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ABSTRACT and boundary conditions, and geometry) with known distribu-

This paper deals with the design of adaptive anisotropic dis- tion functions. Previous applications of Galerkin projection to
cretization schemes for conservation laws with stochastic pa- conservation laws include [3-7]. We are interested in problem:
rameters. A Finite Volume scheme is used for the determinis- where a shock appears almost surely in finite time. In this case
tic discretization, while a piecewise polynomial representation is since the shock speed and/or its location in space can be unct
used at the stochastic level. The methodology is designed in thetain, the solution is discontinuous in space and in the stochasti
context of intrusive Galerkin projection methods with Roe-type domain. This feature calls for specific discretization techniques
solver. The adaptation aims at selecting the stochastic resolution In particular, we rely on Finite Volume schemes for space dis-
level with regard to the local smoothness of the solution in the cretization and on piecewise polynomial discretizations in the
stochastic domain. In addition, the stochastic features of the so- stochastic domain [8—10]. The use of piecewise polynomial rep
lution greatly vary in the space and time so that the constructed resentations helps prevent the emergence of Gibbs phenome
stochastic approximation space depends on space and time. Theand aliasing errors associated with spectral representations bas
overall method is assessed on the stochastic Burgers equationon smooth functions. In [7], we designed a Roe-type solver fo
with shocks, showing significant computational savings. the Galerkin system. Its key feature is an original technique tc

approximate efficiently the absolute value of the Galerkin Roe
matrix based on evaluating a least-squares polynomial fitting th
INTRODUCTION absolute value of the eigenvalues of the original stochastic hype

Stochastic spectral methods and so-called Chaos expansiongolic problem at suitable collocation points. This solver was ex-

provide effective tools for uncertainty quantification (UQ) and tensively tested in [7] on the stochastic Burgers and Euler equs

propagation in numerical models. The determination of the tions and an entropy corrector was designed in [1]_]_
stochastic solution can be achieved by means of non intrusive

(sampling based) methods or a stochastic Galerkin projectionto ~ The method proposed in [7], while able to deal with com-
derive a spectral problem for the stochastic modes; see, e.g., [1]PIeX situations, remains expensive since a very fine stochast
and references therein. In this work, we consider the application discretization is needed to represent the solution in the neigf
of the Galerkin projection [2] to the resolution of conservation borhood of discontinuities. This observation calls for adaptive

laws invo|ving uncertain data (SUCh as model parameterS, initial Strategies. Since discontinuities are localized in Space and evol
in time, we propose in this work stochastic representations de

pending on space and time, meaning that, at a given time, eac

*Addressall correspondence to this author.
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Finite Volume cell supports its own stochastic discretization. the sense that the stochastic Jacobian mafiiF € R™M®
Consequentlythe overall discretization does not rely on a ten- L?(Z, pg) is R-diagonalizable almost surely.
sorization of stochastic and deterministic approximation spaces,
a feature which, to our knowledge, constitutes an original con-
tribution of the present work. The above methodology can be
formulated within a multiresolution framework based on the con-
cept of general binary trees to describe the discretization of the
stochastic domain, similarly to previous work in the determin-
istic context [12, 13]. The next ingredient is to allow for the
adaptive enrichment and coarsening of the binary trees. In the |_2( ,pe) =span{li(&),M2(¢),...}, <rarﬁ> =05, (2)
present work, this is achieved using heuristic criteria where, in
articular, the coarsening procedure relies on energy estimates. . .
Fn addition, for multidime?lsl?ional stochastic domainsg,yan impor- wheredg denotes the Kronecker symbol. The discrete solutior

tant feature of the present methodology is the anisotropy of the IS Soughtin afinite dimensional subsp&ef dimension P con-
adaptive procedure. structed by truncating the Hilbertian basis:

The paper is organized as follows. First, we briefly recall
the Galerkin projection of stochastic conservation laws and the S =span{Mi(&),M2(¢),....,Mp(§)} CL?(Z,pg)-  (3)
Roe-type solver introduced in [7] in the non-adaptive context.
Multiresolution analysis tools are then introduced together with
suitable techniques for anisotropic adaptation in the context of
uncertain conservation laws. Finally, simulations results are pre- o
sented for the Burgers equation in two stochastic dimensions.
Further development and testing of the present adaptive method-
ology for systems of uncertain conservation laws, such as the
Euler equations, will be examined in future work.

Stochastic discretization

To approximate the solution ir? (=, Pg ), we need a stochas-
tic discretization of the problem. This is obtained by considering
a Hilbertian basis of random functionals§rspannind-2(=, pg),

The approximate solution i§° is expanded as a series in the

Uxt,&)~U x,t,E z Ug (x,t)I 4)

where the deterministi®™-valued fieldsu, (x,t) are called the

GALERKIN PROJECTION AND ROE-TYPE SOLVER stochastic modes of the solution @).
Stochastic conservation laws
We are interested in stochastic nonlinear conservation laws The Galerkin system
with uncertain input quantities that can be parametrized for sim- Projecting (1) on the stochastic basis, we obtain the Galerki
plicity by N independent identically distributed random variables system which couples all the stochastic modes in the form
& :={é&,...,&\} uniformly distributed orE := [0,1]N. Let us
denote bypg = 1 the density function of and letL?(= ,Pg) be P P
the space of second-order random variables defined on the prob- —u(x,t) +=—f(u(xt)) =0,
ability space?; .= (=, %=, pg), where:= is the Borel set oE. ot ox o
The expectation operator i#; is denoted for any random vari- u(x,t=0)=u(x),
ableH (&) defined on?; by (H) := J=H(y)pg(y)dy. Itis also
possible to consider nonuniform random variables and to use anwhereu(x,t) = (uy(x,t),--- ,up(x,t))T € R™P, andf (u(xt)) =
isoprobabilistic transformation to map them to uniform ones [9]. (f,(u),.-. , fp(u))T € R™P are respectively the vector of the
Let (x,t,§) € Qx [0,T] x =, whereQ is the spatial do-  stochastic modes and the Galerkin flux vector with
main andT the simulation time. We seek fdd(xt,&) €
RM®L2(Z, pg), m> 1, solving almost surely the following con-

(5)

P
servative system fo(U):= <FO,F(UP;-)> and UP= zuﬁrﬁ(f), (6)
g=1
S U0t 8)+ 2 F (UL E):E) =
at o ax R Q) Moreover, we take for the initial conditionu® =
U(x,t =0,&) =Up(x,&), ((FaUo))g—1_ p- The Galerkin Jacobian matrix),f of

ordermP is given by

where F(U;&) € R"® L%(=,p;) is the stochastic flux vec-

tor. The stochastic system (1) is assumed to be hyperbolic in (Ouf(U)g per..p=(OuF U )Tal ), perp (D
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The hyperbolicity of the Galerkin system (5), that is, tRe
diagonalizabilityof the Galerkin Jacobian matriX, f, has been
extensively studied in [7] (in fact, in the more general context
of multiresolution analysis which will be introduced in the se-
quel). In particular, in the context of scalar conservation laws, as
for the results shown below, the Galerkin system is proven to be
hyperbolic.

Roe-type solver
The Galerkin system (5) is discretized in space and time us-
ing a Finite Volume method in the form

(‘P(uin’uirl}—l) _¢(uin—17uin)) ) (8)

whereu! is an approximation to the cell-average in the spatial
domain of the solutiom in the cell of centek; := iAx with width

Ax at the time discreté” and ¢ (-,-) is the Galerkin numerical
flux.

The Roe-type solver can be viewed as an approximate Rie-
mann solver where the Galerkin flui(u) is replaced at each
interfacel R separating left and right statés , ur) by the linear
approximation

©)

fRO%(u, ug,u) = f(u) +a(uL,ug) - (u—up),

where a(u_,ur) is a Roe-linearized approximation of the
Galerkin Jacobian matrix. To defirsgui ,ur), we assume that
the original stochastic problem (1) possesses a Roel$F8f¢¢)

on each interfac&R separating left and right stochastic states
(UL(&),Ur(&)) such thatly F(UR9%(&)) is a Roe linearized ma-
trix for the stochastic problem. Then, for &lf ,UF € R"® S,
letting URS® € RM® L%(=, pg) be the associated Roe state, we
have proven in [7] that in the context of scalar conservation laws,

Roe

alRe®:= a(uL,uR) := <DUF(U|_RF?B;~)I'al'ﬁ>a’l3:1wp (10)

is a Roe linearized matrix for the Galerkin problem. The
Galerkin numerical flux is chosen in the form
f(u)+ f(u UR—U
¢ (UL, UR) = ¢RO(uL, ur) = w —|af% R
(11)

However, to avoid the expensive spectral decomposition of the
Roe Galerkin Jacobian matrafi3® when computing its abso-
lute value, we approximat@B3® by applying (using Wrner’s
method) a polynomialyy, (1, to the Roe linearized matrix
aRee  The polynomial ag.{2) 1S Of degree< dyt (fixed

a priori) and is determined using an approximate spectrum

3

{)\{,}Vzl’_._ﬂ/\, of afge and minimizing the least-squares error

Z;A:Il (1Ay] = qdﬁt‘,{)\/}(/\{,))z. The approximate eigenvalugsare

taken as the stochastic eigenvalues of the original system eve
uated at some collocative nodes. This procedure, while sa\
ing substantial computational times, implies that the underlying
scheme is not, strictly speaking, a Roe scheme. However, di
tailed numerical studies reported in [7] confirm that the schem:e
works well in practice. Finally, the time-stet" is computed

using a CFL-type condition in the form

At"
AX

(12)

where.# denotes the set of interfaceR in the spatial domain
and CFL denotes a user-dependent positive parareter

MULTIRESOLUTION ANALYSIS

As motivated in the introduction, since shock velocities and
shock location can be uncertain, the solution is not smooth i
the stochastic domain. Consequently, as in [8-10], we rely ol
multiresolution analysis based on piecewise polynomial approx
imations. We first consider the one-dimensional stochastic cas
N = 1; the multidimensional case is treated at the end of the se
tion.

Complete binary trees

We discretize the stochastic space- [0,1] using stochastic
elements (intervals here), resulting from successive dyadic part
tions of =:

[(1=1)27 N 127N

U

le{1,...2Nr}

(13)

where Nr> 0 is the resolution level. A key feature which will
be used in the design of adaptive schemes is that the partition «
= in (13) has a complete binary tree structure. The binary tre
structure is illustrated in Figure 1 for the case-N#. We define
for a binary tree7:

the set of nodes#(.7),

the set of leafs:#(.7) c 4 (7),

the parent of anodee 4 (7): p(n),

the “left” and “right” children of a noden € A4 () \
L(T): ¢ (n) andc™ (n),

the distance of a nodec .4 (.7): |n],

the depth of the tree: NfT),

the support of a node e A4 (.7): .7 (n).
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[n|=0

Inj=1

Inj=2

In|=3

Inl=Nr
FIGURE 1. INTERPRETRTION OF THE DYADIC PARTITION OF
= BY ACOMPLETE BINARY TREE.

The root node of7, located on top, is denotedh. All nodes

but the root have a unique parent. The distajp¢e®f a partic-
ular node is defined relatively to the root node; the root node
np has a distancéng| = 0 and its two children have a distance
|c™(ng)| = |c* (no)| = 1. The depth Nr&) of a tree is the max-
imal distance over all the tree’s nodes. A complete binary tree is
such that a node with |n| < Nr() has two children; in a com-
plete binary tree there aré! Zodesn having distanceén| = d,

and the 27) nodes within| = Nr have no child and are called
the leafsl € .£ (7). For more general binary tree structures
(see below), a node with no child is called a leaf. The supports
.(n) can be defined recursively. First, the support of the root
node is. (ng) = [0,1] and letting.” (n) = [, ,&,"] be the sup-
port of noden, with n ¢ .Z(.7), then the support of its left and
right children are respectively’ (c™(n)) = [§;, (&7 + &) /2]
and.(ct(n)) = [(&§, +&)/2,&]. Therefore, an alternative
expression for (13) is

= U . (14)
1€2(7)

Multiresolution spaces

Consider a complete binary tre2 with Nr(.7) > 0. We de-
note byS¥°(.7) := S the stochastic approximation space con-
sisting of piecewise polynomials ify

SY(7)={H:[0,1] > R;V1 € Z(TF),H| s € Mnolé]},
(15)

where No> 0 andlM,[&] denotes the vector space of real poly-
nomials with degree< No in &. Therefore, the spacg°(.7)
has dimension

dimSY(.7) =: Precard £(.7)) =: P(7), (16)
where B := (No+ 1) is the dimension of the local polynomial
basis on each leaf; we recall that ca#i(.7)) = 2N"(7) for a
complete binary tree. The spac8¥(.7) form a hierarchical
family of stochastic spaces sin&°(.7) ¢ SV9(.7) for No <

No andS¥°(.7) c SN°(.77) for two complete binary trees such
that Nr(7) < Nr(.7"). We now introduce two bases f81'°(.7).

Stochastic Element (SE) basis. A function H of
SN°(.7) can be expanded locally on each laag #(.7) us-
ing the(No—+ 1) rescaled and normalized Legendre polynomials
defined on# (1), such that any functional () € L(Z, p¢) has
for expansion oi8V°(.7),

Pr
(z hz¢a<s>>7 (17)
1e£(7) \a=1

where the deterministic coefficiertt§ € R are called the SE co-
the SE basis relative to the complete binary teador given ex-
pansion order No. Denotinf®g’ } 1<a<p,, the set of normalized
Legendre polynomials of, the ®}, have for expression

( §-4&
61—"__51_

o, (E)—{VL *
alé)= 2- I
0

) Ees() =& &,
otherwise,
(18)
and form an orthonormal set:

<CD}7CDE,> - 61,1/60,ﬁ’ v:l-vll € g(ﬂ), 1§ C{,B S P"' (19)

Relying on a multi-index, the SE expansion can be recast as

Z hi®; (<), (20)
icSENS(7)

whereSEY°(.7) is the multi-index set of the SE expansion, with
card(SEY(7)) = P(7). If H € L?(Z, pg) is known, therh,
(djH) for all i € SEY°(.7).

Multiwavelet (MW) basis. Alternatively, S\°(.7) can
be spanned by the hierarchical MW system of order No anc
resolution level Nr introduced in [9]. We recall here some de-
tails about the construction of the MW system. We consider the
sequence of complete binary tregg;, r = 0,1,..., where the
bracketed subscript refers to the resolution (depth) of the comr
plete binary tree, so that N#|) = r. For No> 0, IetWNo(ﬂm)
denote the detail space, that is, té=, pg )-orthogonal comple-
ment of S¥°(J) in SYO(F1q):

SNO(fy[rJrl]) = SNO(<7[r]) @WNO(zr])_ (21)
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As a result, for Ne> 0,

Nr—1
SNO(«?[Nr]) = SNO(%O]) @ WNO(%r])-

r=0

(22)

The set of normalized Legendre polynomials, with degtedo,
is again used as a basisﬁ)‘i”(ﬂ[o]), that is,

(o) = span{d°, ..., P}, (23)
whereng is the unique node 017[0]. We now seek for an or-
thonormal basigWs, ..., Wp,} for WN°(7). SincewN°(7y)
and S¥°(.F) are L?(Z, pg)-orthogonal, the function&; are
such that

(Wa®) —0and(WaWp) = 8,5, 1< a,B<Pr  (24)

In addition, the functions¥, are piecewise polynomials on
[0,1/2]U[1/2,1] with degree< No. The 2R conditions in (24)
define the function&’,, which are computed following the al-
gorithm proposed by Alpert and co-workers in [14]. The result-
ing functions are depicted in Figure 2 for the polynomial orders
No = 1 and No= 3. Once the funciton¥, are known, we can
construct the basis f(WNO(ﬂ[r]) using rescaled and shifted ver-
sions of the basis vectors WNO(ﬂ[O]); indeed, defining

WNe(F,)) = span{®; 1€ Z(F), 1<a <Pg}, (25)

where

1 E_El_ . _ n
LP(IJ(E): {\/2714,“({1*'_51—)’ Ees(1)=1[& &',

0, otherwise,

(26)
it is immediate to verify thatn,n’ € 4 (7) and 1< a, 3 < Py,

<w§;cb“°> —0, <wgwg’> = 0 0u - (27)

Hence, any functiondtl (§) € L?(=, pg) has the following MW
expansion oi8V°(.7):

Pr
H7 (&)= 5 o)+ Y (
a=1 ne N (T)
n¢.2(7)

H(&) ~

a=1

2 T T T T T T T T T
P a=1
1.5 P 3 Q=2 ----—-= .
1k -
05 F . ; i
= |
5] 0 ! 7]
5‘ 1
_05 - ; .
1k % N
15 F ! .
_2 1 1 1 1 \\; 1 1 1 1
0 0.10.20.3040506070809 1
X
T T T T
a:
a=2 --——---
o=2 --------
o=
o
=3

0 010203040506070809 1

X
FIGURE 2. EXAMPLE OF FUNCTIONS W4

WN°(F70) FOR No= 1 (TOP) AND No= 3 (BOTTOM).

SPANNING

Again, relying on a multi-index, the MW expansion can be re-
cast as

H(&) ~ H hwi(8), (29)

ieMWZO(ﬂ)

whereMWN°(.7) is the multi-index set of the MW expansion,
with card(MWN°(.7)) =P(7). If H(&) € L%(Z, pg) is known,
thenh; = (WiH) for alli € MWNe(77).

Finally, there is an orthogonal transition matr& €
RP(Z):P(7) petween the SE and MW bases, such tHgi) =
S jeseno(7) By @j(€), for all i € MWNO(.7), where (B)j =
(Wi®;). The stochastic spacg°(.7) with alternative SE or
MW bases, namelf®; };cgeno( ) OF { Wi icmwno 7y, Constitutes

a discrete multiresolution approximation space.

General binary trees

The advantage of introducing complete binary trees is tha
the definitions of the SE and MW expansions remain unchange
when considering more general binary trees. Here, we conside
binary trees with nodes having either two children or none. We

Copyright © 2010 by ASME



continue to denote by N&f) the maximum distancén| over
A (T), but we now allow|1| < Nr(.7) for somel € .Z(.7).
An example of incomplete binary tree is depicted in Figure 3.

FIGURE 3. EXAMPLE OF INCOMPLETE BINARY TREE.

For such a tree7, the SE and MW expansions of a ran-
dom quantityH (&) in (17) and (28) remain valid, together with
their multi-index counterpart in (20) and (29) (upon redefining
the multi-index setSEV°(.7) andMWN°(.7)). We also define
P(7) according to (16). Consistently, we continue to denote
by S\°(.7) the stochastic approximation space associated with
a tree.7, although it does not correspond to the full multires-
olution spaceSNO(ﬁNr]), but only to a subspace thereof, since
the tree is incomplete. Finally, to alleviate the notation, we drop
the superscript No since the developments below involve a fixed
polynomial order.

We observe that, in addition to the summation over the P
polynomial degrees of freedom, the SE expansion in (17) in-
volves a summation over the set of leafs of the tree. In fact, if one
needs to computd (&) for someg, the summation reduces to the
unique leafl such tha€ € S(1). As a result, the SE coefficients
hi_y<p, Of H7 are associated with the leaf Conversely, the
MW expansion in (28) consists of a summation over the full set
of nodes except the leafs, which for giv&rE = reduces to the set
of ancestrors of the leaf containingé. As a matter of fact, the
multiwavelet coefficientéi} 1<a<p, are associated with the nodes
having descendants, with the speC|aI case of the root node yield-
ing the coeff|C|ent$ﬁ°<a<P Finally, for later use, we define the
following (partial order) inclusion relation between two tre@s
and.7":

T CT = N(T)cHN(T". (30)
Multidimensional case
Consider nowé = (&1,...,&y) € = = [0,1]N with uniform

joint density p;. We simply extend the construction above for
the case N=1 to the case N> 1 by enriching the tree struc-

ture. Several possibilities can be considered. For instance, one

can consider -ary tree structures (Quad-trees, Oct-tree, ...)
but this approach is intrinsically limited to low dimension N

Here, we choose a different approach. First, we keep the binary

structure of the tree (a node has none or two children) and intro-
duce for each nodee 4 (.7)\ .Z(.7) an indicator, denoted by

6

d(n) € {1,...,N}, of the direction along which the dyadic par-
tition is applied to construct its two children. For a leaf nade
we conventionally set d() = 0. Second, the multidimensional
polynomial basig ®g°} is constructed by tensorizations of one-
dimensional normalized Legendre polynomials definedom.

The tensorization can be complete or partial; in any case, w
denote byI'IN0 the corresponding multidimensional polynomial
space, and continue to denote hyi® dimension. The approxi-
mation space defined in (15) then becomes

S(7)={H:=—>R;V1e ZL(T).H|yn €Ny

ol€l},  (31)

whose dimension is still given b$E(.7) = card(¥ (7)) x P
Accordingly, the SE basis functior®% (&) are defined using
dimension-wise coordinate transformations, as in (18), leadin
to a SE expansion formally similar to (17). The extension of the
MW basis is less straightforward because it is not possible to prc
ceed by tensorization of the one-dimensional basw%?(zo])

to obtain a “universal” set of MW function$,. This is due to
the tree construction where to each node corresponds a partitic
along a unique direction(d): the detail basi§W¥% } associated
with a noden € .#(7)\ £ () depends on di). However,
there exist N sets of anisotropic detail functiofi#?}1<q<p,
that span the detail spaces supporting a partition in directio
1 < d < N. For brevity, we do not discuss the construction of
these functions here; we simply state the multidimensional MW
expansion in the form

Pr Pr
H7 (&)=Y WPorE)+ S (z hzw‘é“)’n(s)), (32)
a=1 neA(7) \a=1

g Z(7)

Wherewa( )2 is a rescaled version of the anisotropic detail func-
tion associated with node We observe that the expansion (32)
can be recast into the generic form (29).

There is however an essential difference between one
dimensional and multidimensional binary trees: for-N, there
are in general more than one tree with the same set of leafs,
yielding the same partition . This is illustrated in Figure 4
for N = 2. Consequently, we say that two tre€sand.7’ are
equivalent if they share the same set of leafs,

T =T e L(T)=L(T. (33)

Finally, the inclusion relation (30) is extended in the multidimen-
sional case to

TCT «=3T7"=T N (T)CNHN(T").  (34)
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tions are described in detail in the next section. The restric

_—’.‘~‘_~
tion operation consists in restricting a quantity € S(.7) to
a smaller stochastic spa&e7 ~) where.7~ C .. We denote
by ,@ingy this operator. The prediction operation consists in

extending a quantitd” € S.7) on a larger stochastic space
S(7 ") where7 C 7. We denote by?; +H this operator.

A A o ® o ‘e Roe-type solver

The main ingredient of the Roe-type solver is the computa:
tion of the Galerkin Roe flux in (11). To fix the ideas, we focus
on the determination of the flu_1 /» := ¢Ro(uL, ur) from (11)
at the interface — 1/2 between two neighboring cells- 1 and

FIGURE 4. EXAMPLE FOR N =2 OF TWO EQUIVALENT , ) ,
TREES LEADING TO THE SAME PARTITION OF= (BOTTOM) i, and whereu. andugr denotes the vectors of expansion coeffi-
THE SOLID (RESP. DASH) SEGMENTS REPRESENT A PARTI-  cients for the cells—1 andi respectively.

TION ALONG THE FIRST (RESP. SECOND) DIRECTION.

Def nition of the left and right states. Because in
ROE-TYPE SOLVER WITH ADAPTIVE STOCHASTIC generalZ"; # 7", the vectors of expansion coefficiemisand
ur are not defined with regard to the same stochastic basis fun

DISCRETIZATION i that we first truct an int diat for th
We are interested in problems where a shock appears al- 101 SO thatwe first construct an intermediate t7q , for the

most surely in finite time. Still, this shock remains localized mterfar(]:.e flux calculatlpn which we define as .the unl'on%fjl
both in the deterministic domai@ x [0,+c[ for each realiza- and 7" for two generic trees/; and 72 we define their union-

tion of the parameter € =, and in the uncertain parameter do- tree 7.2 := 71U .7 as (one of) the minimal tree(s) (in terms of

main = at a given poin{x,t) € Q x [0,4co[. In other words, the number of leafs) such that for all€ 2'(71.2),

solution is almost everywhere smooth @nx [0,+c[x=. This

observation strongly advocates for the use of adaptive strategies 311, € £ (%), I, € L(%), (1) =.7(11)N.7(12).

where the computational effort is concentrated in the vicinity of (36)
shocks, while a coarser discretization is used where the solution

is smooth. In what follows, we only consider adaptation of the . . . .
stochastic discretization by relying on a fixed spatial mesh (the The umop_of.two trees .corr.espondmg 10 two ne|ghb_or|ng cells
time-step satisfying a CFL condition to be specified later). How- = 1 and! is illustrated in Figure 5 for N= 2. _The union-tree
ever, we do seek for an adapted stochastic discretization that de-' not unique Whe”e‘_’er N 1, as d|fferer_1t minimal trees can
pends on the space variabl@nd the time. In the context of be constructed to satisfy (36). These union-trees are all equiv:

the stochastic discretization framework introduced in the previ- !ent angl y|elq _the same stochastic Sp&#1,2). Moreover, it
ous section, it amounts to an indexation with batandt of is readily verified that botl(71) and (%) are subspgces of
the trees7 defining the stochastic approximation sp&e ). S(F1u2)- A.S a resu_lt,_ we can compute the left and right §tate
Specifically, we now denote by;" the tree associated with the S_E expansmr] coefficients 3(«7;1/ 2) by means of the predic-
i-th cell of the spatial mesh at the discrete tithgsuch that the 10N operator:u andug are defined as the vector of SE coef-

_p : . no\g"
approximate stochastic solution on ki cell at timet" has for ficients onS(7i_1>) of the predictions?y 7, ,(Ui,)"+ and

expansions L%(zfl/z(ui“)yi”.
UN(E) ~ (UM = > (uM); ®;(&) Roe f ux. At this point, we have to compute
jeSE(FM)
= (UMW (&) e S(ZM). (35) f(u)+ f(u Ur—U
jeMV%;Z”) 'JJ ' bi12= w — Jafg = 5 3 (37)

We first extend the Roe-type solver to the tree formalism, wherethe SE coefficients of the left and right states are definec
while the adaptive procedure is discussed afterwards. To this on the same stochastic spa®g7_;,,). A key feature of the
purpose, we need to consider restriction and prediction opera- SE representation is that, owing to the orthogonality of the ba
tors between two different general binary trees. Such opera- sis functions associated to distinct leafs (see (19)), it decouple

7 Copyright © 2010 by ASME



FIGURE 5. EXAMPLE FOR N= 2 OF THE UNION OF TWO
TREES CORRESPONDING TO TWO NEIGHBORING CELLS- 1
AND i. TOP LINE: ", (LEFT), Z" (CENTER), AND _1,
(RIGHT). BOTTOM LINE: CORRESPONDING PARTITION OF THE
PARAMETER SPACE. THE SOLID (RESP. DASH) SEGMENTS
REPRESENT A PARTITION ALONG THE FIRST (RESP. SECOND)
DIRECTION.

the flux computation over the set of leafs of the interface tree.
Indeed, by defining the index s8E(.7_y,) through consecu-
tive enumeration of the coefficients related to a leaf, the matrix
aRee has a block diagonal structure. As a result, the Roe-type
solver is applied independently on each leaE £ (7_1),),
using the local basi$¢®s,...,®p } in place of the generic ba-
sis{o,...,lp}. In particular, denoting byaR8d; the (mPy) x
(mPy) sub-matrix associated with the leafc £ (.%_y,), we
approximate its absolute value as follows:

IEXSHES Qdﬁl,{)\{}([afge]l)a (38)

where{A{} is an approximate spectrum @239, and Ol (A}
is the polynomial of degre€ di; minimizing the quadratic func-
tional

(1M~ gy ) (39)

>

Ae{A(}
As in [7], we use for{A,} the set of eigenvalues of the orig-
inal stochastic conservation law evaluated at the Gauss integra-
tion nodes over the leaf Note that in the neighborhood of sonic
points this Roe-type scheme requires a correction to obtain en-
tropy solutions as detailed in [11].

Time integration. Since the fluxes have been computed
for all the interfaces of the computational mesh, the remaining
step is the time-integration of the solution according to (8). In
general the fluxeg;_; , and¢;_ 1 > at the left and right interfaces
as well as the current stat are defined over different trees. As

8

for the flux computations, we construﬁf”rl =T 12U 12

and remark thatZ" ¢ 7", Therefore the left and right fluxes
and the current state can be predicted??p?n+l before applying
(8) to obtainu* from the set of SE coefficients ¢&™*) %"

To ensure the stability of the time-integration, the time gi€p
has to be selected to satisfy the CFL condition in (12), where ir
the present adaptive context, the maximal characteristic velocit
is taken over the full set of approximated spectra (for every lea
of every interface tree).

Adaptation

Starting from an initial data consisting, for each spatial cell,
of a treeﬂi0 and the corresponding approximation of the initial
conditionU? € S(Z°), the above scheme refines the stochastic
discretization, through the union operator, but in an uncontrollec
fashion. Furthermore, all the trees eventually converge toward
unique tree which is the union of all the initial trees. Two addi-
tional ingredients are needed to obtain a fully adaptive methoc
first, an enrichment procedure where the trees are refined in
controlled way (in particular by allowing the generation of trees
that are not included iny;.Z;%), and, second, a coarsening pro-
cedure to avoid the emergence of unnecessary complex trees
cells where the solution is smooth and can be accurately appro:
imated on a low-dimensional stochastic space.

The heuristic ideas driving the enrichment and coarsenin
procedures are described in the next section. The enrichme
procedure is applied when defining the trees for the flux evalua
tion. This choice can be motivated by observing that flux func-
tions of interest are often nonlinear, so that approximation space
larger than those for the solution are needed for accurate flu
evaluation. For the coarsening procedure, it appears natural
analyze the solution at the end of the time step to decide wheth
details can be disregarded to save computational effort. Wit
these choices, the adaptive algorithm over a time step takes tt
following form:

I) Loop over the interfaces: (flux computation)

1. Define the enriched tree of the interface:
Tiap=6E (T UT")
2. Predict the left and right states 807_ »)
3. Foreach leat € Z(7_q)):
(a) Compute the local fluxe (u_) and f; (ur) and
the matrix[a339,
(b) Determine the local polynomiqhﬁl,{}\{}
(c) Assemble the contribution of the leaf¢g 1 /»

II) Loop over the spatial cells: (time integration)

1. Construct the cell integration tree:

T =T 1pU T )2
2. Predict the left / right fluxes and initial state 8f7}*)
3. Integrate to obtai(Ui*)"qi*

Copyright (© 2010 by ASME



(coarsening step)
1. Coarsen the treg""! = ¢ (7*) C F*
2. Restrict the solution(Ui””)‘q' =%, g (VK I=p(I")=p(1*)

[

FIGURE 6. EXAMPLE OF TREE RESTRICTION THROUGH THE
ALGORITHMIC ASPECTS REMOVAL OF THE TWO CHILDREN LEAFS OF A NODE. ONLY
This section collects some details on the restriction and pre- PART OF THE TREES ARE SHOWN FOR CLARITY.
diction operations, as well as on the enrichment and coarsening

procedures. one-dimensional case N1 as
Restriction operation. Given two general binary trees 1 P - ot it
J- c 7 and givenH? € S(.7), we define the restriction ha = Z {Raﬁhﬁ +Ror~ﬁhﬁ ’ (43)

Z#,7-H7 of H7 to §(7~) as the orthogonal?(=, p;)-
projection of HZ on S(.7~) (observe that by construction,

S.7-) C ST thatis where the transition coefficients of the linear combination are

given by

((H7-%7 H7)®) =0, vOcST). (40) Ry =

- +
(@40} ) andR}, = (@h05" ). (49)
In terms of multiwavelet coefficients, the restriction operation is N fact, the transition coefficien®; ; and R} g are support and
straightforward. Lettind be the MW coefficients oH 7, we scale invariant (independent (iff and.~(1 )) For instance, in
obtain for all 1< a <Py, the simplest case Ne 0 (P; = 1), we haveR*l = R 1= 1/\f
In the multi-dimensional case N 1, the prediction operator can
—— n be expressed using a family of N matrlcl?%%d for1<d<N.
(@WHﬂ)a —f, Vne N (TH\L(T). (A1)

Prediction operator. Given two general binary trees
T c 7% and givenH” € S(.7), there are several ways to de-
fine the prediction??; >+ H” of HZ onS(7+); seee.g.[12,13].
Here we consider a simple approach, where no information i
generated by the prediction. As for the restriction operation, the
MW expansion of the prediction is immediately inferred from
the MW expansion coefficients &f in S(.7). We obtain for
all<a <Ppandne 4 (TH)\L(TT),

Computation of the SE coefficients of the restriction is not as im-
mediate as for the MW coefficients. One possibility is to rely
on the expressions (41) together with the transition marir
obtain the SE coefficient§%, ,-H”) . However, assembly of
B(7 ) (or directely of its inverse) can be quite expensive for
stochastic spaces with large dimension, and it appears more ef-
ficient in practice to proceed recursively. Assuming that the SE
expansion oH“ is known, we construct a sequence of tré&d .
such that (%fymy) B {hz,, ne N (IN\L(7), 45)
0, otherwise.

T=705705...5705... 570 =9 (42 _ o o _
For the SE expansion coefficients of the prediction, we can agai
proceed iteratively using a series of increasing intermediate tree

where two consecutive trees differ by one generation drdy, differing by only one generation from one to the other. This time,
a leaf of 71 is either a leaf or a node with leaf children in  the elementary operation consists in adding children to some le
7M. Therefore the transition fron¥ () to .71 consists in of the current tree, as illustrated in Figure 7. The SE coeffi-

removing a set of pairs of sister leafs to reduce iteratively the cients associated to the new leafs can be expressed in the or
tree. The process is illustrated in Figure 6 in the case of the dimensional case N- 1 as

reduction of a unique pair of leafs. Focusing on the removal of

a (left-right ordered) pair of sister leafa—,17} € £(71), B n

the SE coefficients of the restriction b’ () associated with the hg ® = > Ry shes hg Z g, (46)
leaf 1 = p(17) = p(17) € Z(.7(*Y) can be expressed in the p=1

9 Copyright (© 2010 by ASME



whereeg; > 0 is the threshold parameter that may be a functior

. of the depthn| of the parent node. The criterion (47) is heuristic
and based on the(=, pg) stochastic norm of the MW details
associated with the parent node The coarsening sequence is
cm ¢t stopped whenever no couple of sister-leafs can be removed.

We remark that this algorithm only generates trees consis
tent with .Z* in the sense that, along the sequence, the successi
(coarser and coarser) partitions ®ffollow, in backward order,
the nodes’ partition direction df as prescribed by7*. (Recall
that the multiwavelet basis, and so the MW coefficients, depen:
with the transition coefficients given by (44). As before, the fam- gp the partition directions d{.) In other words, the coarsen-

FIGURE 7. EXAMPLE OF EXTENSION OF A TREE THROUGH
THE CREATION OF THE CHILDREN OF A LEAD NODE. ONLY
PART OF THE TREES ARE SHOWN FOR CLARITY.

ily of N matricesR*? for 1 < d < N is considered in the multi-  jng can only “undo” partitions following the structure imposed

dimensional case M 1. by .Z*. This is clearly unsatisfying because for-N1, there
Finally, for two trees7 C .7, we observe that?| 7 o are multiple trees equivalent t&* and we would like the coars-

P, 7+ = ldg 7), while in general?; 7+ 0o Z| 7 # ldg 7+). ened tree to be independent of any particular choiceZfor To

avoid arbitrariness, the trees of the sequence are periodically su

Enrichment procedure. The purpose of the enrichment stituted by an equivalent one. These equivalent trees are col
procedure is to compute the interface flux in a stochastic space Structed by searching in the current tree structures the pattel
larger thar(.Z", U.Z"). It amounts to an extension of the union  Of & noden whose childrenc™(n) andc™(n) are subsequently
tree, by subdividing some of its leafs. Different strategies can be Partitioned along a same direction: cd((n)) = d(c™ (n)) # 0.
used. For instance, we can use the multiwavelet coefficients of When such a pattern is found, partition directions are exchange:
the predictions of the left and right states to decide where to re- d@) <> d(c™(n)) =d(c™ (n)), together with a permutation of the
fine the tree as done for instance in [9, 15]. In this work and descendants of the children nodes. This operation, illustrated i
for the examples below, we simply decided to enrich the tree Figure 8, is applied periodically and randomly in the coarsening
by splitting all the leafs of the union tre€"; U .7" along each procedure.
of the N directions of the stochastic parameter domain. In do-
ing so, the enriched tregi_;,, = £(Z" U ") has a total of
(2V)card(-Z (7", U Z"M) leafs, showing that such a straightfor- n n
ward enrlchment is only practical in situations where N is small:
it will be necessary to consider more advanced strategies in the e
future. i)

Coarsening procedure. The coarsening procedure is A A A A
Td Td

applied after the time integration, when the solution forittie .
cell is known on a treeZ*. The objective is to define a sub- F'GURE 8- 'LLUSTRAT'ON OF THE ELEMENTARY OPERA-

tree 71 C 7+ s0 that the dimension (S(ymrl) is reduced  TION TO GENERATE EQUIVALENT TREES: THE PATTERN, OF A
NODE WITH ITS TWO CHILDREN DIVIDED ALONG THE SAME
DIRECTION, (LEFT GRAPH) IS REPLACED BY THE SAME PAT-
TERN BUT WITH THE PARTITION DIRECTIONS EXCHANGED
(RIGHT GRAPH) PLUS A PERMUTATION OF THE SUBS-TREES
(TRIANGLES) OF THE CHILDREN'S DESCENDENTS.

\

r(n) I(n) r(ﬂ)

while the restriction errot) %" _%L 7n+1U 7" remains accept-

able. In wavelet methods, one usually defines the coarsening
through a thresholding procedure in which wavelet coefficients

with absolute value less than a prescribed threshold value are
disregarded. This concept can be extended to the multiwavelet
discretization too. However, we need to introduce some con-

straints in order to maintain a binary tree structure for the re-

sulting tree. Specifically, we construct a sequence of imbricated
trees, obtained through the removal of pairs of sister-leafs from

one tree to the next. For a couple of sister-leafs having mode

for parent, we remove the two leafs if RESULTS
The proposed method is assessed on the Burgers equati
P with uncertain initial conditions and two stochastic dimensions.
z ()2 < 2, (47) The basis at the SE level considered here corresponds to ful
a=1 tensorized Legendre polynomials with degredlo.

10 Copyright © 2010 by ASME
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FIGURE 9. RANDOM INITIAL CONDITION FOR TEST CASE
1: SAMPLE SET OF 20 RANDOM REALIZATIONS, MEAN AND
STANDARD DEVIATION.

SE realizations
<U(x,t=0)> 7
o(U(xt=0)) ——

0.8 1

0.6

Shocks with deterministic velocities

We consider a one-dimensional spatial dom@in= [0,1]
with periodic boundary conditions. The governing equation, in
conservative form, is

oU AF(U)

ot Jx

=0, (48)

andwe consider an uncertain initial condititP(x, &) consist-
ing of three piecewise constant deterministic states iBpecif-
ically, the three states aé = 1, 0> = 1/2, andu® = 1/6, and
the position of some jumps is uncertain: the jump from stafes
to U2 occurs at a random locatiofy » having a uniform distribu-
tion in [0.1,0.2], while the jump from states? to ° occurs at a
randomlocationX; 3 having a uniform distribution if0.3,0.4].
Finally, the jump from states® to U' is atxs; = 0.6. The random
locationsX; » and Xy 3 are independent and parameterized using
two independent random variablés and &, respectively, both
with uniform distribution in[0,1]:

X172 =0.1+0.1&,, Xz_yg =03+01&, &~ [0,1].

(49)
Therefore, the problem has two stochastic dimensions: @.
For this experiment, we constrained the trees so that the mini-
mum depth leveln| is 1 for all nodes and use a coarsening pa-
rameters, = 10-4. The polynomial order is Ne- 3. In Figure 9,
we illustrate the random initial condition for a spatial discretiza-
tion with Nc= 200 uniform cells in the spatial domain. The plot
shows a sample set of 20 realizations of the random initial con-
dition, together with its expectation and standard deviation.

In Figure 10 we show the stochastic solution at time<0.2

1.2

0.8

0.6

value

0.4

SE realizations
<U(x,t=0.2)>
0(U(x,t=0.?)) —_—

0.8 1

0.2

0.6

0.8

0.6

value

0.4

SE realizations
<U(x,t=0.6)>
o(U(x,t=0.6)) ——

0 Il Il

0 0.2 04
X

FIGURE 10. SOLUTION OF THE STOCHASTIC BURGERS

EQUATION ATt=0.2 ANDt =0.6. SAMPLE SET OF 20 RANDOM

REALIZATIONS, MEAN AND STANDARD DEVIATION.

02 |

0.6

0.8 1

locity is 1/3. Att = 0.6, the shocks have merged for nearly all re-
alizations. Furthermore, the space-time diagrams of the solutio
expectation and standard deviation are plotted over the period
timet € [0,2] in Figure 11. We observe that the proposed adap:
tive method correctly captures the dynamics of the Burgers equz
tion. The shocks are transported with the correct deterministi
velocities and spurious uncertainty in the solution is not createc
The stochastic resolution is adapted in space and time to the loc
smoothness of the solution in the stochastic domain such that w
expect a finer stochastic discretization along the path of the shoc
waves depending on the variability in the solution. This is illus-
trated in Figure 12, where the stochastic solutibfx,(t),t, &)

is plotted as a function afé1, &2) for various timeg € [0.2,0.6]

at a moving observation poing(t) = 0.25-+ 0.5t initially lo-
cated between the two shocks. Singemoves slower than the
first shock X, is eventually caught-up by the first random shock.
Moreover, since, moves faster than the second shock, there is ¢
time interval for which the stochastic solutionxatcorresponds

to a set of event§ with different configurations of the shocks.
Fort = 0.2, the observation point starts to be caught-up by some
events corresponding to the largest realizations;of the solu-
tion is a function o€, only. Hence we observe that the stochastic
domain is more finely refined in thg-direction. Att = 0.4, the

and 06. The solution expectation and standard deviation, to- observation point starts to reach the second shock, introducin
gether with a random sample set of realizations, are also plotted. some dependence @, while a fraction of events corresponds

The realizations are reconstructed from the stochastic expansionsto shocks having merged. This creates a stochastic solution wif
of the solutions, using a unique set of randomly generated real- three distinct plateaus with respective values 1, 1/2, and 1/¢
izations ofé € = = [0,1]?. Fort = 0.2, the first shock whose  whose configuration evolves in time. We obtain as expected a Ic
velocity is 3/4 has not yet reached the second shock whose ve-cal adaptation of the stochastic discretization depending on sp

11 Copyright © 2010 by ASME
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FIGURE 11. SFACE-TIME DIAGRAMS OF THE EXPECTA-
TION (LEFT) AND STANDARD DEVIATION (RIGHT) OF THE
STOCHASTIC BURGERS EQUATION.
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FIGURE 12. SOLUTION

tial position and time; the stochastic domain is finely discretized
in the neighborhood of the discontinuities (in fact of the steep
parts because of the diffusivity of the Roe scheme), while it is
coarsely refined elsewhere.

Shocks with uncertain velocities

We still consider the Burgers equation, but with stochas-
tic initial conditionU®(x, &) defined using two uncertain states,
U™ (&) andU (&), the first one almost surely positive and the
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IN THE STOCHASTIC DOMAIN
(&1,&) € [0,1]2 FOR A MOVING POINT x,(t) = 0.25+ 0.5 FOR
DIFFERENT TIMESt = 0.2,0.4,0.5,0.6.

1.5 T T L
SE realizations
1 <U(x,t=0)> 7
05 o(U(x=0)) —— |
g
s O 7
>
-05 E
_l -
-1.5 L L L
0 0.25 0.5 0.75 1

FIGURE 13. RANDOM INITIAXL CONDITION OF THE
STOCHASTIC BURGERS EQUATION FOR TEST CASE 2:
SAMPLE SET OF 20 RANDOM REALIZATIONS, MEAN AND
STANDARD DEVIATION.

second one almost surely negative. We takexfer0,1],

Ut (&) x<1/3,
U%(x,&) = U (&) x>2/3,
U™ (&1)(2-3x+U"(&)(3x—1) 1/3<x<2/3,
(50)

such thatu%(x, &) is continuous for ang < [0,1]°>. We define
the stochastic states as

U+(El) =1-005(2&-1), &1 ~%[0,1],
Ui(EZ) =-1- 01(252 - 1)7 52 ~ %[071]7 (51)

so thatJ * ~ %/[0.95,1.05]andU ~ ~ % [-1.1,—0.9]. We solve
the stochastic Burgers equation with Dirichlet boundary condi-
tions,U =U* atx=0andU =U~ atx= 1. The initial condi-
tion is illustrated in Figure 13. Ne- 201 cells are used for space
discretization.

Although initially continuous, the stochastic solution de-
velops in finite time a discontinuity with a stochastic jump
U™ —U~] and a stochastic propagation velogity™ +U~) /2.
The stochastic character of the shock magnitude and velocity he
to be contrasted with the situation of the previous test case, whel
the jumps and shock velocity were certain.

To illustrate the refinement procedure, we present in Fig:
ure 14 the resulting partition of the parameter spaca three
different locations in space close to the center of the compute
tional domainx = 0.54-0.02, and timeg = 0.2, 0.4, and 15.

For this experiment, we constrained the trees so thal < 12

for all nodes and used a coarsening paramgtes 104, The
polynomial order is No= 1. The solution at the same times
and over the part of the computational domaia [0.35,0.65]

is shown in Figure 15, where the solution expectation and star
dard deviation, together with a random sample set of realization:
are also plotted. The vertical red lines in Figure 15 indicate the

Copyright © 2010 by ASME
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1 <U(x,t=0.2)> 7
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FIGURE 14. PARTITION OF THE PARAMETER SPACE= AT g -0.5 - \ -
TIMES 0.2, 0.4 AND 1.5 (FROM TOP TO BOTTOM) AND SPATIAL 1k e
LOCATIONSx=0.48,0.5 AND 0.52 (FROM LEFT TO RIGHT). THE 15 1 1 1 1
0.35 0.4 0.45 0.5 0.55 0.6 0.65

COLOR SCALE GIVES THE DEPTH OF THE LEAFS.

X
FIGURE 15. STOCHASTIC SOLUTION AT TIMESt = 0.2, 0.4

positions in space (¢ 0.5+ 0.02) for which the partition of the
parameter space is shown in Figure 14.

AND 1.5 (FROM TOP TO BOTTOM). SAMPLE SET OF 20 RAN-
DOM REALIZATIONS, MEAN AND STANDARD DEVIATION.
NUMERICAL PARAMETERS ARE GIVEN IN THE TEXT. ONLY

Figures 14 and 15 deserve some commentd.-AD.2, the A PART OF THE DOMAIN IS SHOWN EOR CLARITY.

trees atx = 0.5+ 0.02 are such that Ni&) = 2, the minimal
value, since there the solution is still smooth in the stochastic
domain at that time and spatial position. Bt 0.5, stochastic
details are necessary to capture the shock who has formed almost
surely and the maximum depth leve| ., for the trees has been
already reached along two distinct lines acrassin between
these two lines, we observe that the maximum depth level is not
reached. This region corresponds to a portion of the parameter
space= where the solution is smooth because of the diffusivity ¢
of the Roe scheme. This is reflected in the stochastic solution .:
U(&1,&2) atx= 0.5 andt = 0.2 in the left panel of Figure 16,
where intermediate statés™ < U (&) <U™ are seen. As time
increases, the distance between the two lines corresponding to
maximum refinement decreases, reflecting a steeper and steeper
stochastic solution with regard # (see plots fot = 0.4 and

t =1.5in Figure 14 and the right panel of Figure 16). Due to the
shock velocity(U™ +U~)/2, the shock has reached locations
x=0.5+0.02 with a probability contained ii®, 1], so that details
are now needed over a portion &fto account for the solution

5
1
05
0

13

\
D
WV

:i‘;:
R

\
O

%

N\

™

N
R
N
0

\
&
%
Q

FIGURE 16. STOCHASTIC SOLUTION OF THE BURGERS
EQUATION AS A FUNCTION OF (&3, &,) AT Xo = 0.5 ANDt = 0.2
(LEFT) AND t = 0.4 (RIGHT).
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discontinuity; in fact, details are needed only over half of the
stochastigpparameter domain at these two locations and time. We » ; ; . 2 ; ; ;
observe a drift of the shock location in the parameter domain at
x=0.54+0.02 betweerh = 0.4 andt = 1.5. This is due to the fact 1
that the initial condition is almost surely non-symmetric, so that
some realizations of the shocks will propagate to the left of the |
domain and some other to the right. Moreover, we expect that for
a time large enough, we have at any spatial location a partition _; |
of the parameter space similar to the partition ak = 0.5 for

t =15, and a shocked stochastic solution with statésor U~ ) s s s ) s s s
according to the sign of Zg —1/2) + (§2 — 1/2) since the shock 03 04 05 06 07 03 04 05 06 07
velocity is(UT +U™) /2. This is reflected on the bottom line of > i i i 2 i i i
Figure 14.

1 < E 1 g

One of the important features of the adaptive strategy is that
the refinement controls the magnitude and probability measure
of the overshoots in the stochastic solution created by the dis-
continuities. To illustrate this assertion, we repeat the previous
experiment, varying the maximum depth level allowed and com- ~
pare solutions at = 1.5. In Figure 17, we indeed observe a
decay of the occurrence and magnitude of the overshoots When'zo,g 04 05 06 07 “03 04 05 06 07
we increase the allowed maximal depth of the trees. Figure 18
presents the time evolution of the total number of leafs in the dis-
crete solution, for various maximal depths, and below, the distri-
bution of the leafs in space and time (note the vertical log scale)
for the casgn| < 14. For early times < 0.15, the number of
leafs is essentially independent|af,,,,, Since the shock has not
formed yet so that the adaptation is controlleddgy At later
times, the number of leafs increases roughly linearly witfe-
flecting the linear dependence oof the portion ofQ affected by
the stochastic shock as seen from the bottom plot of Figure 18.
Interestingly, whenn| ., is increased by 2, the number of leafs
is multiplied by less than 4.

To analyze the efficiency of the proposed adaptive method-
ology, we compare it with the corresponding method using a uni-
form discretization of the stochastic domain, that is, using fixed
resolution level Nr (i.efixed depth of tree Ntf) in each spa-
tial cell). Figure 19 presents a random sample set of 30 real-
izations of the stochastic solution ta&= 1.5 obtained with uni-
form resolution level Ne= 3 and 4. The uniform resolution lev-
els Nr= 3 and 4 have been chosen in such a way that the to-
tal number of degrees of freedom in the uniform case, that is,
dofunit = P(Jnr) x Nc, is of the same order of magnitude as
the total number of degrees of freedom in the adaptive case at 2 4 6 8 10 12 14
t" = 15, that is, dofjap= iN:°1 P(Z"). Thus, these results are
to be compared with the panels of the second line of Figure 17 FIGURE 17. SAMPLE SET OF 30 REALIZATIONS OF THE
for maximum depth of the adaptive trdﬂﬁnax: 12 and 14. We COMPUTED STOCHASTIC SOLUTION ATt = 1.5, FOR MAXI-

observe that the occurence and the magnitude of the overshootd!UM DEPTH OF THE TREES EQUAL TO 8 (TL), 10 (TR), 12 (BL)
is considerably reduced when using the adaptive method. AND 14 (BR), AND CORRESPONDING STOCHASTIC MESHES

AT x=0.5. OTHER NUMERICAL PARAMETERS ARE GIVEN IN
To evaluate more quantatively the control of overshoots, we THE TEXT.
measure the magnitude of overshoots integrated on the spatial

14 Copyright © 2010 by ASME
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FIGURE 18. TOP: EVOLUTION WITH TIME OF TOTAL NUM-
BER OF LEAFS FOR THE APPROXIMATE SOLUTIONS USING
MAXIMUM DEPTH LEVELS 8, 10, 12 AND 14. BOTTOM: SPACE-
TIME DISTRIBUTION OF THE NUMBER OF LEAFS FOR THE
TREES OF THE APPROXIMATE SOLUTION USING A MAXIMUM
DEPTH LEVEL EQUAL TO 14.

domain as follows:

Nc M _ _
Bl =18)= {5 3 ((UE) U €02

+UPED) —uEM)2), 52

whereU"(é(1)) denotes the discrete stochastic solution evalu-

ated até () belonging to a random sample sét;"(£()) de-

-2 1 Il 1

0.3 0.4 0.5 0.6 0.7
FIGURE 19. SAMPLE SET OF 30 REALIZATIONS OF THE
COMPUTED STOCHASTIC SOLUTION AT = 1.5, IN THE CASE
OF A UNIFORM DISCRETIZATION OF THE STOCHASTIC DO-
MAIN FOR RESOLUTION LEVEL Nr EQUAL TO 3 AND 4.

0-1."'|"'|"'|'_"|"'
b €over @daptive —+—
Eqver UNiform —=<—
0.01 | E
0.001 ——tl—l
le+02 1e+03 le+04 1e+05 le+06 1e+07

dof

FIGURE 20. MEASURE goer(t" = 1.5) FOR VARIOUS Nr AND
AS A FUNCTION OF DEGREES OF FREEDOM.

|n|max

adaptive method than for the non-adaptive method. For instanc
to achieve a value of 1@ for gyer, the number of degrees of
freedom needed for the adaptive method can be roughly two ol
ders of magnitude smaller than that for the non-adaptive one
These savings in terms of degrees of freedom vyield significar
savings in terms of computational time.

Finally, we compare the adaptive method to the non-adaptiv
one through the following error measures:

note the exact upper and lower bounds on the stochastic solu-

tion at&(), and the subscripts denote the positive and nega-
tive part of a real number. We use a sample set with cardinality

M = 10°. Figure 20 presents the quantityer as a function of
degrees of freedom (note the log scales) for=Nt,2,3,4,5.6

and |n|,,« = 4,6,8,10,12,14. Since the number of degrees of

AX Nc M

2" =15):=—
Eex(t )= i;};

(Ur(e) —ue(s. )’
(59

AX Nc M

. . 2
freedom for the adaptive method depends on time, we used con- &qc(t” =15) = M 21 > (Uin(f(”) *UMC(Xi,t",E“))) :
i=1j=1

ventionally the mean number of degrees of freedom in the time

(54)

interval [0,1.5]. We observe that,yer decreases faster for the
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1 s — putational Fluid Dynamics. Springer Series in Scientific

T 7 AL E .
€ox Adaptive —— ] Computation.

. eexa‘éri‘i'g)%(/rg ] [2] Ghanem, R. G., and Spanos, P. D., 20@3ochastic finite
!%A,j,:c uniform —a— ] elements: a spectral approach. Dover.

01F E [3] Ge, L., Cheung, K., and Kobayashi, M., 2008. “Stochas-

; ] tic Solution for Uncertainty Propagation in Nonlinear
Shallow-Water Equations”. Journal of Hydraulic Engi-
neering, pp. 1732-1743.

0.01 : E [4] Gottlieb, D., and Xiu, D., 2008. “Galerkin method for wave
equations with uncertain coefficientsCommun. Comput.
- 1 Phys., 3(2), pp. 505-518.
0001 Lbe0— ol vl [5] Lin, G., Su, C.-H., and Karniadakis, G. E., 2006. “Predict-
le+02 1e+03 1le+04 1e+05 1e+06 le+07 ing shock dynamics in the presence of uncertaintied”.
dof Comput. Phys.217(1), pp. 260-276.
FIGURE 21. ERRORSggy AND gyc AT t" = 1.5 FOR VARIOUS [6] Poett(?,.G.,. Des@s, B., and Lucor, D., 2009 “Uncertainty
NF AND |n],,,,, AS A FUNCTION OF DEGREES OF FREEDOM. quantification for systems of conservation laws..Com-
put. Phys.,228(7), pp. 2443-2467.

[7] Tryoen, J., Le Mire, O., Ndjinga, M., and
whereUP (&), US(x;,t",£()), andUMC(x;,t", £()) are evalu- Emn, A., 2010. “Intrusive  Galerkin Methods
ated foré () belonging to a random sample set respectively from with  Upwinding for Uncertain Nonlinear Hyper-
the stochastic expansion of the computed solution, the exact solu- bolic Systems”. J. Comput. Phys. In Press, See
tion of the deterministic Burgers problem at the cell certand http://dx.doi.org/10.1016/j.j cp. 2010. 05. 007.
discrete time", and by solving the deterministic discrete Burgers  [8] Deb, M. K., Bab&ka, I. M., and Oden, J. T., 2001.
problem. We use a sample set with cardinality= 10°. These “Solution of stochastic partial differential equations using
two error measures are represented in Figure 20 as a function of Galerkin finite element techniques”.Comput. Methods
degrees of freedom (note the log scales) for=Nt,2,3,4,5,6 Appl. Mech. Engrg.,190(48), pp. 6359-6372.
and |n|, .« = 4,6,8,10,12,14. The errors for the adaptive and  [9] Le Maitre, O. P., Najm, H. N., Ghanem, R. G., and Knio,
non-adaptive methods exhibit a similar decay rate, but the adap- 0. M., 2004. “Multi-resolution analysis of Wiener-type un-
tive method achieves a given error level with much less degrees certainty propagation schemeg..Comput. Phys.197(2),
of freedom. We also notice that the error measagestagnates pp. 502-531.
beyond a certain number of degrees of freedom since the error is[10] Wan, X., and Karniadakis, G. E., 2006. “Multi-element
then dominated by the space discretization error. generalized polynomial chaos for arbitrary probability mea-

sures”. SIAM J. Sci. Comput.28(3), pp. 901-928 (elec-
tronic).
CONCLUSION [11] Tryoen, J., Le Mére, O., Ndjinga, M., and Ern, A.,
We have proposed an adaptive anisotropic strategy in the 2010. “Roe Solver with Entropy Corrector for Uncertain
context of multiresolution analysis for uncertain conservation Nonlinear Hyperbolic Systems”J. Comput. Appl. Math.
laws with a locally refined stochastic approximation space de- To appear, Seéttp:/hal.archives-ouvertes.fr,
pending on space and time. The present results illustrate the Preprint 00444845.
ability of the method to deal with nonlinear scalar conserva- [12] Cohen, A., Miller, S., Postel, M., and Kaber, S. M., 2002.
tion laws including shocks while achieving significant computa- “Fully adaptive multiresolution schemes for conservation
tional savings owing to the adapted discretization. However, the laws”. Math. Comp.,72, pp. 183—-225.
present adaptive strategy still involves some parts that can be im-[13] Cohen, A., Dahnem, W., and DeVore, R., 2004. “Adaptive
proved, in particular, by considering more advanced enrichment wavelet techniques in numerical simulatioEhcyclopedia

and prediction procedures. These improvements are needed be- of Computational Mechanicsl, pp. 157-197.
fore considering the application to complex uncertain hyperbolic [14] Alpert, B., 1993. *“A class of bases iy, for the sparse

systems. representation of integral operators). Math. Anal., 24,
pp. 246-262.
[15] Le Maitre, O. P., Najm, H. N., &bay, P. P., Ghanem, R. G.,
REFERENCES and Knio, O. M., 2007. “Multi-resolution-analysis scheme
[1] Le Maitre, O. P., and Knio, O. M., 201®pectral Methods for uncertainty quantification in chemical systemS1AM
for Uncertainty Quantification with Applications to Com- J. Sci. Comput.29(2), pp. 864-889.

16 Copyright © 2010 by ASME



