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ABSTRACT
This paper deals with the design of adaptive anisotropic dis-

cretization schemes for conservation laws with stochastic pa-
rameters. A Finite Volume scheme is used for the determinis-
tic discretization, while a piecewise polynomial representation is
used at the stochastic level. The methodology is designed in the
context of intrusive Galerkin projection methods with Roe-type
solver. The adaptation aims at selecting the stochastic resolution
level with regard to the local smoothness of the solution in the
stochastic domain. In addition, the stochastic features of the so-
lution greatly vary in the space and time so that the constructed
stochastic approximation space depends on space and time. The
overall method is assessed on the stochastic Burgers equation
with shocks, showing significant computational savings.

INTRODUCTION
Stochastic spectral methods and so-called Chaos expansions

provide effective tools for uncertainty quantification (UQ) and
propagation in numerical models. The determination of the
stochastic solution can be achieved by means of non intrusive
(sampling based) methods or a stochastic Galerkin projection to
derive a spectral problem for the stochastic modes; see, e.g., [1]
and references therein. In this work, we consider the application
of the Galerkin projection [2] to the resolution of conservation
laws involving uncertain data (such as model parameters, initial
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and boundary conditions, and geometry) with known distribu-
tion functions. Previous applications of Galerkin projection to
conservation laws include [3–7]. We are interested in problems
where a shock appears almost surely in finite time. In this case,
since the shock speed and/or its location in space can be uncer-
tain, the solution is discontinuous in space and in the stochastic
domain. This feature calls for specific discretization techniques.
In particular, we rely on Finite Volume schemes for space dis-
cretization and on piecewise polynomial discretizations in the
stochastic domain [8–10]. The use of piecewise polynomial rep-
resentations helps prevent the emergence of Gibbs phenomena
and aliasing errors associated with spectral representations based
on smooth functions. In [7], we designed a Roe-type solver for
the Galerkin system. Its key feature is an original technique to
approximate efficiently the absolute value of the Galerkin Roe
matrix based on evaluating a least-squares polynomial fitting the
absolute value of the eigenvalues of the original stochastic hyper-
bolic problem at suitable collocation points. This solver was ex-
tensively tested in [7] on the stochastic Burgers and Euler equa-
tions and an entropy corrector was designed in [11].

The method proposed in [7], while able to deal with com-
plex situations, remains expensive since a very fine stochastic
discretization is needed to represent the solution in the neigh-
borhood of discontinuities. This observation calls for adaptive
strategies. Since discontinuities are localized in space and evolve
in time, we propose in this work stochastic representations de-
pending on space and time, meaning that, at a given time, each
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Finite Volume cell supports its own stochastic discretization.
Consequently, the overall discretization does not rely on a ten-
sorization of stochastic and deterministic approximation spaces,
a feature which, to our knowledge, constitutes an original con-
tribution of the present work. The above methodology can be
formulated within a multiresolution framework based on the con-
cept of general binary trees to describe the discretization of the
stochastic domain, similarly to previous work in the determin-
istic context [12, 13]. The next ingredient is to allow for the
adaptive enrichment and coarsening of the binary trees. In the
present work, this is achieved using heuristic criteria where, in
particular, the coarsening procedure relies on energy estimates.
In addition, for multidimensional stochastic domains, an impor-
tant feature of the present methodology is the anisotropy of the
adaptive procedure.

The paper is organized as follows. First, we briefly recall
the Galerkin projection of stochastic conservation laws and the
Roe-type solver introduced in [7] in the non-adaptive context.
Multiresolution analysis tools are then introduced together with
suitable techniques for anisotropic adaptation in the context of
uncertain conservation laws. Finally, simulations results are pre-
sented for the Burgers equation in two stochastic dimensions.
Further development and testing of the present adaptive method-
ology for systems of uncertain conservation laws, such as the
Euler equations, will be examined in future work.

GALERKIN PROJECTION AND ROE-TYPE SOLVER
Stochastic conservation laws

We are interested in stochastic nonlinear conservation laws
with uncertain input quantities that can be parametrized for sim-
plicity by N independent identically distributed random variables
ξ := {ξ1, . . . ,ξN} uniformly distributed onΞ := [0,1]N. Let us
denote bypξ = 1 the density function ofξ and letL2(Ξ, pξ ) be
the space of second-order random variables defined on the prob-
ability spacePξ := (Ξ,BΞ, pξ ), whereBΞ is the Borel set ofΞ.
The expectation operator inPξ is denoted for any random vari-
ableH(ξ ) defined onPξ by 〈H〉 :=

∫
Ξ H(y)pξ (y)dy. It is also

possible to consider nonuniform random variables and to use an
isoprobabilistic transformation to map them to uniform ones [9].

Let (x, t,ξ ) ∈ Ω × [0,T] × Ξ, whereΩ is the spatial do-
main andT the simulation time. We seek forU(x, t,ξ ) ∈
Rm⊗L2(Ξ, pξ ), m≥ 1, solving almost surely the following con-
servative system





∂
∂ t

U(x, t,ξ )+
∂
∂x

F(U(x, t,ξ );ξ ) = 0,

U(x, t = 0,ξ ) = U0(x,ξ ),

(1)

where F(U ;ξ ) ∈ Rm ⊗ L2(Ξ, pξ ) is the stochastic flux vec-
tor. The stochastic system (1) is assumed to be hyperbolic in

the sense that the stochastic Jacobian matrix∇UF ∈ Rm,m⊗
L2(Ξ, pξ ) is R-diagonalizable almost surely.

Stochastic discretization
To approximate the solution inL2(Ξ, pξ ), we need a stochas-

tic discretization of the problem. This is obtained by considering
a Hilbertian basis of random functionals inξ spanningL2(Ξ, pξ ),

L2(Ξ, pξ ) = span{Γ1(ξ ),Γ2(ξ ), . . .},
〈
Γα Γβ

〉
= δαβ , (2)

whereδαβ denotes the Kronecker symbol. The discrete solution
is sought in a finite dimensional subspaceSP of dimension P con-
structed by truncating the Hilbertian basis:

SP = span{Γ1(ξ ),Γ2(ξ ), . . . ,ΓP(ξ )} ⊂ L2(Ξ, pξ ). (3)

The approximate solution inSP is expanded as a series in the
form

U(x, t,ξ ) ≈UP(x, t,ξ ) =
P

∑
α=1

uα(x, t)Γα(ξ ), (4)

where the deterministicRm-valued fieldsuα(x, t) are called the
stochastic modes of the solution (inSP).

The Galerkin system
Projecting (1) on the stochastic basis, we obtain the Galerkin

system which couples all the stochastic modes in the form





∂
∂ t

u(x, t)+
∂
∂x

f (u(x, t)) = 0,

u(x, t = 0) = u0(x),
(5)

whereu(x, t) = (u1(x, t), · · · ,uP(x, t))T ∈ RmP, and f (u(x, t)) =
( f1(u), · · · , fP(u))T ∈ RmP are respectively the vector of the
stochastic modes and the Galerkin flux vector with

fα(u) :=
〈
ΓαF

(
UP; ·

)〉
and UP =

P

∑
β=1

uβ Γβ (ξ ). (6)

Moreover, we take for the initial conditionu0 =
(〈ΓαU0〉)α=1,...,P. The Galerkin Jacobian matrix∇u f of
ordermP is given by

(∇u f (u))α,β=1,...,P =
〈
∇UF(UP; ·)Γα Γβ

〉
α,β=1,...,P. (7)
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The hyperbolicity of the Galerkin system (5), that is, theR-
diagonalizabilityof the Galerkin Jacobian matrix∇u f , has been
extensively studied in [7] (in fact, in the more general context
of multiresolution analysis which will be introduced in the se-
quel). In particular, in the context of scalar conservation laws, as
for the results shown below, the Galerkin system is proven to be
hyperbolic.

Roe-type solver
The Galerkin system (5) is discretized in space and time us-

ing a Finite Volume method in the form

un+1
i = un

i −
∆tn

∆x

(
ϕ(un

i ,u
n
i+1)−ϕ(un

i−1,u
n
i )
)
, (8)

whereun
i is an approximation to the cell-average in the spatial

domain of the solutionu in the cell of centerxi := i∆x with width
∆x at the time discretetn andϕ(·, ·) is the Galerkin numerical
flux.

The Roe-type solver can be viewed as an approximate Rie-
mann solver where the Galerkin fluxf (u) is replaced at each
interfaceLRseparating left and right states(uL,uR) by the linear
approximation

f Roe(uL,uR,u) = f (uL)+a(uL,uR) · (u−uL), (9)

where a(uL,uR) is a Roe-linearized approximation of the
Galerkin Jacobian matrix. To definea(uL,uR), we assume that
the original stochastic problem (1) possesses a Roe stateURoe

LR (ξ )
on each interfaceLR separating left and right stochastic states
(UL(ξ ),UR(ξ )) such that∇UF(URoe

LR (ξ )) is a Roe linearized ma-
trix for the stochastic problem. Then, for allUP

L ,UP
R ∈ Rm⊗SP,

letting URoe
LR ∈ Rm⊗ L2(Ξ, pξ ) be the associated Roe state, we

have proven in [7] that in the context of scalar conservation laws,

aRoe
LR := a(uL,uR) :=

〈
∇UF(URoe

LR ; ·)Γα Γβ
〉

α,β=1,...,P (10)

is a Roe linearized matrix for the Galerkin problem. The
Galerkin numerical flux is chosen in the form

ϕ(uL,uR) := ϕRoe(uL,uR) =
f (uL)+ f (uR)

2
−|aRoe

LR | uR−uL

2
.

(11)
However, to avoid the expensive spectral decomposition of the
Roe Galerkin Jacobian matrixaRoe

LR when computing its abso-
lute value, we approximate|aRoe

LR | by applying (using Ḧorner’s
method) a polynomialqdfit ,{λ ′} to the Roe linearized matrix
aRoe

LR . The polynomial qdfit ,{λ ′} is of degree≤ dfit (fixed
a priori) and is determined using an approximate spectrum

{λ ′
γ}γ=1,...,nλ ′ of aRoe

LR and minimizing the least-squares error

∑
nλ ′
γ=1

(
|λ ′

γ |−qdfit ,{λ ′}(λ ′
γ)
)2

. The approximate eigenvaluesλ ′
γ are

taken as the stochastic eigenvalues of the original system eval-
uated at some collocative nodes. This procedure, while sav-
ing substantial computational times, implies that the underlying
scheme is not, strictly speaking, a Roe scheme. However, de-
tailed numerical studies reported in [7] confirm that the scheme
works well in practice. Finally, the time-step∆tn is computed
using a CFL-type condition in the form

∆tn

∆x
=

CFL
max

LR∈I ,γ=1,...,nλ ′
|λ ′

γ |
, (12)

whereI denotes the set of interfacesLR in the spatial domain
and CFL denotes a user-dependent positive parameter≤ 1.

MULTIRESOLUTION ANALYSIS
As motivated in the introduction, since shock velocities and

shock location can be uncertain, the solution is not smooth in
the stochastic domain. Consequently, as in [8–10], we rely on
multiresolution analysis based on piecewise polynomial approx-
imations. We first consider the one-dimensional stochastic case
N = 1; the multidimensional case is treated at the end of the sec-
tion.

Complete binary trees
We discretize the stochastic spaceΞ = [0,1] using stochastic

elements (intervals here), resulting from successive dyadic parti-
tions ofΞ:

Ξ =
⋃

l∈{1,...,2Nr}

[
(l −1)2−Nr, l2−Nr] , (13)

where Nr≥ 0 is the resolution level. A key feature which will
be used in the design of adaptive schemes is that the partition of
Ξ in (13) has a complete binary tree structure. The binary tree
structure is illustrated in Figure 1 for the case Nr= 4. We define
for a binary treeT :

the set of nodes:N (T ),
the set of leafs:L (T ) ⊂ N (T ),
the parent of a noden ∈ N (T ): p(n),
the “left” and “right” children of a noden ∈ N (T ) \
L (T ): c−(n) andc+(n),
the distance of a noden ∈ N (T ): |n|,
the depth of the tree: Nr(T ),
the support of a noden ∈ N (T ): S (n).
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|n|=0

|n|=2

|n|=3

|n|=Nr

|n|=1

FIGURE 1. INTERPRETATION OF THE DYADIC PARTITION OF
Ξ BY A COMPLETE BINARY TREE.

The root node ofT , located on top, is denotedn0. All nodes
but the root have a unique parent. The distance|n| of a partic-
ular node is defined relatively to the root node; the root node
n0 has a distance|n0| = 0 and its two children have a distance
|c−(n0)| = |c+(n0)| = 1. The depth Nr(T ) of a tree is the max-
imal distance over all the tree’s nodes. A complete binary tree is
such that a noden with |n| < Nr(T ) has two children; in a com-
plete binary tree there are 2d nodesn having distance|n| = d,
and the 2Nr(T ) nodes with|n| = Nr have no child and are called
the leafsl ∈ L (T ). For more general binary tree structures
(see below), a node with no child is called a leaf. The supports
S (n) can be defined recursively. First, the support of the root
node isS (n0) = [0,1] and lettingS (n) = [ξ−

n
,ξ +

n
] be the sup-

port of noden, with n /∈ L (T ), then the support of its left and
right children are respectivelyS (c−(n)) = [ξ−

n
,(ξ−

n
+ ξ +

n
)/2]

andS (c+(n)) = [(ξ−
n

+ ξ +
n

)/2,ξ +
n

]. Therefore, an alternative
expression for (13) is

Ξ =
⋃

l∈L (T )

S (l). (14)

Multiresolution spaces
Consider a complete binary treeT with Nr(T )≥ 0. We de-

note bySNo(T ) := SP the stochastic approximation space con-
sisting of piecewise polynomials inξ ,

SNo(T ) = {H : [0,1]→ R;∀l ∈ L (T ),H|S (l) ∈ ΠNo[ξ ]},
(15)

where No≥ 0 andΠNo[ξ ] denotes the vector space of real poly-
nomials with degree≤ No in ξ . Therefore, the spaceSNo(T )
has dimension

dimSNo(T ) =: Pπ card(L (T )) =: P(T ), (16)

where Pπ := (No+ 1) is the dimension of the local polynomial
basis on each leaf; we recall that card(L (T )) = 2Nr(T ) for a
complete binary tree. The spacesSNo(T ) form a hierarchical
family of stochastic spaces sinceSNo(T ) ⊆ SNo′(T ) for No ≤
No′ andSNo(T ) ⊆ SNo(T ′) for two complete binary trees such
that Nr(T )≤Nr(T ′). We now introduce two bases forSNo(T ).

Stochastic Element (SE) basis. A function H of
SNo(T ) can be expanded locally on each leafl ∈ L (T ) us-
ing the(No+1) rescaled and normalized Legendre polynomials
defined onS (l), such that any functionalH(ξ ) ∈ L2(Ξ, pξ ) has
for expansion onSNo(T ),

H(ξ ) ≈ HT (ξ ) = ∑
l∈L (T )

(
Pπ

∑
α=1

hlα Φl

α(ξ )

)
, (17)

where the deterministic coefficientshlα ∈ R are called the SE co-
efficients ofH in SNo(T ), and{Φl

α}l∈L (T ),α=1,...,Pπ denotes
the SE basis relative to the complete binary treeT for given ex-
pansion order No. Denoting{Φn0

α }1≤α≤Pπ the set of normalized
Legendre polynomials onΞ, theΦl

α have for expression

Φl

α(ξ ) =





1√
2−|l|

Φn0
α

(
ξ −ξ−

l

ξ +
l
−ξ−

l

)
, ξ ∈ S (l) = [ξ−

l
,ξ +

l
],

0, otherwise,

(18)

and form an orthonormal set:

〈
Φl

α Φl
′

β

〉
= δl,l′δα,β , ∀l,l′ ∈ L (T ), 1≤ α,β ≤ Pπ . (19)

Relying on a multi-indexi, the SE expansion can be recast as

H(ξ ) ≈ HT (ξ ) = ∑
i∈SENo(T )

hiΦi(ξ ), (20)

whereSENo(T ) is the multi-index set of the SE expansion, with
card

(
SENo(T )

)
= P(T ). If H ∈ L2(Ξ, pξ ) is known, thenhi =

〈ΦiH〉 for all i ∈ SENo(T ).

Multiwavelet (MW) basis. Alternatively, SNo(T ) can
be spanned by the hierarchical MW system of order No and
resolution level Nr introduced in [9]. We recall here some de-
tails about the construction of the MW system. We consider the
sequence of complete binary treesT[r], r = 0,1, . . ., where the
bracketed subscript refers to the resolution (depth) of the com-
plete binary tree, so that Nr(T[r]) = r. For No≥ 0, letWNo(T[r])

denote the detail space, that is, theL2(Ξ, pξ )-orthogonal comple-
ment ofSNo(T[r]) in SNo(T[r+1]):

SNo(T[r+1]) = SNo(T[r])⊕WNo(T[r]). (21)
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As a result, for Nr≥ 0,

SNo(T[Nr]) = SNo(T[0])
Nr−1⊕

r=0

WNo(T[r]). (22)

The set of normalized Legendre polynomials, with degree≤ No,
is again used as a basis ofSNo(T[0]), that is,

SNo(T[0]) = span{Φn0
1 , . . . ,Φn0

Pπ
}, (23)

wheren0 is the unique node ofT[0]. We now seek for an or-
thonormal basis{Ψ1, . . . ,ΨPπ} for WNo(T[0]). SinceWNo(T[0])

and SNo(T[0]) are L2(Ξ, pξ )-orthogonal, the functionsΨα are
such that

〈
Ψα Φn0

β

〉
= 0 and

〈
Ψα Ψβ

〉
= δα,β , 1≤ α,β ≤ Pπ . (24)

In addition, the functionsΨα are piecewise polynomials on
[0,1/2]∪ [1/2,1] with degree≤ No. The 2Pπ conditions in (24)
define the functionsΨα , which are computed following the al-
gorithm proposed by Alpert and co-workers in [14]. The result-
ing functions are depicted in Figure 2 for the polynomial orders
No = 1 and No= 3. Once the funcitonsΨα are known, we can
construct the basis forWNo(T[r]) using rescaled and shifted ver-
sions of the basis vectors ofWNo(T[0]); indeed, defining

WNo(T[r]) = span{Ψlα ; l ∈ L (T[r]), 1≤ α ≤ Pπ}, (25)

where

Ψl

α(ξ ) =





1√
2−|l|

Ψα

(
ξ −ξ−

l

ξ +
l
−ξ−

l

)
, ξ ∈ S (l) = [ξ−

l
,ξ +

l
],

0, otherwise,

(26)

it is immediate to verify that∀n,n′ ∈N (T ) and 1≤ α,β ≤ Pπ ,

〈
Ψn

α Φn0
β

〉
= 0,

〈
Ψn

α Ψn
′

β

〉
= δn,n′δα,β . (27)

Hence, any functionalH(ξ ) ∈ L2(Ξ, pξ ) has the following MW
expansion onSNo(T ):

H(ξ ) ≈ HT (ξ ) =
Pπ

∑
α=1

hn0
α Φn0

α (ξ )+ ∑
n∈N (T )
n/∈L (T )

(
Pπ

∑
α=1

h̃nα Ψn

α(ξ )

)
.

(28)
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FIGURE 2. EXAMPLE OF FUNCTIONS Ψα SPANNING
WNo(T[0]) FOR No= 1 (TOP) AND No= 3 (BOTTOM).

Again, relying on a multi-indexi, the MW expansion can be re-
cast as

H(ξ ) ≈ H̃T (ξ ) = ∑
i∈MWNo(T )

h̃iΨi(ξ ), (29)

whereMWNo(T ) is the multi-index set of the MW expansion,
with card

(
MWNo(T )

)
= P(T ). If H(ξ ) ∈ L2(Ξ, pξ ) is known,

thenh̃i =
〈
ΨiH̃

〉
for all i ∈ MWNo(T ).

Finally, there is an orthogonal transition matrixB ∈
RP(T ),P(T ) between the SE and MW bases, such thatΨi(ξ ) =

∑j∈SENo(T ) Bij Φj (ξ ), for all i ∈ MWNo(T ), where (B)ij =〈
ΨiΦj

〉
. The stochastic spaceSNo(T ) with alternative SE or

MW bases, namely{Φi}i∈SENo(T ) or{Ψi}i∈MWNo(T ), constitutes
a discrete multiresolution approximation space.

General binary trees
The advantage of introducing complete binary trees is that

the definitions of the SE and MW expansions remain unchanged
when considering more general binary trees. Here, we consider
binary trees with nodes having either two children or none. We

5 Copyright c© 2010 by ASME



continue to denote by Nr(T ) the maximum distance|n| over
N (T ), but we now allow|l| ≤ Nr(T ) for somel ∈ L (T ).
An example of incomplete binary tree is depicted in Figure 3.

FIGURE 3. EXAMPLE OF INCOMPLETE BINARY TREE.

For such a treeT , the SE and MW expansions of a ran-
dom quantityH(ξ ) in (17) and (28) remain valid, together with
their multi-index counterpart in (20) and (29) (upon redefining
the multi-index setsSENo(T ) andMWNo(T )). We also define
P(T ) according to (16). Consistently, we continue to denote
by SNo(T ) the stochastic approximation space associated with
a treeT , although it does not correspond to the full multires-
olution spaceSNo(T[Nr]), but only to a subspace thereof, since
the tree is incomplete. Finally, to alleviate the notation, we drop
the superscript No since the developments below involve a fixed
polynomial order.

We observe that, in addition to the summation over the Pπ
polynomial degrees of freedom, the SE expansion in (17) in-
volves a summation over the set of leafs of the tree. In fact, if one
needs to computeH(ξ ) for someξ , the summation reduces to the
unique leafl such thatξ ∈ S(l). As a result, the SE coefficients
hl1≤α≤Pπ

of HT are associated with the leafl. Conversely, the
MW expansion in (28) consists of a summation over the full set
of nodes except the leafs, which for givenξ ∈Ξ reduces to the set
of ancestrors of the leafl containingξ . As a matter of fact, the
multiwavelet coefficients̃hl1≤α≤Pπ

are associated with the nodes
having descendants, with the special case of the root node yield-
ing the coefficients̃hn0

1≤α≤Pπ
. Finally, for later use, we define the

following (partial order) inclusion relation between two treesT

andT ′:

T ⊂ T
′ ⇐⇒ N (T ) ⊂ N (T ′). (30)

Multidimensional case
Consider nowξ = (ξ1, . . . ,ξN) ∈ Ξ = [0,1]N with uniform

joint densitypξ . We simply extend the construction above for
the case N= 1 to the case N> 1 by enriching the tree struc-
ture. Several possibilities can be considered. For instance, one
can consider 2N-ary tree structures (Quad-trees, Oct-tree, . . . )
but this approach is intrinsically limited to low dimension N.
Here, we choose a different approach. First, we keep the binary
structure of the tree (a node has none or two children) and intro-
duce for each noden∈N (T )\L (T ) an indicator, denoted by

d(n) ∈ {1, . . . ,N}, of the direction along which the dyadic par-
tition is applied to construct its two children. For a leaf nodel

we conventionally set d(l) = 0. Second, the multidimensional
polynomial basis{Φn0

α } is constructed by tensorizations of one-
dimensional normalized Legendre polynomials defined on[0,1].
The tensorization can be complete or partial; in any case, we
denote byΠN

No the corresponding multidimensional polynomial
space, and continue to denote by Pπ its dimension. The approxi-
mation space defined in (15) then becomes

S(T ) = {H : Ξ → R;∀l ∈ L (T ),H|S (l) ∈ ΠN
No[ξ ]}, (31)

whose dimension is still given bySE(T ) = card(L (T ))×Pπ .
Accordingly, the SE basis functionsΦn

α(ξ ) are defined using
dimension-wise coordinate transformations, as in (18), leading
to a SE expansion formally similar to (17). The extension of the
MW basis is less straightforward because it is not possible to pro-
ceed by tensorization of the one-dimensional basis ofWNo(T[0])
to obtain a “universal” set of MW functionsΨα . This is due to
the tree construction where to each node corresponds a partition
along a unique direction d(n): the detail basis{Ψn

α} associated
with a noden ∈ N (T ) \L (T ) depends on d(n). However,
there exist N sets of anisotropic detail functions{Ψd}1≤α≤Pπ
that span the detail spaces supporting a partition in direction
1 ≤ d ≤ N. For brevity, we do not discuss the construction of
these functions here; we simply state the multidimensional MW
expansion in the form

HT (ξ ) =
Pπ

∑
α=1

hn0
α Φn0

α (ξ )+ ∑
n∈N (T )
n/∈L (T )

(
Pπ

∑
α=1

h̃nα Ψd(n),n
α (ξ )

)
, (32)

whereΨd(n),n
α is a rescaled version of the anisotropic detail func-

tion associated with noden. We observe that the expansion (32)
can be recast into the generic form (29).

There is however an essential difference between one-
dimensional and multidimensional binary trees: for N> 1, there
are in general more than one tree with the same set of leafs,i.e.,
yielding the same partition ofΞ. This is illustrated in Figure 4
for N = 2. Consequently, we say that two treesT andT ′ are
equivalent if they share the same set of leafs,

T ≡ T
′ ⇐⇒ L (T ) = L (T ′). (33)

Finally, the inclusion relation (30) is extended in the multidimen-
sional case to

T ⊂ T
′ ⇐⇒∃T

′′ ≡ T
′, N (T ) ⊂ N (T ′′). (34)
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FIGURE 4. EXAMPLE FOR N = 2 OF TWO EQUIVALENT
TREES LEADING TO THE SAME PARTITION OFΞ (BOTTOM).
THE SOLID (RESP. DASH) SEGMENTS REPRESENT A PARTI-
TION ALONG THE FIRST (RESP. SECOND) DIRECTION.

ROE-TYPE SOLVER WITH ADAPTIVE STOCHASTIC
DISCRETIZATION

We are interested in problems where a shock appears al-
most surely in finite time. Still, this shock remains localized
both in the deterministic domainΩ× [0,+∞[ for each realiza-
tion of the parametersξ ∈ Ξ, and in the uncertain parameter do-
mainΞ at a given point(x, t) ∈ Ω× [0,+∞[. In other words, the
solution is almost everywhere smooth onΩ× [0,+∞[×Ξ. This
observation strongly advocates for the use of adaptive strategies
where the computational effort is concentrated in the vicinity of
shocks, while a coarser discretization is used where the solution
is smooth. In what follows, we only consider adaptation of the
stochastic discretization by relying on a fixed spatial mesh (the
time-step satisfying a CFL condition to be specified later). How-
ever, we do seek for an adapted stochastic discretization that de-
pends on the space variablex and the timet. In the context of
the stochastic discretization framework introduced in the previ-
ous section, it amounts to an indexation with bothx and t of
the treesT defining the stochastic approximation spaceS(T ).
Specifically, we now denote byT n

i the tree associated with the
i-th cell of the spatial mesh at the discrete timetn, such that the
approximate stochastic solution on thei-th cell at timetn has for
expansions

Un
i (ξ ) ≈ (Un

i )T
n

i = ∑
j∈SE(T n

i )

(un
i )j Φj (ξ )

= ∑
j∈MW (T n

i )

(ũn
i )j Ψj (ξ ) ∈ S(T n

i ). (35)

We first extend the Roe-type solver to the tree formalism,
while the adaptive procedure is discussed afterwards. To this
purpose, we need to consider restriction and prediction opera-
tors between two different general binary trees. Such opera-

tions are described in detail in the next section. The restric-
tion operation consists in restricting a quantityHT ∈ S(T ) to
a smaller stochastic spaceS(T −) whereT − ⊂ T . We denote
by R↓T −HT this operator. The prediction operation consists in
extending a quantityHT ∈ S(T ) on a larger stochastic space
S(T +) whereT ⊂T +. We denote byP↑T +HT this operator.

Roe-type solver
The main ingredient of the Roe-type solver is the computa-

tion of the Galerkin Roe flux in (11). To fix the ideas, we focus
on the determination of the fluxϕi−1/2 := ϕRoe(uL,uR) from (11)
at the interfacei −1/2 between two neighboring cellsi −1 and
i, and whereuL anduR denotes the vectors of expansion coeffi-
cients for the cellsi −1 andi respectively.

Def nition of the left and right states. Because in
generalT n

i−1 6= T n
i , the vectors of expansion coefficientsuL and

uR are not defined with regard to the same stochastic basis func-
tions, so that we first construct an intermediate treeTi−1/2 for the
interface flux calculation which we define as the union ofT n

i−1
andT n

i : for two generic treesT1 andT2 we define their union-
treeT1∪2 := T1∪T2 as (one of) the minimal tree(s) (in terms of
number of leafs) such that for alll ∈ L (T1∪2),

∃!l1 ∈ L (T1), ∃!l2 ∈ L (T2), S (l) = S (l1)∩S (l2).
(36)

The union of two trees corresponding to two neighboring cells
i − 1 andi is illustrated in Figure 5 for N= 2. The union-tree
is not unique whenever N> 1, as different minimal trees can
be constructed to satisfy (36). These union-trees are all equiva-
lent and yield the same stochastic spaceS(T1∪2). Moreover, it
is readily verified that bothS(T1) andS(T2) are subspaces of
S(T1∪2). As a result, we can compute the left and right state
SE expansion coefficients inS(Ti−1/2) by means of the predic-
tion operator:uL anduR are defined as the vector of SE coef-
ficients onS(Ti−1/2) of the predictionsP↑Ti−1/2

(Un
i−1)

T n
i−1 and

P↑Ti−1/2
(Un

i )T
n

i .

Roe f ux. At this point, we have to compute

ϕi−1/2 =
f (uL)+ f (uR)

2
−|aRoe

LR | uR−uL

2
, (37)

wherethe SE coefficients of the left and right states are defined
on the same stochastic spaceS(Ti−1/2). A key feature of the
SE representation is that, owing to the orthogonality of the ba-
sis functions associated to distinct leafs (see (19)), it decouples

7 Copyright c© 2010 by ASME



FIGURE 5. EXAMPLE FOR N = 2 OF THE UNION OF TWO
TREES CORRESPONDING TO TWO NEIGHBORING CELLSi −1
AND i. TOP LINE: T n

i−1 (LEFT), T n
i (CENTER), AND Ti−1/2

(RIGHT). BOTTOM LINE: CORRESPONDING PARTITION OF THE
PARAMETER SPACE. THE SOLID (RESP. DASH) SEGMENTS
REPRESENT A PARTITION ALONG THE FIRST (RESP. SECOND)
DIRECTION.

the flux computation over the set of leafs of the interface tree.
Indeed, by defining the index setSE(Ti−1/2) through consecu-
tive enumeration of the coefficients related to a leaf, the matrix
aRoe

LR has a block diagonal structure. As a result, the Roe-type
solver is applied independently on each leafl ∈ L (Ti−1/2),
using the local basis{Φl

1, . . . ,Φ
l

Pπ
} in place of the generic ba-

sis{Γ0, . . . ,ΓP}. In particular, denoting by[aRoe
LR ]l the (mPπ)×

(mPπ) sub-matrix associated with the leafl ∈ L (Ti−1/2), we
approximate its absolute value as follows:

∣∣[aRoe
LR ]l

∣∣≈ qdfit ,{λ ′
l
}([a

Roe
LR ]l), (38)

where{λ ′
l
} is an approximate spectrum of[aRoe

LR ]l andqdfit ,{λ ′
l
}

is the polynomial of degree≤ dfit minimizing the quadratic func-
tional

∑
λ∈{λ ′

l
}

(
|λ |−qdfit ,{λ ′

l
}(λ )

)2
. (39)

As in [7], we use for{λ ′
l
} the set of eigenvalues of the orig-

inal stochastic conservation law evaluated at the Gauss integra-
tion nodes over the leafl. Note that in the neighborhood of sonic
points this Roe-type scheme requires a correction to obtain en-
tropy solutions as detailed in [11].

Time integration. Since the fluxes have been computed
for all the interfaces of the computational mesh, the remaining
step is the time-integration of the solution according to (8). In
general the fluxesϕi−1/2 andϕi+1/2 at the left and right interfaces
as well as the current stateun

i are defined over different trees. As

for the flux computations, we constructT
n+1

i := Ti−1/2∪Ti+1/2

and remark thatT n
i ⊂ T

n+1
i . Therefore the left and right fluxes

and the current state can be predicted onT
n+1

i before applying
(8) to obtainun+1

i from the set of SE coefficients of(Un+1
i )T

n
i .

To ensure the stability of the time-integration, the time step∆tn

has to be selected to satisfy the CFL condition in (12), where in
the present adaptive context, the maximal characteristic velocity
is taken over the full set of approximated spectra (for every leaf
of every interface tree).

Adaptation
Starting from an initial data consisting, for each spatial cell,

of a treeT 0
i and the corresponding approximation of the initial

conditionU0
i ∈ S(T 0

i ), the above scheme refines the stochastic
discretization, through the union operator, but in an uncontrolled
fashion. Furthermore, all the trees eventually converge toward a
unique tree which is the union of all the initial trees. Two addi-
tional ingredients are needed to obtain a fully adaptive method;
first, an enrichment procedure where the trees are refined in a
controlled way (in particular by allowing the generation of trees
that are not included in∪iT

0
i ), and, second, a coarsening pro-

cedure to avoid the emergence of unnecessary complex trees for
cells where the solution is smooth and can be accurately approx-
imated on a low-dimensional stochastic space.

The heuristic ideas driving the enrichment and coarsening
procedures are described in the next section. The enrichment
procedure is applied when defining the trees for the flux evalua-
tion. This choice can be motivated by observing that flux func-
tions of interest are often nonlinear, so that approximation spaces
larger than those for the solution are needed for accurate flux
evaluation. For the coarsening procedure, it appears natural to
analyze the solution at the end of the time step to decide whether
details can be disregarded to save computational effort. With
these choices, the adaptive algorithm over a time step takes the
following form:

I) Loop over the interfaces: (flux computation)

1. Define the enriched tree of the interface:
Ti−1/2 = E

(
T n

i−1 ∪T n
i

)

2. Predict the left and right states onS(Ti−1/2)
3. For each leafl ∈ L (Ti−1/2):

(a) Compute the local fluxesfl(uL) and fl(uR) and
the matrix[aRoe

LR ]l
(b) Determine the local polynomialqdfit ,{λ ′

l
}

(c) Assemble the contribution of the leaf toϕi−1/2

II) Loop over the spatial cells: (time integration)

1. Construct the cell integration tree:
T ∗

i = Ti−1/2∪Ti+1/2
2. Predict the left / right fluxes and initial state onS(T ∗

i )

3. Integrate to obtain(U∗
i )T

∗
i
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(coarsening step)

1. Coarsen the treeT n+1
i = C (T ∗

i ) ⊆ T ∗
i

2. Restrict the solution:
(
Un+1

i

)T n+1
i = R↓T n+1

i
(U∗

i )T
∗

i .

ALGORITHMIC ASPECTS
This section collects some details on the restriction and pre-

diction operations, as well as on the enrichment and coarsening
procedures.

Restriction operation. Given two general binary trees
T − ⊂ T and givenHT ∈ S(T ), we define the restriction
R↓T −HT of HT to S(T −) as the orthogonalL2(Ξ, pξ )-
projection of HT on S(T −) (observe that by construction,
S(T −) ⊂ S(T )), that is,

〈(
HT −R↓T −HT

)
Φ
〉

= 0, ∀Φ ∈ S(T −). (40)

In terms of multiwavelet coefficients, the restriction operation is
straightforward. Letting̃hnα be the MW coefficients ofHT , we
obtain for all 1≤ α ≤ Pπ ,

(
˜R↓T −HT

)n
α

= h̃nα , ∀n ∈ N (T −)\L (T −). (41)

Computation of the SE coefficients of the restriction is not as im-
mediate as for the MW coefficients. One possibility is to rely
on the expressions (41) together with the transition matrixB to
obtain the SE coefficients

(
R↓T −HT

)
n

α . However, assembly of
B(T −) (or directely of its inverse) can be quite expensive for
stochastic spaces with large dimension, and it appears more ef-
ficient in practice to proceed recursively. Assuming that the SE
expansion ofHT is known, we construct a sequence of treesT (i)

such that

T = T
(0) ⊃ T

(1) ⊃ ·· · ⊃ T
(i) ⊃ ·· · ⊃ T

(l) = T
−, (42)

where two consecutive trees differ by one generation only,i.e.
a leaf ofT (i+1) is either a leaf or a node with leaf children in
T (i) . Therefore the transition fromT (i) to T (i+1) consists in
removing a set of pairs of sister leafs to reduce iteratively the
tree. The process is illustrated in Figure 6 in the case of the
reduction of a unique pair of leafs. Focusing on the removal of
a (left-right ordered) pair of sister leafs{l−,l+} ∈ L (T (i)),
the SE coefficients of the restriction ofHT (i) associated with the
leaf l = p(l−) = p(l+) ∈ L (T (i+1)) can be expressed in the

+

+

l=p(l  )=p(l  )-

l - l

FIGURE 6. EXAMPLE OF TREE RESTRICTION THROUGH THE
REMOVAL OF THE TWO CHILDREN LEAFS OF A NODE. ONLY
PART OF THE TREES ARE SHOWN FOR CLARITY.

one-dimensional case N= 1 as

hlα =
Pπ

∑
β=1

[
R−

α,β hl
−

β +R+
α,β hl

+

β

]
, (43)

where the transition coefficients of the linear combination are
given by

R−
α,β =

〈
Φl

α Φl
−

β

〉
andR+

α,β =
〈

Φl

α Φl
+

β

〉
. (44)

In fact, the transition coefficientsR−
α,β andR+

α,β are support and
scale invariant (independent of|l| andS (l)). For instance, in
the simplest case No= 0 (Pπ = 1), we haveR−

1,1 = R+
1,1 = 1/

√
2.

In the multi-dimensional case N> 1, the prediction operator can
be expressed using a family of N matricesR±,d for 1≤ d≤ N.

Prediction operator. Given two general binary trees
T ⊂ T + and givenHT ∈ S(T ), there are several ways to de-
fine the predictionP↑T +HT of HT onS(T +); seee.g.[12,13].
Here we consider a simple approach, where no information is
generated by the prediction. As for the restriction operation, the
MW expansion of the prediction is immediately inferred from
the MW expansion coefficients ofHT in S(T ). We obtain for
all 1≤ α ≤ Pπ andn ∈ N (T +)\L (T +),

(
˜P↑T +HT

)n
α

=

{
h̃nα , n ∈ N (T )\L (T ),

0, otherwise.
(45)

For the SE expansion coefficients of the prediction, we can again
proceed iteratively using a series of increasing intermediate trees,
differing by only one generation from one to the other. This time,
the elementary operation consists in adding children to some leaf
of the current tree, as illustrated in Figure 7. The SE coeffi-
cients associated to the new leafs can be expressed in the one-
dimensional case N= 1 as

hc
−(n)

α =
Pπ

∑
β=1

R−
α,β hnβ , hc

+(n)
α =

Pπ

∑
β=1

R+
α,β hnβ , (46)
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c  (n)-

n n

c  (n)+

FIGURE 7. EXAMPLE OF EXTENSION OF A TREE THROUGH
THE CREATION OF THE CHILDREN OF A LEAD NODE. ONLY
PART OF THE TREES ARE SHOWN FOR CLARITY.

with the transition coefficients given by (44). As before, the fam-
ily of N matricesR±,d for 1≤ d≤ N is considered in the multi-
dimensional case N> 1.

Finally, for two treesT ⊂ T +, we observe thatR↓T ◦
P↑T + = IdS(T ), while in generalP↑T + ◦R↓T 6= IdS(T +).

Enrichment procedure. The purpose of the enrichment
procedure is to compute the interface flux in a stochastic space
larger thanS(T n

i−1∪T n
i ). It amounts to an extension of the union

tree, by subdividing some of its leafs. Different strategies can be
used. For instance, we can use the multiwavelet coefficients of
the predictions of the left and right states to decide where to re-
fine the tree as done for instance in [9, 15]. In this work and
for the examples below, we simply decided to enrich the tree
by splitting all the leafs of the union treeT n

i−1 ∪T n
i along each

of the N directions of the stochastic parameter domain. In do-
ing so, the enriched treeTi−1/2 = E (T n

i−1 ∪T n
i ) has a total of

(2N)card(L (T n
i−1∪T n

i )) leafs, showing that such a straightfor-
ward enrichment is only practical in situations where N is small:
it will be necessary to consider more advanced strategies in the
future.

Coarsening procedure. The coarsening procedure is
applied after the time integration, when the solution for thei-th
cell is known on a treeT ∗

i . The objective is to define a sub-
treeT

n+1
i ⊆ T ∗

i so that the dimension ofS(T n+1
i ) is reduced

while the restriction errorUT ∗
i −R↓T n+1

i
UT ∗

i remains accept-

able. In wavelet methods, one usually defines the coarsening
through a thresholding procedure in which wavelet coefficients
with absolute value less than a prescribed threshold value are
disregarded. This concept can be extended to the multiwavelet
discretization too. However, we need to introduce some con-
straints in order to maintain a binary tree structure for the re-
sulting tree. Specifically, we construct a sequence of imbricated
trees, obtained through the removal of pairs of sister-leafs from
one tree to the next. For a couple of sister-leafs having noden

for parent, we remove the two leafs if

Pπ

∑
α=1

(ũnα)2 < ε2
c , (47)

whereεc > 0 is the threshold parameter that may be a function
of the depth|n| of the parent node. The criterion (47) is heuristic
and based on theL2(Ξ, pξ ) stochastic norm of the MW details
associated with the parent noden. The coarsening sequence is
stopped whenever no couple of sister-leafs can be removed.

We remark that this algorithm only generates trees consis-
tent withT ∗

i in the sense that, along the sequence, the successive
(coarser and coarser) partitions ofΞ follow, in backward order,
the nodes’ partition direction d(n) as prescribed byT ∗

i . (Recall
that the multiwavelet basis, and so the MW coefficients, depend
on the partition directions d(n).) In other words, the coarsen-
ing can only “undo” partitions following the structure imposed
by T ∗

i . This is clearly unsatisfying because for N> 1, there
are multiple trees equivalent toT ∗

i and we would like the coars-
ened tree to be independent of any particular choice forT ∗

i . To
avoid arbitrariness, the trees of the sequence are periodically sub-
stituted by an equivalent one. These equivalent trees are con-
structed by searching in the current tree structures the pattern
of a noden whose childrenc−(n) andc+(n) are subsequently
partitioned along a same direction: d(c+(n)) = d(c−(n)) 6= 0.
When such a pattern is found, partition directions are exchanged,
d(n)↔ d(c−(n)) = d(c+(n)), together with a permutation of the
descendants of the children nodes. This operation, illustrated in
Figure 8, is applied periodically and randomly in the coarsening
procedure.

Ta Tb Tc Td

n

l(n) r(n)

Ta Td

n

l(n) r(n)

Tc Tb

FIGURE 8. ILLUSTRATION OF THE ELEMENTARY OPERA-
TION TO GENERATE EQUIVALENT TREES: THE PATTERN, OF A
NODE WITH ITS TWO CHILDREN DIVIDED ALONG THE SAME
DIRECTION, (LEFT GRAPH) IS REPLACED BY THE SAME PAT-
TERN BUT WITH THE PARTITION DIRECTIONS EXCHANGED
(RIGHT GRAPH) PLUS A PERMUTATION OF THE SUBS-TREES
(TRIANGLES) OF THE CHILDREN’S DESCENDENTS.

RESULTS
The proposed method is assessed on the Burgers equation

with uncertain initial conditions and two stochastic dimensions.
The basis at the SE level considered here corresponds to fully
tensorized Legendre polynomials with degree≤ No.
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FIGURE 9. RANDOM INITIAL CONDITION FOR TEST CASE
1: SAMPLE SET OF 20 RANDOM REALIZATIONS, MEAN AND
STANDARD DEVIATION.

Shocks with deterministic velocities
We consider a one-dimensional spatial domainΩ = [0,1]

with periodic boundary conditions. The governing equation, in
conservative form, is

∂U
∂ t

+
∂F(U)

∂x
= 0, F(U) =

U2

2
, (48)

andwe consider an uncertain initial conditionU0(x,ξ ) consist-
ing of three piecewise constant deterministic states inx. Specif-
ically, the three states areu1 = 1, u2 = 1/2, andu3 = 1/6, and
theposition of some jumps is uncertain: the jump from statesu1

to u2 occurs at a random locationX1,2 having a uniform distribu-
tion in [0.1,0.2], while the jump from statesu2 to u3 occurs at a
randomlocationX2,3 having a uniform distribution in[0.3,0.4].
Finally, the jump from statesu3 to u1 is atx31 = 0.6. The random
locationsX1,2 andX2,3 are independent and parameterized using
two independent random variablesξ1 andξ2 respectively, both
with uniform distribution in[0,1]:

X1,2 = 0.1+0.1ξ1, X2,3 = 0.3+0.1ξ2, ξ1,ξ2 ∼ U [0,1].
(49)

Therefore, the problem has two stochastic dimensions (N= 2).
For this experiment, we constrained the trees so that the mini-
mum depth level|n| is 1 for all nodes and use a coarsening pa-
rameterεc = 10−4. The polynomial order is No= 3. In Figure 9,
we illustrate the random initial condition for a spatial discretiza-
tion with Nc= 200 uniform cells in the spatial domain. The plot
shows a sample set of 20 realizations of the random initial con-
dition, together with its expectation and standard deviation.

In Figure 10 we show the stochastic solution at timest = 0.2
and 0.6. The solution expectation and standard deviation, to-
gether with a random sample set of realizations, are also plotted.
The realizations are reconstructed from the stochastic expansions
of the solutions, using a unique set of randomly generated real-
izations ofξ ∈ Ξ = [0,1]2. For t = 0.2, the first shock whose
velocity is 3/4 has not yet reached the second shock whose ve-
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FIGURE 10. SOLUTION OF THE STOCHASTIC BURGERS
EQUATION AT t = 0.2 AND t = 0.6. SAMPLE SET OF 20 RANDOM
REALIZATIONS, MEAN AND STANDARD DEVIATION.

locity is 1/3. Att = 0.6, the shocks have merged for nearly all re-
alizations. Furthermore, the space-time diagrams of the solution
expectation and standard deviation are plotted over the period of
time t ∈ [0,2] in Figure 11. We observe that the proposed adap-
tive method correctly captures the dynamics of the Burgers equa-
tion. The shocks are transported with the correct deterministic
velocities and spurious uncertainty in the solution is not created.
The stochastic resolution is adapted in space and time to the local
smoothness of the solution in the stochastic domain such that we
expect a finer stochastic discretization along the path of the shock
waves depending on the variability in the solution. This is illus-
trated in Figure 12, where the stochastic solutionU(xo(t), t,ξ )
is plotted as a function of(ξ1,ξ2) for various timest ∈ [0.2,0.6]
at a moving observation pointxo(t) = 0.25+ 0.5t initially lo-
cated between the two shocks. Sincexo moves slower than the
first shock,xo is eventually caught-up by the first random shock.
Moreover, sincexo moves faster than the second shock, there is a
time interval for which the stochastic solution atxo corresponds
to a set of eventsξ with different configurations of the shocks.
For t = 0.2, the observation point starts to be caught-up by some
events corresponding to the largest realizations ofX1,2: the solu-
tion is a function ofξ1 only. Hence we observe that the stochastic
domain is more finely refined in theξ1-direction. Att = 0.4, the
observation point starts to reach the second shock, introducing
some dependence onξ2, while a fraction of events corresponds
to shocks having merged. This creates a stochastic solution with
three distinct plateaus with respective values 1, 1/2, and 1/6,
whose configuration evolves in time. We obtain as expected a lo-
cal adaptation of the stochastic discretization depending on spa-
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FIGURE 11. SPACE-TIME DIAGRAMS OF THE EXPECTA-
TION (LEFT) AND STANDARD DEVIATION (RIGHT) OF THE
STOCHASTIC BURGERS EQUATION.
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FIGURE 12. SOLUTION IN THE STOCHASTIC DOMAIN
(ξ1,ξ2) ∈ [0,1]2 FOR A MOVING POINT xo(t) = 0.25+ 0.5t FOR
DIFFERENT TIMESt = 0.2,0.4,0.5,0.6.

tial position and time; the stochastic domain is finely discretized
in the neighborhood of the discontinuities (in fact of the steep
parts because of the diffusivity of the Roe scheme), while it is
coarsely refined elsewhere.

Shocks with uncertain velocities
We still consider the Burgers equation, but with stochas-

tic initial conditionU0(x,ξ ) defined using two uncertain states,
U+(ξ1) andU−(ξ2), the first one almost surely positive and the

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.25  0.5  0.75  1

va
lu

e

x

SE realizations
<U(x,t=0)>
σ(U(x,t=0))

FIGURE 13. RANDOM INITIAL CONDITION OF THE
STOCHASTIC BURGERS EQUATION FOR TEST CASE 2:
SAMPLE SET OF 20 RANDOM REALIZATIONS, MEAN AND
STANDARD DEVIATION.

second one almost surely negative. We take forx∈ [0,1],

U0(x,ξ ) =





U+(ξ1) x < 1/3,

U−(ξ2) x > 2/3,

U+(ξ1)(2−3x)+U−(ξ2)(3x−1) 1/3≤ x≤ 2/3,

(50)

such thatU0(x,ξ ) is continuous for anyξ ∈ [0,1]2. We define
the stochastic states as

U+(ξ1) = 1−0.05(2ξ1−1), ξ1 ∼ U [0,1],

U−(ξ2) = −1−0.1(2ξ2−1), ξ2 ∼ U [0,1], (51)

so thatU+ ∼U [0.95,1.05]andU− ∼U [−1.1,−0.9]. We solve
the stochastic Burgers equation with Dirichlet boundary condi-
tions,U = U+ at x = 0 andU = U− at x = 1. The initial condi-
tion is illustrated in Figure 13. Nc= 201 cells are used for space
discretization.

Although initially continuous, the stochastic solution de-
velops in finite time a discontinuity with a stochastic jump
|U+ −U−| and a stochastic propagation velocity(U+ +U−)/2.
The stochastic character of the shock magnitude and velocity has
to be contrasted with the situation of the previous test case, where
the jumps and shock velocity were certain.

To illustrate the refinement procedure, we present in Fig-
ure 14 the resulting partition of the parameter spaceΞ at three
different locations in space close to the center of the computa-
tional domain,x = 0.5±0.02, and timest = 0.2, 0.4, and 1.5.
For this experiment, we constrained the trees so that 2≤ |n| ≤ 12
for all nodes and used a coarsening parameterεc = 10−4. The
polynomial order is No= 1. The solution at the same times
and over the part of the computational domainx ∈ [0.35,0.65]
is shown in Figure 15, where the solution expectation and stan-
dard deviation, together with a random sample set of realizations,
are also plotted. The vertical red lines in Figure 15 indicate the
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 2  4  6  8  10  12
FIGURE 14. PARTITION OF THE PARAMETER SPACEΞ AT
TIMES 0.2, 0.4 AND 1.5 (FROM TOP TO BOTTOM) AND SPATIAL
LOCATIONSx= 0.48, 0.5 AND 0.52 (FROM LEFT TO RIGHT). THE
COLOR SCALE GIVES THE DEPTH OF THE LEAFS.

positions in space (x= 0.5±0.02) for which the partition of the
parameter space is shown in Figure 14.

Figures 14 and 15 deserve some comments. Att = 0.2, the
trees atx = 0.5± 0.02 are such that Nr(T ) = 2, the minimal
value, since there the solution is still smooth in the stochastic
domain at that time and spatial position. Forx = 0.5, stochastic
details are necessary to capture the shock who has formed almost
surely and the maximum depth level|n|max for the trees has been
already reached along two distinct lines acrossΞ. In between
these two lines, we observe that the maximum depth level is not
reached. This region corresponds to a portion of the parameter
spaceΞ where the solution is smooth because of the diffusivity
of the Roe scheme. This is reflected in the stochastic solution
U(ξ1,ξ2) at x = 0.5 andt = 0.2 in the left panel of Figure 16,
where intermediate statesU− < U(ξ ) < U+ are seen. As time
increases, the distance between the two lines corresponding to
maximum refinement decreases, reflecting a steeper and steeper
stochastic solution with regard toξ (see plots fort = 0.4 and
t = 1.5 in Figure 14 and the right panel of Figure 16). Due to the
shock velocity(U+ +U−)/2, the shock has reached locations
x= 0.5±0.02 with a probability contained in]0,1[, so that details
are now needed over a portion ofΞ to account for the solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.35  0.4  0.45  0.5  0.55  0.6  0.65

va
lu

e

x

SE realizations
<U(x,t=0.2)>
σ(U(x,t=0.2))

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.35  0.4  0.45  0.5  0.55  0.6  0.65

va
lu

e

x

SE realizations
<U(x,t=0.4)>
σ(U(x,t=0.4))

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.35  0.4  0.45  0.5  0.55  0.6  0.65

va
lu

e

x

SE realizations
<U(x,t=1.5)>
σ(U(x,t=1.5))

FIGURE 15. STOCHASTIC SOLUTION AT TIMES t = 0.2, 0.4
AND 1.5 (FROM TOP TO BOTTOM). SAMPLE SET OF 20 RAN-
DOM REALIZATIONS, MEAN AND STANDARD DEVIATION.
NUMERICAL PARAMETERS ARE GIVEN IN THE TEXT. ONLY
A PART OF THE DOMAIN IS SHOWN FOR CLARITY.
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discontinuity; in fact, details are needed only over half of the
stochasticparameter domain at these two locations and time. We
observe a drift of the shock location in the parameter domain at
x= 0.5±0.02 betweent = 0.4 andt = 1.5. This is due to the fact
that the initial condition is almost surely non-symmetric, so that
some realizations of the shocks will propagate to the left of the
domain and some other to the right. Moreover, we expect that for
a time large enough, we have at any spatial location a partition
of the parameter spaceΞ similar to the partition atx = 0.5 for
t = 1.5, and a shocked stochastic solution with statesU+ or U−

according to the sign of 2(ξ1−1/2)+(ξ2−1/2)since the shock
velocity is(U+ +U−)/2. This is reflected on the bottom line of
Figure 14.

One of the important features of the adaptive strategy is that
the refinement controls the magnitude and probability measure
of the overshoots in the stochastic solution created by the dis-
continuities. To illustrate this assertion, we repeat the previous
experiment, varying the maximum depth level allowed and com-
pare solutions att = 1.5. In Figure 17, we indeed observe a
decay of the occurrence and magnitude of the overshoots when
we increase the allowed maximal depth of the trees. Figure 18
presents the time evolution of the total number of leafs in the dis-
crete solution, for various maximal depths, and below, the distri-
bution of the leafs in space and time (note the vertical log scale)
for the case|n| ≤ 14. For early timest . 0.15, the number of
leafs is essentially independent of|n|max, since the shock has not
formed yet so that the adaptation is controlled byεc. At later
times, the number of leafs increases roughly linearly witht, re-
flecting the linear dependence ont of the portion ofΩ affected by
the stochastic shock as seen from the bottom plot of Figure 18.
Interestingly, when|n|max is increased by 2, the number of leafs
is multiplied by less than 4.

To analyze the efficiency of the proposed adaptive method-
ology, we compare it with the corresponding method using a uni-
form discretization of the stochastic domain, that is, using fixed
resolution level Nr (i.e.fixed depth of tree Nr(T ) in each spa-
tial cell). Figure 19 presents a random sample set of 30 real-
izations of the stochastic solution att = 1.5 obtained with uni-
form resolution level Nr= 3 and 4. The uniform resolution lev-
els Nr= 3 and 4 have been chosen in such a way that the to-
tal number of degrees of freedom in the uniform case, that is,
dofunif = P(T[Nr])×Nc, is of the same order of magnitude as
the total number of degrees of freedom in the adaptive case at
tn = 1.5, that is, dofadap= ∑Nc

i=1 P(T n
i ). Thus, these results are

to be compared with the panels of the second line of Figure 17
for maximum depth of the adaptive trees|n|max= 12 and 14. We
observe that the occurence and the magnitude of the overshoots
is considerably reduced when using the adaptive method.

To evaluate more quantatively the control of overshoots, we
measure the magnitude of overshoots integrated on the spatial
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FIGURE 17. SAMPLE SET OF 30 REALIZATIONS OF THE
COMPUTED STOCHASTIC SOLUTION ATt = 1.5, FOR MAXI-
MUM DEPTH OF THE TREES EQUAL TO 8 (TL), 10 (TR), 12 (BL)
AND 14 (BR), AND CORRESPONDING STOCHASTIC MESHES
AT x = 0.5. OTHER NUMERICAL PARAMETERS ARE GIVEN IN
THE TEXT.
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TIME DISTRIBUTION OF THE NUMBER OF LEAFS FOR THE
TREES OF THE APPROXIMATE SOLUTION USING A MAXIMUM
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domain as follows:

ε2
over(t

n = 1.5) =
∆x
M

Nc

∑
i=1

M

∑
j=1

(
(Un

i (ξ ( j))−U+(ξ ( j)))2
+

+ (Un
i (ξ ( j))−U−(ξ ( j)))2

−
)

, (52)

whereUn
i (ξ ( j)) denotes the discrete stochastic solution evalu-

ated atξ ( j) belonging to a random sample set,U±(ξ ( j)) de-
note the exact upper and lower bounds on the stochastic solu-
tion at ξ ( j), and the subscripts± denote the positive and nega-
tive part of a real number. We use a sample set with cardinality
M = 106. Figure 20 presents the quantityεover as a function of
degrees of freedom (note the log scales) for Nr= 1,2,3,4,5,6
and |n|max = 4,6,8,10,12,14. Since the number of degrees of
freedom for the adaptive method depends on time, we used con-
ventionally the mean number of degrees of freedom in the time
interval [0,1.5]. We observe thatεover decreases faster for the
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FIGURE 19. SAMPLE SET OF 30 REALIZATIONS OF THE
COMPUTED STOCHASTIC SOLUTION ATt = 1.5, IN THE CASE
OF A UNIFORM DISCRETIZATION OF THE STOCHASTIC DO-
MAIN FOR RESOLUTION LEVEL Nr EQUAL TO 3 AND 4.
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FIGURE 20. MEASURE εover(tn = 1.5) FOR VARIOUS Nr AND
|n|max AS A FUNCTION OF DEGREES OF FREEDOM.

adaptive method than for the non-adaptive method. For instance,
to achieve a value of 10−2 for εover, the number of degrees of
freedom needed for the adaptive method can be roughly two or-
ders of magnitude smaller than that for the non-adaptive one.
These savings in terms of degrees of freedom yield significant
savings in terms of computational time.

Finally, we compare the adaptive method to the non-adaptive
one through the following error measures:

ε2
ex(t

n = 1.5) :=
∆x
M

Nc

∑
i=1

M

∑
j=1

(
Un

i (ξ ( j))−Uex(xi , t
n,ξ ( j))

)2
,

(53)

ε2
MC(tn = 1.5) :=

∆x
M

Nc

∑
i=1

M

∑
j=1

(
Un

i (ξ ( j))−UMC(xi , t
n,ξ ( j))

)2
,

(54)
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FIGURE 21. ERRORSεex AND εMC AT tn = 1.5 FOR VARIOUS
Nr AND |n|max AS A FUNCTION OF DEGREES OF FREEDOM.

whereUn
i (ξ ( j)), Uex(xi , tn,ξ ( j)), andUMC(xi , tn,ξ ( j)) are evalu-

ated forξ (i) belonging to a random sample set respectively from
the stochastic expansion of the computed solution, the exact solu-
tion of the deterministic Burgers problem at the cell centerxi and
discrete timetn, and by solving the deterministic discrete Burgers
problem. We use a sample set with cardinalityM = 105. These
two error measures are represented in Figure 20 as a function of
degrees of freedom (note the log scales) for Nr= 1,2,3,4,5,6
and |n|max = 4,6,8,10,12,14. The errors for the adaptive and
non-adaptive methods exhibit a similar decay rate, but the adap-
tive method achieves a given error level with much less degrees
of freedom. We also notice that the error measureεex stagnates
beyond a certain number of degrees of freedom since the error is
then dominated by the space discretization error.

CONCLUSION
We have proposed an adaptive anisotropic strategy in the

context of multiresolution analysis for uncertain conservation
laws with a locally refined stochastic approximation space de-
pending on space and time. The present results illustrate the
ability of the method to deal with nonlinear scalar conserva-
tion laws including shocks while achieving significant computa-
tional savings owing to the adapted discretization. However, the
present adaptive strategy still involves some parts that can be im-
proved, in particular, by considering more advanced enrichment
and prediction procedures. These improvements are needed be-
fore considering the application to complex uncertain hyperbolic
systems.
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