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ABSTRACT 
In fluid flow piping systems, tee and wye junctions 

are commonly encountered and the study of flow through them 
has been well documented.  Most of these studies have focused 
on flow characterized as turbulent for which there are nearly 
constant losses in pressure and kinetic energy in the junctions.  
Laminar flow has received much less attention since it is not 
frequently observed in macro scale piping systems where pipe 
diameters are measured in centimeters.  The recent increase in 
use of micro scale flow devices calls for more research into 
laminar flow behavior that dictates the design and operation of 
these devices. 

This paper documents results from computational 
fluid dynamics (CFD) simulations of flow in planar tee and 

wye junctions.  The junctions studied consisted of circular 
pipes with two outlets and one inlet.  The angles between the 
tee and wye junctions were fixed to 180 and 60 degrees, 
respectively.  The inlet pipe diameter was fixed at 50 microns 
and the outlet pipe diameters were chosen to satisfy the 
continuity equation constrained to have equal velocities in all 
pipes.  The lengths of the inlet and outlet pipes were varied to 
achieve fully developed flow within the junction.  Following a 
grid resolution study performed on a sample tee junction, a 
generalized algorithm was designed and implemented to create 
three-dimensional models of these junctions subject to the 
former conditions.   

In the CFD simulations, Reynolds number was varied 
in the laminar characterized region between 1 and 2000.  The 
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simulations calculated static pressure and velocity magnitude 
values for a number of planes intersecting the junctions along 
the inlet and outlet pipes.  From these values, pressure and 
kinetic energy gradients were calculated to estimate the static 
pressure and kinetic energy at the inlet and outlet pipes of each 
junction.  Finally, these inlet and outlet values were used to 
calculate the stagnation pressure loss coefficient, which reflects 
dimensionless losses of pressure and kinetic energy for the 
junction.  These coefficients ranged from 1 to 300 for the tee 
junction and 1 to 400 for the wye junction over the specified 
range of Reynolds number.  The values were inversely 
proportional to Reynolds number and curve fits were provided 
for valid ranges.   

 
 

INTRODUCTION  
 Flow devices and piping systems are being 

manufactured on the micro scale in increasing numbers as 
better processes are developed to produce them.  Many flow 
devices such as valves, sensors, pumps, and electronic 
components used to make transistors in computer chips are 
available in the micrometer range [8-10].  These devices are 
often comprised of micrometer sized pipes and channels that 
bend and split into wyes or tees within a plane.  One example 
of these are the series connected micro channels described by 
Lee et al [8].  Nature also produces micro scale materials 
known as porous media which are made up of interconnected 
pores [1-7]. These pores may be treated as a system of 
interconnected pipes which regularly form tee and wye 
junctions.  

 The commonality with these micro scale devices and 
systems is the characterization of their flow as laminar in 
many cases.  Flow is characterized by the dimensionless 
parameter known as Reynolds number shown below (see next 
section for full parameter descriptions). 

 

 
ν

Ud=Red  (1) 

 
A Reynolds number less than or equal to 2000 is considered to 
be laminar by most standards.  Now if we were to consider two 
piping systems with different values of d and the same values 
U and ν, then Red becomes proportional to d.  This parameter 
is the representative diameter of the device or system.  If the 
diameters of these systems were chosen to be on the order of 
one centimeter and one micrometer, respectively, then  Red of 
the latter system would be 1000 times smaller than the former.  
Therefore, it is easy to see why laminar flow is frequently 
observed in a microscale system that would not otherwise be 
seen in a larger system. 
  Tee and wye shaped junctions have been studied 
experimentally using turbulent flow (Red > 10000) [11-16].  
These experiments determined the losses in pressure and 
velocity across two branches of a junction.  Laminar flow 
pressure and velocity losses have also been determined 
experimentally for pipe fittings (e.g. elbows, expansions, 

contractions, and valves) by Edwards et al. [17] and for tees by 
Jamison et al. [18]. In both cases, the losses were transformed 
into a dimensionless loss coefficient and plotted as a function 
of Reynolds numbers.   
  Our goal was to determine a dimensionless loss 
coefficient as a function of Red over the range of 1 to 2000.  
The data could then be curve fitted using nonlinear regression 
and compared to laminar loss coefficients obtained by Jamison.  
A companion paper by Lemley et. al. [20] also describes an 
experimental system that is being used to determine loss 
coefficients in milli-scale junctions similar to those in this 
paper.    
 

NOMENCLATURE 
Ai   cross sectional area of pipe i (m²) 
d1, d2, d3 pipe diameters, as seen on Fig. 1 (m)  
fi flow fraction (-)  
Ki  stagnation loss coefficient in outlet pipe i (-) 
Li  length of pipe (m) 

im   mass flow rate in pipe i (kg/s) 
pi  pressure at location i (Pa)  
Qi  volumetric flow rate in pipe i (m³/s) 
Red  Reynolds number based on pipe diameter and 
  mean velocity (-) 
ui  velocity (m/s) 
U  mean velocity in pipe (m/s) 
x, y  spatial coordinates 

θ angle between the outlet pipes (o) 
Greek characters 

ρ  density (kg/m3) 
ν   kinematic viscosity (m²/s)  
 

 
FIGURE 1. Sample tee junction with labeled parameters.  
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FIGURE 2. Sample wye junction with labeled parameters. 
 

 
PROBLEM DESCRIPTION  
 The problem to be solved may be seen in Figs. 1 and 
2.  These figures are representative examples of the tee and 
wye junctions used in this study.  From these junctions we 
would like to determine the laminar stagnation pressure loss 
coefficient and its dependence on Reynolds number.  The 
stagnation pressure loss coefficient for an outlet pipe is defined 
as 
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The 1 and i subscripts refer to the inlet pipe and an outlet pipe, 
respectively.  The process used to determine this loss 
coefficient requires the creation of a specific tee or wye 
geometry, meshing of that geometry, and simulation of the 
meshed geometry using a CFD software.  These steps are 
elaborated on in the next section. 
 
 
SOLUTION METHODOLOGY 
 As mentioned in the previous section, the process of 
determining Ki for the two outlet pipes requires many steps.  
Each of these steps requires a different software packages.  A 
large amount of computer code, written in C++ and VBA 
among others, was used to automate these steps and calculate 
the values of Ki for several configurations of the tee and wyes 
in a shorter time span.   
 The first step was to create the geometry of either the 
tee or the wye junction.  A computer automated design or CAD 
software package was used to create an arbitrary base junction 
with allowable values of θ between 30 and 180 degrees and a 
large range of allowable values for outlet pipe diameter ratios 
d2/d1 and d3/d1.  Fig. 3 is an example of a tee base junction 
with different values of diameter ratios. 

 
FIGURE 3. Tee base junction created using CAD software. 
 
The diameter ratios were determined by constraining the 
continuity equation to have equal velocities at the inlet and 
both outlet pipes.  The continuity equation is defined by 
 
 321 mm=m  +  (3) 
where 
 

iii Au=m ρ  
and 
 

iii Au=Q  
 
The fluid used in the simulations was water at room 
temperature which is incompressible (constant ρ).  This leads 
to  
 

321 QQ=Q +  
 
Dividing this result by Q1 leads to Eq. 3 expressed in terms of 
flow fractions 
 
 321 ff= +  (4) 
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Substituting in our constraint ui=u1 and rearranging gives the 
diameter ratio as 
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 (5) 

 
Therefore, if we specify a value of f2 or f3, the corresponding 
diameter ratio can be calculated using Eq. 5 and Eqs. 4 and 5 
can be used to calculate the remaining flow fraction and 
diameter ratio, respectively.  In this study, f2 was specified for 
values of 0.1, 0.2, 0.3, 0.4 and 0.5. 

The next step was to import the base junction into 
GAMBIT to create the final geometry.  This involves adding 
cylinders to the geometry in Fig. 3.  The reason for this is that 
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in order for the flow in the inlet and outlet pipes to be 
considered fully developed (constant velocity profile), the 
entrance lengths must satisfy the modified entrance length 
equation suggested by Lemley et. al [19] and expressed as 
 
 dRe=L de 0.1  (6) 
 
Each length L1, L2, and L3 was calculated using Red and the 
corresponding diameter d1, d2, and d3.  The three cylinders 
with lengths given by Eq. 3 are then attached to the base 
junction to create a final geometry (e.g. Fig. 1).   
 Once the final geometry was generated, it needed to 
be meshed for CFD simulations.  The meshing process 
involves dividing the geometry into volume elements.  Fig. 4 
shows a meshed tee junction using the base junction seen in 
Fig. 3.  The cylinders attached to the base junction were 
meshed using nodes along the axis of the cylinder and around 
the circumference of the cylinder.  Fig. 5 shows the spacing of 
the circumferential and axial nodes used in the mesh in Fig. 4.  
Varying the number of circumferential (face) nodes and axial 
(edge) nodes determines how coarse or fine the meshed 
junction becomes.  The number of face and edge nodes also has 
an impact on the resulting loss coefficients K2 and K3.  For this 
reason a grid resolution study was needed. 
 The grid resolution was performed on a tee junction 
with the following geometry: inlet diameter of 50µm, outlet 
diameter ratios both set to unity, flow fractions in outlet pipe 
two set to 0.25 and 0.5, and Reynolds numbers of 10, 100, and 
1000.  The reason for using multiple values of f2 and Red was 
to determine if the grid resolution had any dependence on 
these quantities.  Grid resolution was determined by first using 
a constant number of edge nodes and varying the face nodes.  
Next, the number of face nodes was held constant while the 
number of edge nodes was varied.  In each case, the grid 
resolution was refined from coarse to fine by increasing either 
the number of face or edge nodes.  The six resulting loss 
coefficients were obtained for each combination of edge nodes 
and face nodes.  These coefficients were compared using 
percent error to the finest grid resolution simulated with either 
a fixed number of edge nodes or a fixed number of face nodes.  
The criterion for convergence was selected such that the 
percent error was within 10%.  Table 1 shows the loss 
coefficients for a flow fraction of 0.5, 25 edge nodes, and 
varying face nodes.  Table 2 shows the loss coefficients for a 
flow fraction of 0.5, 40 face nodes, and varying edge nodes. 

The grid resolution study revealed that comparing the 
grid combination with 120 face nodes and 25 edge nodes to the 
grid combination with 135 face nodes and 25 edge nodes 
resulted in the convergence criterion being met.  The latter 
combination was used as the finest available resolution to 
which all other combinations with 25 edge nodes were 
compared.  The study also revealed that comparing the grid 
combination with 120 face nodes and 100 edge nodes to the 
grid combination with 120 face nodes and 250 edge nodes also 
resulted in the convergence criterion being met.  The latter 
combination here was used as the finest available resolution to 

which all other combinations with 120 face nodes were 
compared.  Therefore, the grid combination containing 120 
face nodes and 100 edge nodes was selected as sufficient for 
our simulations.  This grid combination contains 731691 
volume elements.  Finally, the study showed no dependence of 
the convergence criterion being met by changing f2 and Red.  
 

 
FIGURE 4. Meshed tee generated in GAMBIT using the base 
junction shown in Fig. 3. 
 

 
FIGURE 5. Close up of mesh tee showing circumferential and axial 
spacing of nodes on the junction face and edge, respectively. 
 
TABLE 1. Loss coefficients for fixed flow fraction and number of 
edge nodes of 0.5 and 25, respectively. 
Number of 
Face Nodes 

Reynolds Number 
10 100 1000 

15 6.55 1.14 1.08 
30 6.76 0.99 0.79 
45 6.95 0.90 0.58 
60 8.07 0.73 0.73 
75 8.24 0.71 0.82 
90 8.91 0.67 0.66 
105 9.75 0.76 0.64 
120 10.73 0.85 0.49 

 
135 10.98 0.88 0.49 
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TABLE 2. Loss coefficients for fixed flow fraction and number of 
face nodes of 0.5 and 120, respectively. 
Number of 
Edge Nodes 

Reynolds Number 
10 100 1000 

25 10.73 0.85 0.49 
50 9.99 0.74 0.34 
75 10.59 0.83 0.44 
100 10.24 0.76 0.37 

 
250 10.53 0.82 0.40 

 
With the geometry created and the appropriate mesh 

applied, the final step was to export the meshed geometry to a 
CFD software package for simulation.  The software chosen for 
this study was FLUENT.  FLUENT employs a finite volume 
method to solve the integral Navier-Stokes equations for steady 
state flow conditions in three dimensions.  FLUENT uses a 
solver with a SIMPLEC algorithm for pressure-velocity 
coupling, a second order upwind scheme for momentum 
discretization, and a convergence criterion of 0.001%.  The   
boundary conditions used in FLUENT were the velocity inlet 
and outflow boundary.  The velocity inlet boundary condition 
assumes a uniform velocity profile at the inlet pipe which 
corresponds to the chosen Red.  The outflow boundary 
condition assumes that the velocity profile is fully developed at 
the two outlet pipes of the junction.  The fully developed 
velocity profile was satisfied for the inlet and outlet pipes of 
each junction by using Eq. 6 to calculate the entrance lengths 
of the attached cylinders in GAMBIT.  The outflow boundary 
condition also allowed us to set the flow fractions in outlet 
pipes to the desired values.  Circular planes are defined along 
the axis of each cylinder which intersect the cylinder and 
divide it into sections.  Velocity and pressure values obtained 
from the Navier-Stokes equations by the solver are specified at 
the center of each of these planes where the flow is fully 
developed.  From these values, the pressure and velocity 
gradients along each cylinder were calculated.  With the 
pressures and velocities known at the inlet and outlet pipes of 
the base junction itself, one can substitute these values into Eq. 
2 to obtain K2 and K3.    

 
 
RESULTS 
 The loss coefficients were determined for five tee 
geometries and five wye geometries.  The geometries included 
a range of diameter ratios between 0.316 and 0.949 with 
corresponding flow fractions between 0.1 and 0.9.  Fifteen 
values of Reynolds number were specified for the tee junction 
and ten values were specified for the wye junction.  These 
values were selected so that they would be evenly spaced on a 
log-log plot of K vs Red.  The resulting plots are shown in Figs. 
6 and 7.  From these plots one can see that the K is inversely 
proportional to Red over the range of 1 to about 300 at which 
point K becomes nearly constant.  One may also see that K 
decreases as f increases.  This is due to the outlet diameter’s 
dependence on f (Eq. 5).   

Curve fits were then generated to fit the data.  A 
nonlinear regression technique was used to determine the 
proportionality constant between K and Red.  Table 1 shows the 
proportionality constant, labeled C, for the nine flow fractions 
in each junction.  These fits are for the general equation 
 

 
dRe

C=K  (7) 

 
and are only value over the linear section of the observed data.  
The valid range of Red for the curve fits was chosen to be from 
1 to 100. Within this range the maximum percent difference 
between the predicted and simulated values of K for any flow 
fraction is estimated at 30%.  The largest values of K were 
obtained for a Red of 1 and were equal to 287.8 for the tee and 
395.9 for the wye.  The smallest value of K was obtained as a 
constant value for Red > 800 and was slightly above 1 for both 
the tee and the wye.    
 A comparison was also made between the laminar loss 
coefficients obtain by our simulations and those obtained by 
Jamison et. al. [18] for a tee shaped junction.  This comparison 
is shown in Fig. 8.  The values obtained by Jamison are just 
over an order of magnitude greater than our simulated values.  
There are several differences between the two tee geometries, 
shown in Fig. 8, which are likely the cause of the difference in 
loss coefficient values obtained.  Nevertheless, the values 
compared show good qualitative agreement.  
 

 
FIGURE 6. Loss coefficient vs Reynolds number for various flow 

fractions in a tee. 
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FIGURE 7. Loss coefficient vs Reynolds number for various flow 

fractions in a wye with θ=60°. 
 
TABLE 3. Proportionality constants for various flow fractions. 

Tee Wye 
f C f C 

0.1 287.8 0.1 395.9 
0.2 234.8 0.2 314.6 
0.3 193.0 0.3 286.9 
0.4 167.7 0.4 263.3 
0.5 157.8 0.5 247.5 
0.6 146.8 0.6 239.7 
0.7 136.6 0.7 233.8 
0.8 135.8 0.8 226.2 
0.9 130.4 0.9 225.3 

 
 

 
FIGURE 8. Loss coefficient vs Reynolds number comparison to 

experimental data. 
 
CONCLUSIONS 
 The stagnation pressure coefficient was calculated for 
a range of Reynolds numbers between 1 and 2000 for tee and 
wye junctions having a angle θ of 180° and 60°, respectively.  
Ten junctions (five tee and five wye) were created using flow 
fractions specified between 0.1 and 0.9 with the corresponding 

diameter ratios calculated using Eq.  5.  The resulting data 
showed an inversely proportional relationship between Red and 
K in all junctions.  Curve fits were calculated to fit the linear 
sections of the data.  The data was compared and has a good 
qualitative agreement with that of Jamison et al. [18]. 
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