
 1 Copyright © 2010 by ASME 

Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International 
Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM2010-ICNMM2010 
August 2-4, 2010, Montreal, Canada  

   FEDSM-ICNMM2010-31018

BEST ESTIMATE PLUS UNCERTAINTY ANALYSIS OF LBLOCA FOR A PICKERING B 
CANDU REACTOR 

 

 

Larry Blake 
AMEC-NSS 

Toronto, Ontario, Canada 

George Gavrus 
Ontario Power Generation 
Pickering, Ontario, Canada 

 

 

Jack Vecchiarelli 
Ontario Power Generation 
Pickering, Ontario, Canada 

J. Stoklosa 
Bruce Power 

Toronto, Ontario, Canada 
 

 

ABSTRACT 
The Pickering B Nuclear Generating Station consists of 

four CANDU reactors. These reactors are horizontal pressure 

tube, heavy water cooled and moderated reactors fuelled with 

natural uranium. Under a postulated large break loss of coolant 

accident (LOCA), positive reactivity results from coolant void 

formation. The transient is terminated by the operation of the 

safety systems within approximately 2 seconds of the start of 

the transient. The initial increase in reactor power, terminated 

by the action of the safety system, is termed the power pulse 

phase of the accident. In many instances the severity of an 

LBLOCA can be characterized by the adiabatic energy 

deposited to the fuel during this phase of the accident. 

Historically, Limit of Operating Envelope (LOE) calculations 

have been used to characterize the severity of the accident. LOE 

analyses are conservative analyses in which the key operational 

and safety related parameters are set to conservative or limiting 

values. Limit based analyses of this type result in calculated 

transient responses that will differ significantly from the actual 

expected response of the station. As well, while the results of 

limit calculations are conservative, safety margins and the 

degree of conservatism is generally not known. 

As a result of these factors, the use of Best Estimate Plus 

Uncertainty (BEPU) analyses in safety analyses for nuclear 

power plants has been increasing. In Canada, the nuclear 

industry has been pursuing best estimate analysis through the 

BEAU (Best Estimate Analysis and Uncertainty) methodology 

in order to obtain better characterization of the safety margins. 

This approach is generally consistent with those used 

internationally. Recently, a BEAU analysis of the Pickering B 

NGS was completed for the power pulse phase of a postulated 

Large Break LOCA. The analysis comprised identification of 

relevant phenomena through a Phenomena Identification and 

Ranking (PIRT) process, assessment of the code input 

uncertainties, sensitivity studies to quantify the significance of 

the input parameters, generation of a functional response 

surface and its validation, and determination of the safety 

margin. The results of the analysis clearly demonstrate that the 

Limit of Operating Envelope (LOE) results are significantly 

conservative relative to realistic analysis even when 

uncertainties are considered. In addition, the extensive 

sensitivity analysis performed to supplement the primary result 

provides insight into the primary contributors to the results. 

1.0 INTRODUCTION 
Large LOCA accident analysis is traditionally performed 

assuming initial operating conditions representative of a 

conservative and improbable configuration of the plant.  In this 

approach, commonly known as Limit of Operating Envelope or 

LOE analysis, key operational and safety system parameters are 

simultaneously set to conservative or limiting values in the 

combination that yields very conservative accident 

consequences.  The objectives of the LOE analysis are (a) to 

demonstrate the consequences of the accident are within 

allowable limits, including, in particular, a demonstration of the 

effectiveness of the special safety systems in mitigating the 

consequences of the event and (b) to derive limits of safe 

operation of the plant, particularly with respect to the key 

operational and safety system parameters (i.e., to establish the 

Safe Operating Envelope).  These objectives are most easily 
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accomplished by placing all important operational and safety 

system parameters simultaneously at their safety limits.   

LOE analysis, while suitable for confirming the adequacy 

of the plant parameters at their safety limits, leads to 

unrealistically conservative predictions of the actual safety 

margins available.  The unrealistic predictions of available 

safety margins make it difficult to include the effects of 

modeling uncertainties and operating parameter variations on 

the analysis predictions. These unrealistic predictions when 

viewed outside of the context for which they are intended, can 

ultimately lead to apparently small safety margins, unnecessary 

restrictions in plant operating conditions, reductions in reactor 

power levels, and the implementation of design changes.  

Implementing such changes can result in significant increases in 

operational complexity. Moreover, operational and design 

changes dictated by very low frequency event sequences do not 

necessarily result in material improvements in overall plant 

safety when viewed in the context of a risk informed 

framework. 

The apparently small safety margins resulting from LOE 

analysis stem largely from the extremely conservative and 

highly improbable configuration assumed in the analysis for the 

plant state. More realistic safety analysis methodologies are 

required to provide a realistic representation of the actual 

margins available. 

The proposed alternative is known as the BEAU approach.  

It is based on the expectation that best estimate models of 

physical processes, best estimate (or operating centre) plant 

states, and most probable system configurations and failure 

events provide the most realistic representation of plant 

behaviour during an accident.  Since deviations from these best 

estimate conditions can and do occur, uncertainties exist in the 

outcome of the best estimate analysis.  To quantify the 

uncertainties, the contributing components are characterized, 

and their impact on safety consequences is assessed through the 

use of an integrated probabilistic approach. 

The BEAU methodology is very similar to other 

statistically-based uncertainty analysis methods used elsewhere 

in the world. These include CSAU (Code Scaling, Applicability 

and Uncertainty), ASTRUM (Automated Statistical Treatment 

of Uncertainty Method) developed by Westinghouse, 

RLBLOCA (Realistic Large Break LOCA) developed by 

AREVA, and the KREM (Realistic Evaluation Methodology) 

developed by KEPRI. The combination of the conservative 

LOE methodology together with the more realistic BEAU 

methodology is similar to approved regulatory practices in the 

US and elsewhere. In these jurisdictions, conservative 

deterministic methods are used to demonstrate the adequacy of 

fuel cooling for all breaks up to a complete double-ended 

guillotine failure of the largest diameter piping. In traditional 

LOE methodology, the double-ended guillotine failure is 

assumed to occur “instantaneously” (typically within 0.01 ms). 

 This is a significant and profound conservatism, as it results in 

an exaggeration of the predicted power pulse that follows a 

LBLOCA for CANDU reactors. In reality, breaks in large 

piping are expected to evolve over at least several seconds, 

even minutes. It is important to note that, in the present BEAU 

analysis, the conservative assumption of an “instantaneous” 

break opening is retained. However, these approaches also 

permit less restrictive, statistically-based uncertainty analysis 

methods to be used to provide a more realistic representation of 

the actual safety margins available.  The use of BEAU 

methodology is also consistent with current Canadian 

regulations (i.e., G-144 and RD-310, respectively, [1] and [2]). 

For CANDU reactors, the combination of natural uranium 

fuel and the heavy water moderated/heavy water cooled lattice 

results in a positive coolant void reactivity coefficient and, 

consequently, a positive reactor power excursion (i.e., a power 

pulse) following a large break LOCA.  Although the 

fundamental objective of large break LOCA analysis is to 

demonstrate fuel channel integrity and acceptable dose 

consequences, the magnitude of the large break LOCA power 

pulse presents a unique challenge to the reactor shutdown 

systems.  LOE analysis demonstrates that the shutdown systems 

are fully effective in terminating the power pulse, and the 

subsequent analysis of fuel cooling shows that fuel channel 

integrity is maintained throughout the transient. 

This paper focuses on the determination of the expected 

variation in the metric most relevant to ensuring fuel channel 

integrity during the large break LOCA power pulse (fuel 

enthalpy) using the BEAU methodology. 

2.0 Nomenclature 
BEAU Best Estimate Analysis and Uncertainty 

CANDU Canadian Deuterium Uranium 

CNSC Canadian Nuclear Safety Commission 

CVR Coolant void reactivity 

FOM Figure of Merit 

FRS Functional response surface 

HBE Hot bundle enthalpy 

IUA Integrated uncertainty analysis 

(LB)LOCA (Large Break) Loss of coolant accident 

LOE Limit of operating envelope 

PIRT Phenomena interaction and ranking table 

PKPIRT Phenomena key parameter interaction and 

ranking table 

SOR Shut-off Rod 

RFSP Reactor Fueling and simulation program 

TUF Two unequal fluids – the two-phase system 

thermal-hydraulics code used in analysis of 

CANDU reactors. 

 

3.0 Analysis Methodology 
The BEAU guidelines document [3] provides the basis for 

the application of the BEAU methodology to design basis 

accidents of CANDU reactors. The guidelines provide for the 

principles that should be applied to BEAU analyses, and are 

consistent with both the CNSC expectations as well as with 
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international practice in these analyses. This section provides a 

brief overview of the method of application of the guidelines in 

this analysis. 

The BEAU process consists of 15 steps, arranged into three 

elements. The elements, and applicable associated steps, are: 

Table 1: BEAU Elements and Steps 

Element Step 

1 1: Technical Basis 

 2: PIRT 

 3: PKPIRT 

 4: Code Applicability Assessment 

2 5: Computer Code Uncertainty 

 6: Representational Uncertainty 

 7: Deterministic Assumptions 

 8: Plant Parameter Uncertainties 

 9: Independence/Correlation of Parameters 

3 10: best Estimate Case 

 11: Determination of Margin Parameter 

Calculation Method 

 12b: Quantitative Parameter ranking/Final 

PKPIRT 

 13b: Devise/Validate Surrogate 

 14b: Margin Parameter Distribution 

 15: Comparison with integral test results 

 16: Additional bias for unaccounted uncertainties 

 17: Determine safety margin 

3.1 Element 1 
In the first element, all the phenomena that are important to 

the accident scenario and the figure of merit that is assessed are 

identified and ranked. A PIRT process was undertaken for this 

analysis. 

Once the important phenomena are known, the key 

parameters that model these phenomena need to be identified 

and ranked. This forms the initial parameter ranking table 

(PKPIRT – Phenomena, Key Parameter Identification and 

Ranking Table). This identification and ranking of key 

parameters is a key interfacial activity between identification of 

relevant phenomena and their use in analyses. The term ‘initial’ 

PKPIRT is used as it represents the judgement of the subject 

matter experts and constitutes the basis for sensitivity studies 

that are performed to quantitatively rank the parameters’ 

influence on the Figure of Merit (FOM). Once the quantitative 

parameter ranks are established, a ‘final’ PKPIRT is derived 

that is used in the Integrated Uncertainty Analysis (IUA). An a 

priori decision in this analysis was to retain all high and 

medium ranked parameters from the initial PKPIRT process, 

regardless of their ranking in the sensitivity analysis. This was 

possible due to the relatively small number of significant 

parameters identified. 

For both the reactor physics code used (RFSP) and the 

system thermal-hydraulics code (TUF) a code applicability 

assessment was performed and documented for the scenario 

being analysed. 

3.2 Element 2 
The second element of the BEAU process consists of the 

quantification of the uncertainties to be applied in the analysis. 

For the modeling parameters, the uncertainties were obtained 

from either the available experimental information specific to 

CANDU or available literature. Examples of the CANDU-

specific sources of experimental data are the RD-14M and 

ZED-2 facilities. In each case the uncertainty was described by 

the distribution (e.g., normal or beta) as well as any parameters 

required by the distribution (e.g., mean and variance). 

The uncertainties for each of the plant parameters were 

determined using operational data. For each parameter, data 

spanning several operational years was obtained and analyzed. 

The uncertainty was then determined as well as any additional 

measurement uncertainty. In some cases a parametric 

distribution could not be assigned to the data. For those 

parameters, the Monte Carlo analysis was performed using the 

empirical data in a sample with replacement approach. 

3.3 Element 3 

3.3.1 Sensitivity Studies 
As provided in the BEAU guidelines, sensitivity studies 

must be performed in order to obtain the final PKPIRT from the 

initial PKPIRT. The sensitivity studies serve to reject 

parameters for inclusion in the integrated uncertainty analysis 

based on the sensitivity of the FOM to the parameter. In 

addition, sensitivity studies provide additional information that 

is useful in understanding both the results of the Integrated 

Uncertainty Analysis as well as the system behavior and the 

relative importance of the governing phenomena. Additional 

benefits of a sensitivity analysis include determination of those 

parameters whose uncertainty contributes significantly to the 

uncertainty in the FOM. 

In short, there are two types of questions that a sensitivity 

study can attempt to answer:  

• By how much is the output changed by a change in an 

input parameter? 

• By how much is the uncertainty in the output 

influenced by the uncertainty in an input parameter? 

These questions can be answered through the appropriate 

sensitivity studies. The first question is generally addressed 

through linear response, regression, ranked regression, or 

through the Morris [4] method. The latter questions can be 

addressed through such means as the Sobol’ [5] method, or 

FAST [6] analysis. In this analysis the methods employed were: 

• Linear response through regression 

• Rank correlation coefficients 

• Morris Method 

• Sobol’ Method 
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Sensitivity studies can be classified into two categories: 

local and global. Local sensitivity studies concentrate on the 

local properties of the figure of merit and provide data over a 

local range. The commonly used linear response is an example 

of a local sensitivity measure. Global measures, on the other 

hand, provide information regarding the global behavior of the 

figure of merit. In the current analysis both local and global 

sensitivity tests were performed. 

The local sensitivity was evaluated using a variant on the 

commonly used linear response. The linear response was 

determined using several values of each parameter centered on 

the best estimate value. A least squares regression was 

performed in order to estimate the linear contribution of the 

parameter to the change in the figure of merit. The measure was 

normalized to the full range of the parameter in order that the 

effects of parameters with different characteristics can be 

assessed. 

The global sensitivity studies requires more information 

than the local sensitivity studies. This information can be 

obtained either through the execution of the computer codes at 

many points in the parameter space, or through the use of a 

surrogate to the codes. In the global sensitivity analyses 

performed in this analysis  both methods were employed.  

This analysis used a functional response surface as a 

surrogate in the Integrated Uncertainty Analysis. The generation 

of this surrogate requires the execution of at least 128 separate 

computer simulations. This case matrix provided a means to 

examine the impact of the parameters on the FOM. Using the 

regression data, Pearson and Spearman correlation coefficients 

were used to assess the parameter sensitivity. 

Two other global sensitivity tests were conducted using a 

different surrogate to the simulation codes. The surrogate used 

in these cases was not the functional response surface used in 

the BEAU analysis. As the response surface is a linear 

combination of the parameters (whether first or second order), 

the resultant uncertainty measures could be influenced by this 

characterization of the response. Thus, an interpolation function 

was used instead. In this analysis, a Kriging [7] surface was 

used. 

Morris provided a method of sampling that was an efficient 

means of determining the linear and non-linear response of a 

computer model to its inputs. This method was improved [8] 

and this later method was the one employed in this analysis. 

The Morris Method considers the effects of single 

parameter variations taken one at a time. Morris defines an 

elementary effect as: 

∆

∆+
= +− ),,,,( 1121 niii

i

xxxxxxf
EE

KK
 

The parameters of interest are the mean of the absolute 

values of the elementary effects, and their standard deviations. 

Parameters which have a relatively large mean are those 

whose contributions are linear; those with high standard 

deviations are more non-linear. The results are shown in a plot 

with the abscissa being the mean and the ordinate the standard 

deviation. 

While the original Morris approach was to be used as a 

screening tool using the actual analysis codes, in this 

implementation a Kriging surrogate was used. This allowed for 

significant numbers of code trials to be executed with the results 

being based on several thousand executions of the surrogate. 

The Kriging surface was designed using the 128 cases in the 

case matrix. 

The Sobol’ method is a global, variance based method that 

also takes into account interaction effects between input 

parameters. Homma and Saltelli [9] used a ‘total’ sensitivity 

measure that is related to the Sobol’ sensitivity measure. This 

latter measure was used in this analysis. In order to evaluate the 

Sobol’ measure a Monte Carlo approach was used employing 

the same Kriging surface as that used in the Morris approach as 

a surrogate for the analysis codes. Parameters with a high 

sensitivity are those parameters whose variance is a significant 

contributor to the variance of the FOM. In this respect, the 

Sobol’ measure differs from the other sensitivity measures used. 

3.3.2 Integrated Uncertainty Analysis 
There are three general approaches that can be taken in 

order to perform an integrated uncertainty analysis. These 

methods are: 

� Application of output parameter uncertainties 

� Use of Wilk’s formula 

� Use of a code surrogate 

Each of these methods has benefits and disadvantages. A 

summary of the first two methods can be found in References 

[10] and [11]. For this analysis a code surrogate was used.  

3.3.2.1 Development of Functional 

Response Surface Surrogate 
The code surrogate used must be able to reproduce the 

behavior of the actual safety analysis codes with reasonable 

fidelity over the range of application. As well, the surface 

should be continuous and, in order to achieve the benefit of the 

use of a surrogate, must be sufficiently faster to execute than the 

codes so that a significant efficiency is achieved. 

The response surface that was used in the integrated 

uncertainty analysis was a second order polynomial potentially 

containing all cross terms: 
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In order that the effects of all parameters were considered, 

all linear terms were included in the response surface. However, 

as the number of terms in the response surface model varies as 

the square of the number of parameters, with 40 parameters the 

number of terms in a full second order model becomes 

prohibitive.  

For 40 parameters, there would be 2
860

 possible response 

surfaces (assuming a constant term in each). Thus, a means of 
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selecting a surrogate from this large set of possible surrogates 

was required. This problem is generally referred to as a ‘model 

selection’ problem. A number of methods are available to select 

the parameters for inclusion in the response surface; the method 

used in this analysis was a genetic algorithm. 

Regardless of the means through which the surrogate is 

selected, a set of data representing the behaviour of the FOM 

given the selected input parameters was required. This set of 

data was chosen to cover the range of each of the parameters 

and to be sufficiently robust that the fitting errors were 

minimized. This set of parameter values is referred to as the 

Case Matrix. The parameter values were all derived from the 

operating and modeling parameter ranges. 

The result of these considerations is that the response 

surface is defined for a finite domain. This domain is 

sufficiently large so that the contribution to the overall IUA of 

values that fall outside of the domain is small.  

The case matrix is generated as a Latin hypercube, 

fractional block design as defined in Reference [12]. This 

formulation provides an efficient coverage of the parameter 

space and allows for a reduced number of independent cases to 

be executed for the same number of parameters in the resulting 

response surface. The resulting case matrix is centered on the 

best estimate point. 

As discussed previously, the surrogate is selected from the 

potential surrogates using a genetic algorithm [13]. A genetic 

algorithm is a means of optimizing a non-linear system that is 

based on a Darwinian selection paradigm. The basis of the 

methodology is the concept of a gene and fitness function. The 

gene determines the characteristic of the solution to the 

problem, and the fitness function its suitability. For the model 

selection problem, the gene consists of a bit sequence in which 

a 1 signifies the presence of a term, and 0 its absence from the 

response surface model. Thus, 11101… would have the first 

three and fifth terms included in the response surface and the 

fourth excluded. 

Each potential model was determined by a least squares fit 

to the case matrix data for the terms included in the model. 

These models were then assessed through the use of a fitness 

function. The fitness function used was intended to judge the 

suitability of each of the potential models. There are several 

possible fitness functions, however they all have the same basic 

constituents: a measure of the deviation from the values to be 

fit, and a means of ensuring that the minimum number of terms 

be in the fit. The fitness function selected for use in this analysis 

is the sum of squares of the residuals divided by the square of 

the number of free parameters: 
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Here N is the total number of samples (rows) in the case 

matrix and m is the number of terms in the response surface 

model. Effectively, this penalizes models with a higher number 

of terms. 

3.3.2.2 Validation of Response Surface 

Surrogate 
The measure of fitness that is used in determination of the 

response surface model was based on the residuals of the fit. As 

such, the use of these residuals in determination of the response 

surface fitting error would result in an artificially low value. 

This is the result of the fact that the models selected are 

effectively those that minimize the residuals in the case matrix. 

However, the case matrix values are only representative of the 

actual set of all possible combinations of parameters. Thus, a 

separate set of validation cases must be executed and the 

resulting residuals used to determine the fitting error. This is 

generally referred to as a predictive error, as the cases used in 

determining the error were not used in the creation of the 

response surface, and as a result the error is related to the ability 

of the resulting model to predict the FOM for other parameter 

combinations. In this analysis a separate set of 68 cases was 

executed to allow for determination of the prediction error. 

Once the prediction error was determined, inclusion in the 

integrated uncertainty analysis was through the addition of a 

random value sampled from this distribution. 

3.3.3 Integrated Uncertainty Analysis 
The BEAU methodology allows for the estimation of the 

distribution of the FOM based on a Monte Carlo sampling of 

the input distributions, using a functional response surface as a 

surrogate. Thus, the fundamental calculations in the Integrated 

Uncertainty Analysis consist of a Monte Carlo simulation of the 

parameter uncertainty propagation. The Monte Carlo consisted 

of 300,000 calculations using the FRS surrogate with each 

parameter sampled from their respective distribution and any 

associated measurement error included. The FRS prediction 

error was added to each result, sampling from its distribution. 

The 95
th

 percentile was determined from the resulting order 

statistics, with a correspondingly high confidence. 

4.0 Results 

4.1 Parameter Identification and 
Uncertainty Estimation 

The figure of merit for this analysis was chosen to be the 

Hot Bundle Enthalpy (HBE), calculated at 5 seconds after the 

break initiation. The Hot Bundle Enthalpy is the highest 

enthalpy in the limiting fuel element. It is comprised of two 

terms; the first being the initial enthalpy present in the fuel at 

the start of the transient, and the second related to the energy 

deposited during the transient. An adiabatic deposition is 

assumed.  

The PIRT and PKPIRT process identified 41 parameters 

that were either High or Medium ranked. These parameters 

were divided between reactor physics related (13 plant and 9 

modeling) and thermal-hydraulic (3 plant and 16 modeling). 

Each of these parameters was assessed and an uncertainty 
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assigned. In the case of the plant parameters, measurement 

uncertainty was also assessed and quantified.  The parameters 

were assigned unique identifiers for use in the sensitivity 

studies; all identifiers began with the letter ‘S’ and at least one 

following character (e.g., S4, CVR bias; SX, interfacial drag 

coefficient, Sb, 2 phase multiplier). 

4.2 Sensitivity Analyses 

4.2.1 Local Sensitivity and parameter 
Ranking 

Figure 1 to Figure 3 show the sensitivity results for selected 

parameters included in the sensitivity analysis. For each 

parameter, the figures show the resulting least squares fit as well 

as the 95% confidence bounds on the slope. 

It was found that many of the slopes are essentially zero. 

That is, the confidence interval on the calculated slope includes 

zero. For these parameters, the HBE is effectively insensitive to 

local variations in these parameters. Other parameters, such as 

CVR bias (S4, Figure 1) exhibit significant sensitivity. 

In most cases, the parameters appear to be essentially 

linear; however, the Interfacial Drag Coefficient (SX) appeared 

to be non-linear, Figure 3. As the curve is concave downward, 

the estimated sensitivity is higher than the actual sensitivity and 

as such, the effect of this parameter may be over estimated in 

the sensitivity studies. 

Table 2 shows an extract from the final parameter ranking 

table. Shown are the top nine parameters with their calculated 

slopes and relative ranking. The relative rank is calculated as 

the absolute value of the ratio of the slope of the parameter to 

the maximum slope.  

The parameter ranks are consistent with the experts’ initial 

ranks, with parameters that directly influence voiding, reactivity 

resulting from voiding, and initial and transient energy 

deposition being the highest ranked parameters. The first timing 

gate of the SOR relates to the speed at which the Shutoff Rods 

(the active shutdown mechanism in the simulation) become 

effective after a trip is received. Q1 and Q2 are coefficients 

relating deposited energy to fuel enthalpy. 

380

390

400

410

420

430

0.000 0.500 1.000
Coolant Void Reactivity,  Normalized 

to Total Range

H
o

t 
B

u
n

d
le

 E
n

th
a
lp

y
, 

J
/g Sensitivity Cases

Confidence bounds
Best Estimate
Linear Regression

 
Figure 1: Sensitivity to CVR Bias (S4) 
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Figure 2: Sensitivity to Delayed Neutron Fraction (S9) 
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Figure 3: Sensitivity to Interfacial Drag Coefficient 

(SX) 

Table 2: Abridged Parameter Ranking Table 

Parameter ID Slope 

(J/g/Fraction of 

Range) 

Ranking 

Coolant void reactivity S4 69.5 100.0 

‘Interfacial Drag 

Coefficient’ SX 52.0 74.8 

Initial Fuel/Sheath Heat 

Transfer Coefficient Sd 34.7 49.9 

Total delayed neutron 

fraction S9 -25.0 36.0 

Limit on Initial Bundle 

Power (kW) S1 24.7 35.6 

Q1 and Q2 scaling factor  Si 23.7 34.1 

First timing gate of SOR SE 19.3 27.8 

Transient Bundle Power 

Scaling Factor SK 15.2 21.9 

Φ2 (two phase multiplier) Sb 14.8 21.3 
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4.2.2 Additional Sensitivity Studies 
Global sensitivity studies were performed using the Morris 

and Sobol’ methods. Figure 4 shows a comparison of the results 

of these studies. The results of the Spearman rank correlation 

are shown in Figure 5. The order of the top ranked parameters 

is the same as the order of the top ranked parameters in the 

local, Morris, and Sobol’ studies. This demonstrates that the 

selection of important parameters is relatively independent of 

the method used to perform the selection. 

The coolant void reactivity response as calculated by the 

response surface to be used as a surrogate for the code was 

essentially the same as that calculated by single parameter 

variation at the best estimate point. This provides additional 

confirmation of the suitability of the response surface 

formulation, Figure 6. 

Finally, a separate sensitivity study conducted at a non-best 

estimate point representative of the 95% of the FOM (based on 

the case matrix results) resulted in a parameter ranking that was 

consistent with that obtained at the best estimate point. This 

provides confirmation of the fact that by ranking the parameters 

based on a local measure centered at the best estimate point will 

not result in the rejection of parameters that are sensitive at the 

95
th

 percentile. This comparison is shown in Figure 7. 
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Figure 4: Comparison of Morris and Sobol’ Ranks 
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Figure 5: Spearman Correlation Coefficient Ranking 
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Figure 7: Comparison of Best Estimate and non-Best 

Estimate Ranking 

4.3 Integrated Uncertainty Analysis 

4.3.1 Response Surface Generation 
and Validation 

Figure 8 shows the power amplitude that resulted from 

execution of the case matrix. Also shown is the best estimate 

case (in red). As shown, the amplitudes resulting from execution 

of the 128 cases are of similar shape and general characteristic, 

and the best estimate case is centered within the distribution of 

amplitudes. 

Figure 9 shows the reactivities that result from the 

execution of the power pulse case matrix. As with the amplitude 

results, the reactivity transient for the best estimate case is 

centered within the distribution of the reactivity transients.  

The case matrix results for the HBE are shown in Figure 

10. 

Both the Case Matrix and Validation Case Matrix results 

stem from the application of a set of randomly generated 

parameter values, and as such are themselves stochastic 

quantities. In order to asses the suitability of the validation case 

matrix to represent the response surface error, it is important 

that the validation cases be consistent with the cases used to 

generate the response surfaces. In order to demonstrate that the 

validation and case matrix results come from the same 

distribution, a Kolmogorov-Smirnov test was performed for the 

power pulse case matrix and validation matrix HBE. The 

Kolmogorov-Smirnov test is a hypothesis test that has the null 

hypothesis that the two sets of values come from the same 

distribution, against the alternate hypothesis that they come 

from different distributions. This test is based on the empirical 

cumulative distributions. The Empirical Cumulative 

Distribution Function (ECDF) for the case matrix and 

validation matrix is shown in Figure 11. The ECDF for the 

validation cases is seen to be similar to that for the case matrix. 

The Kolmogorov-Smirnov p-value was 0.7533. This indicates 

that the hypothesis that the validation and case matrix results 

come from the same distribution cannot be rejected. Thus, the 

validation cases serve as a suitable set of cases to use to obtain 

the response surface error. 

Figure 12 compares the response surface results to those 

from the case matrix and validation cases. The response surface 

provides a good fit to the data. As expected, the ‘scatter’ 

resulting from the validation cases is larger than that resulting 

from the case matrix. This results from the fact that the response 

surface was selected by minimizing the residual error from the 

case matrix. This emphasizes the fact that the error for the 

response surface must be obtained using the prediction error 

that results from the validation cases. 

Table 3 provides the residual errors and the mean 

predictive errors for the HBE. As discussed previously, the 

predictive errors were used as the response surface error in the 

integrated uncertainty analysis. 

 Table 3: Response Surface Errors 

Residual Error  Prediction Error 

# Cases 
Mean 

(J/g) 

Standard 

Deviation 

(J/g) 

Mean 

(J/g) 

Standard 

Deviation 

(J/g) 

68 0 7.01 7.87 23.28 
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Figure 8: Normalized Reactor Power 
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Figure 9: Reactivity Transient (first 1.6 sec) 
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Figure 10: Case Matrix Results 
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Figure 11: Comparison of ECDF of Case Matrix and 

Validation Cases 
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Figure 12: Comparison of FRS and Validation Case 

Results 

4.3.2 Integrated Uncertainty Analysis 
Figure 13 shows the results of the uncertainty calculations 

for the hot bundle enthalpy for a LBLOCA. For this analysis, 

300,000 Monte Carlo simulations were performed. The 

distribution function include the propagation of all input 

uncertainties, measurement uncertainties,  and the inclusion of 

the response surface prediction error. 

Using these error distributions, the resultant 95
th

 percentile 

can be calculated. This value represents the 95
th

 percentile of 

the HBE including all uncertainties in modeling, plant and FRS 

prediction. Table 4 presents these results. The estimate of the 

95
th

 percentile of the HBE is found to be 437.9 J/g. This table 

also provides the associated safety limit. The safety margin for 

the BEAU result demonstrated a 200% improvement compared 

with the LOE approach. 

For the power pulse, the HBE at the 95
th

 percentile is 

significantly smaller than the acceptance criterion of 965 J/g 

demonstrating that the results of a postulated LBLOCA will not 

challenge fuel integrity. Further, the peak amplitudes for the 

power pulse are relatively small, demonstrating that the large 

amplitudes found in LOE analyses are the result of the 

excessive conservatisms present in LOE analysis. 

Table 4: Results of Integrated Uncertainty Analysis 

HBE95% 

(J/g) 

Safety Limit 

(J/g) 

437.9 965 
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Figure 13: HBE Cumulative Distribution 

5.0 Summary and Conclusions 
Several sensitivity studies were performed to better 

understand the sensitivity of the HBE to parameters of 

importance in postulated LOCA scenarios. The results of these 

studies were largely consistent, with the top ranked parameters 

having essentially the same rank. While there may be some 

slight changes in the relative ranking, the actual parameters that 

were deemed most significant were found to be the same. The 

significant parameters were found to be those related to 

voiding, void induced reactivity, and initial enthalpy. 

The 95
th

 percentile of the HBE was found to be 437.9 J/g. 

This result is significantly smaller than LOE results. The results 

of this analysis also show that the HBE safety margin for 

Pickering B under a hypothetical LBLOCA is 527.1 J/g under 

normal operating conditions. This demonstrates that 

significantly larger margin is available when compared with the 

results of LOE analyses. Thus, the consequences that have been 

observed in LOE analyses in which a significant power pulse 

occurs are due to the limiting assumptions used. When realistic 

assumptions accounting for all operational and modeling 

uncertainties of significance are considered (while retaining 

conservatisms such as the assumption of an instantaneous 

double-sided guillotine break), the power pulse resulting from a 

hypothetical LBLOCA is significantly more benign. 
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