfaces in quiescent flow.  
These studies revealed feedback mechanisms that exist between 
the jet and circular cylinder wake instabilities [25] through the 
upstream amplification of perturbations that act on the jet due 
to impingement.  The contribution of this feedback mechanism 
to the cylinder shedding process has not been explored.  In the 
case of a round jet impinging on a flat plate (i.e. without 
curvature effects), it was found that the toirodal vortex 
structures formed from the jet shear layer impact the flat plate, 
where they are effectively stretched before they are absorbed 
and dispersed in the turbulent radial wall jet [27]. Based on 
these past studies of jet/circular cylinder impingement under 
quiescent conditions one can assert that a boundary layer 
induced on the back surface of the circular cylinder by the LEB 
could perturb the separating boundary layer and the resulting 
shear layers, therefore influencing the vortex formation and 
shedding mechanisms. However, in all of the above past studies 
there was no cross flow, and thus the effect of the circular 
cylinder boundary layer, the vortices shed from the cylinder, 
and their interaction with the jet shear layer were not 
considered. 

The present study is concerned with identifying the 
interaction mechanism between the LEB jet, the airfoil (which 
acted as a splitter plate), and the circular cylinder wake.  
Although the data presented here are a subset of a more 
extensive parametric study on the effects of LEB on BVI 
mitigation, herein we focus on those cases associated with the 
amplification of BVI through the LEB jet/circular cylinder 
wake interaction. The interaction was experimentally studied 
using Time Resolved Digital Particle Image Velocimetry 
(TRDPIV) and subsequently the velocity fields were analyzed 
using both spectral analyses and Proper Orthogonal 
Decomposition (POD).  The airfoil motion was recorded using 
simultaneous accelerometer measurements.  The LEB jet was 
found to exert a sizable influence on the near wake structure of 
the circular cylinder, effectively organizing the near wake so as 
to generate a shedding mode similar to the 2P mode defined by 
Williamson (1996).  Organization of the near wake neutralized 
the effects of the airfoil, which acted as a splitter plate, and the 
Strouhal number was returned to its nominal value resulting in 
increased airfoil vibrations. 

NOMENCLATURE 
U Velocity 
M Flow Control Momentum Coefficient  
c Airfoil Chord Length 
D Cylinder Diameter 
f Cylinder Shedding Frequency 
w Airfoil Thickness at Mid-Chord 
h Flow Control Jet Slot Height 
v Component of Velocity Normal to Freestream 
x Position Parallel to Airfoil Chord 
y Position Orthogonal to Airfoil Chord 
η Airfoil Leading Edge to Circular Cylinder Mount 
Point 
q Airfoil span 
St Strouhal number 
σ Standard deviation 

SUBSCRIPTS 
∞ Freestream condition 
j LEB jet parameter 

EXPERIMENTAL 

The velocity field was characterized using Time Resolved 
Digital Particle Image Velocimetry (TRDPIV).  In addition, the 
airfoil vibration was also measured using an accelerometer 
mounted to a strut that was rigidly connected to and vibrated 
with the airfoil.  Experimental setup details may be found in 
Weiland and Vlachos (2009) but a brief overview of the 
experimental setup and procedures is also provided here. 

The experiments were conducted in the water tunnel in the 
Virginia Tech, Department of Engineering Sciences and 
Mechanics, Fluid Mechanics Laboratory.  The water tunnel is 
able to produce a low-turbulence (3%) freestream of up to 1 
m/s within a test section of 0.6x0.6x1.5m.  A sharp leading and 
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Figure 3.  Flow field spectra were computed at all points along slices 
of the flow field, thus yielding the distribution of spectral energy at 
discrete points in the flow.  Stations A, B, C, D, E, F, and G 
correspond to distances of 0.63, 0.40, 0.16, ‐0.07, ‐0.30, ‐0.54, ‐0.77, 
and ‐1.06 chords from the airfoil leading edge. 

RESULTS AND DISCUSSION 
In the following sections we describe results observed and 

computed for two blowing cases corresponding to M=0 and 
M=0.105.  Analysis of the airfoil accelerometer time series is 
presented as it provides an integral view of the effect of LEB on 
the vortex induced vibration and indirectly demonstrates the 
degree of the organization of the cylinder wake.  Since the 
airfoil leading edge was located only 1.9 diameters downstream 
of the circular cylinder, the vortex street did not have enough 
distance to form therefore the airfoil behaved as a splitter plate 
with length about 2D.  Conversely, the application of LEB 
increased airfoil oscillations (based on the RMS of the airfoil 
velocity time history) by about 23% as shown in the PSD 
analysis of the accelerometer response in Figure 4.  For 
M=0.105 the spectral energy rises sharply around f/fs = 0.9.  A 
significant change in the airfoil spectrum is seen over the range 
1< f/fs <6.  A comparison of the power contained in both cases 
over the range 0< f/fs <6 yields an increase of about 70% for the 
blowing case. 

 
The airfoil sustained a broad increase in vibration energy 

for M=0.105 near f/fs = 1, indicating the circular cylinder 
regained its normal shedding frequency.  This spectral 

component was seen to a much lesser extent in the M=0 case.  
As past studies have shown ([34]; [17]) splitter plates located in 
the same region as the airfoil in this experiment have only 
suppressed circular cylinder shedding or modified the Strouhal 
number, it is likely that the LEB jet is directly responsible for 
this change through some mechanism which will be discussed 
in later sections. 

Spectral Analysis of the TRDPIV Flow Fields and 
Evidence of Wake Organization 

PSD plots of the spectral content of the vertical velocity 
component spatially resolved along different streamwise 
stations within the first interrogation plane are shown in Figure 
5 and Figure 6, for M=0 and M=0.105 respectively.  The 
plotted spectra are zoomed-in around the circular cylinder 
shedding frequency.  Stations A, B, C, D, E, F, and G 
correspond to distances of 0.63, 0.40, 0.16, -0.07, -0.30, -0.54, -
0.77, and -1.06 chords from the airfoil leading edge.  The airfoil 
location is marked with a solid horizontal line.  For the case of 
M=0, the flow field is relatively free of strong velocity 
fluctuations in subplot A.  In subplots B-E a weak spectral 
component is seen at or near the circular cylinder shedding 
frequency (f/fs=1).  The strongest frequency component occurs 
at about f/fs=0.61 which implies a change of the Strouhal 
number to 0.12.  This is similar to the results reported by Ozono 
[34], who showed that when the splitter plate was 2 diameters 
downstream of the circular cylinder they estimated St=0.13.  
The weak spectral content at the shedding frequency is 
explained by the fact that the airfoil acts as a splitter plate.  
Thus the airfoil is buffeted by gusts of turbulence over a broad 
range of frequencies as can be seen in the figure for M=0.  For 
M=0.105 however there are strong spectral components at the 
shedding frequency in subplots C-G.  This increase in spectral 
energy when LEB is applied suggests that the LEB jet is 
affecting the wake flow field.  This also explains the large 
increase in the vibration spectral energy of the airfoil observed 
in Figure 6 near f/fs=1.  The LEB excites the instabilities 
associated with the shear layer roll-up and vortex shedding thus 
organizing the wake near the shedding frequency.  
Subsequently this flow field energy is transferred on the airfoil.  
Strong spectra at f/fs=2 can also be seen in subplots A-G, and it 
appears that this frequency dominates the upper side of the 
airfoil.  In subplot G a significant spectral component is also 
seen at about f/fs=0.61 on the upper side of the airfoil only.  It is 
possible that the asymmetry of the LEB slot is most likely to 
cause asymmetries of the flow field downstream. 

 

 
Figure 4.  PSD of the accelerometer data showing a comparison 
of the response of the airfoil between the no‐blowing and LEB 
cases. 
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