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ABSTRACT

We discuss the role of the mucus layer in the eye. The

tear film in the eye is composed of a mucus layer, an aqueous

layer and a lipid layer. While the aqueous and lipid layers

are Newtonian, the mucus layer is non-Newtonian. It is com-

monly believed that the mucus layer serves as a lubricant for

the cornea. However, we hypothesize that it serves a greater

purpose as a protective layer from foreign particles; the normal

stress effects of a viscoelastic fluid under the blinking motion of

the eyelid would act towards pushing out any particle embed-

ded in this layer. To prove this hypothesis, we mathematically

study the fluid mechanics of a viscoelastic, shear thinning fluid

modeled by a generalized second grade fluid. As a first step, we

investigate the flow and stresses induced by a shearing motion

(part of a blink cycle) and its effect upon an embedded particle,

which is modeled by the Wiberg-Smith equation.

INTRODUCTION

The human eye is composed of a composite sphere

created by the combination of two spheres of radius 12mm

and 9mm [19]. This sphere is covered by a film measuring

about 10µm thick [5]. This tear film is contained by the

skeleton and muscles of the face and skull, and the eyelids.

The eyelid is a semi rigid structure that moves parallel to the

surface of the eye ball. The movement of the upper eyelid is

∗Address all correspondence to this author.

rapid and in the vertical direction and is caused by the direct

effects of muscle contractions and relaxations. The lower

eyelid moves in a much less dramatic, side to side motion and

a more limited extent than the upper eyelid [4]. The blink-

ing of the eyelids causes the obvious affects of spreading the

tear film into a smooth layer, and permits tear film drainage [28].

The nature of the blink cycle and its effects on the

precorneal tear film [14], and the bulk motion of the precorneal

tear film is understood [16], though details are still up for

discussion. The motion and stresses within the tear film itself,

at the microscale level, has not been significantly recorded. We

intend to do this by using models based on linear slider bearings

and lubrication theory. The eyelid’s relative dimensions, with

the radius of the eyeball being about 1000 times the size of

the separation between the eyelid and the eyeball, lead us to

conclude that it is a reasonable assumption to consider the mo-

tion as being straight line motion between almost parallel plates.

The fluid that serves as the lubricating layer (see figure

1) consists of a very thin lipid layer, an aqueous layer, and

a mucus layer [6]. The lipid layer serves mostly to reduce

evaporation of the aqueous layer resided mostly between the

two edges of the eyelid and is of no concern to us [1]. The

aqueous layer is an enriched saline solution and behaves strictly

Newtonian [12]. The mucus layer lies between the aqueous layer

and the surface of the eyeball. Its molecular composition gives
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FIGURE 1. A SCHEMATIC OF THE TEAR FILM LAYERS IN

THE HUMAN EYE. THE ARROW ON THE TOP INDICATES THE

DIRECTION OF THE EYELID’S MOTION.

it a shear dependent behavior, thus giving it a non-Newtonian

character [20]. In addition to serving as a lubricant for the

eyelid and as an adhesive that keeps the aqueous layer coating

of the eyeball in place, it also serves in the role of a protector

of the eye. Also, along with certain molecules and enzymes

that work to chemically preventing disease from reaching the

eye, there is some unclarified process whereby mucin moleculars

wrap around unwelcome particles and serve to remove them

from the tear film [15]. How these molecules are driven by the

blink cycle is the subject of this paper.

THE MATHEMATICAL MODEL

In this study, we consider two aspects of the mechanics of

the eye: (i) the first one regards the fluid mechanics of the tear

film and (ii) the second concerns the induced motion of any

tracer particle embedded in the fluid layers. As we discussed

in the introduction, the tear film contains multiple fluid layers,

each with different characteristic properties. The full problem

as stated above is quite complex and we therefore consider a

simplified first step in examining simply the mucus layer of the

eye. Our hypothesis is that this layer in particular being non-

Newtonian serves the purpose of transporting out any foreign

material, away from the cornea. Figure 2 shows the geome-

try that we will assume in this current study. Specifically we

will examine the flow and stresses produced in the fluid due

to a steady shearing motion, which represents a portion of the

blinking motion of the eye.

FIGURE 2. A SCHEMATIC OF THE MODEL GEOMETRY THAT

WE USE IN OUR STUDY. IN THIS PAPER, THE UPPER PLATE IS

HELD FIXED WHILE THE BOTTOM IS TAKEN TO BE MOVING

IN KEEPING WITH THE CONVENTION IN PREVIOUS PAPERS.

The Tear Film

Rheological studies [20, 26] indicate that the mucus layer

has viscoelastic and shear-rate dependent viscosity. Most of the

rheology performed on human tears is done for the combined

occular fluid indicating a shear-thinning viscosity at high shear

rates. There is evidence from mucus studies in general that at

low shear rates, viscosity displays a shear thickening behavior

which then becomes strongly shear thinning beyond a certain

critical shear rate [15, 25]. Therefore we model our fluid as a

shear thinning viscoelastic non-Newtonian fluid modeled by the

generalized second grade fluid [17]. The model used here is an

ad-hoc generalization of the more well known second grade fluid

but nevertheless is the simplest incompressible, non-Newtonian

model than can be constructed which can qualitatively capture

the features of the mucus layer.

T = −pI+η(γ̇)A1+α1A1+α2A2 =−pI+τ (1)

where p is the indeterminate part of the stress tensor due to

the constraint of incompressibility, η is the shear rate dependent

viscosity and α1 and α2 are material moduli which are usually

referred to as the normal stress coefficients. The kinematical

tensors A1 and A2 are defined through

A1 = L+L
T (2)

A2 =
d

dt
A1+A1L+L

TA1 (3)

L = grad u (4)
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and

η(γ̇) = η0(1+k |A1|
2)q (5)

with η0 representing the zero shear rate viscosity, k the con-

sistency index and q the shear rate index which lends the fluid

thickening (q > 0), thinning (q < 0) or constant viscosity (q= 0)
behavior. In this study we will consider analytical solutions to

the problem which are derived for the cases of q =±ǫ, where ǫ

is very small 1. Using the Binomial expansion, upto first order

in q we have

η(γ̇) = η0(1+kq |A1|
2)+O(q2). (6)

Following the approach outlined by Bujurke et al. [2] and

Huang et al. [13] and others [4,7–9,11] we begin by considering

a velocity field given by w =< u(x,y),v(x,y),0 > with the

incompressibility condition

∂u

∂x
+
∂v

∂y
= 0. (7)

Henceforth, we will consider non-dimensional quantities (see

figure 2 ) with characteristic length taken to be L, height is

h1 and characteristic velocity U0 is the velocity of the moving

plate. Also the Deborah number is given by De= α2U
η0L

. Using

the fact that the flow profiles for second order fluid are similar

to those of Newtonian fluids [13, 24], let us assume that the

x-component of the velocity can be of the form

u(x,y) = c1(x)y
2+c2(x)y+c3(x) (8)

with boundary conditions

u(·,0) =U0;u(·,h) = 0;v(·,0) = 0;v(·,h) = 0 (9)

Applying equations (9) to (8) and (7) gives us the velocity com-

ponents

u = U
(
(1−y2/h2)+g(x)y(1−y/h)

)
(10)

v = −Uh′(x)

(
y2

h2
(2−

c

h
)(1−

y

h
)

)
(11)

1Closed form solutions of velocity and stresses for some positive integer

values of q have also been obtained.

where g(x) = c−4h
h2

, h can be freely chosen and c is a constant

yet to be determined using stress conditions on the boundary.

This value will depend on fluid parameters such as q, k, η0 and

the normal stress coefficients and are recorded in table 1 for

different fluid parameters. In figure 3 several different profiles

of u and v versus y at different horizontal positions in the

channel of varying top plate slopes are provided. As expected,

the horizontal component of velocity u has a maximum at the

bottom plate which is moving and monotonically decreases with

increasing y. The effect of the slope m on u goes into adding

some curvature effects; when m = 0, u varies linearly with y
everywhere in the channel. The vertical component of velocity

essentially vanishes in the parallel plate case but is non-zero

with a flow in the positive y or negative y for diverging or

converging channels, respectively. In the former case, there is

a net flow downward while in the latter geometry the net flow

is pointed upward. Since the exact nature of the slope is hard

to estimate in the eye, it is plausible that small vertical flows

could come into play as well. Therefore in our study, the cases

of m= 0.1,0 and −0.1 have also been examined.

Once the equations (10) and (11) are available, we can com-

pute the stresses in the fluid Txx,Tyy and Txy . If we additionally

assume lubrications conditions, namely

v << u;
∂u

∂x
<<

∂u

∂y
;
∂v

∂x
<<

∂v

∂y
(12)

then the linear momentum equations in the x and y directions

along with equations (12) can be used to obtained the equations

for the stresses on the boundaries (see [13] for a detailed

derivation). For the computation of the normal stress, N = Tyy ,

we take the boundary conditions N |x=0 =Nx=1 = 0.

The stresses display variations with respect to several para-

meters, q, De and m. The essential profile remains the same,

however the magnitude can change significantly depending upon

the above mentioned parameter values. In the figure 4 we show

a sample plot displaying this variation for the shear thinning

case q = −0.001 and De = 0.25 for a variety of slopes both

positive and negative. In the bottom part of this plot we the

effect of De for the parallel channel (i.e. m= 0) is also shown.
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FIGURE 3. PLOTS OF THE HORIZONTAL (LEFT) AND VERTICAL (RIGHT) COMPONENTS OF THE VELOCITY OF A FLUID WITH

DEBORAH NUMBER OF 0.25, SLOPE OF -0.2 AND Q=-0.001 AT X=0.01,0.5 AND 0.99 PLOTTED AGAINST Y=0 TO Y=1. IN THE

SECOND ROW, THE EXACT VALUE OF THE SLOPE M=-0.0001. AS IS CLEAR FROM THESE PICTURES, THE HORIZONTAL FLOW IS

UNIDIRECTIONAL AND DOES NOT HAVE A VERTICAL FLOW COMPONENT. HOWEVER, IN THE CONVERGING AND DIVERGING

CASES, THE NET FLOW IS POINTED IN THE DOWNWARD AND UPWARD DIRECTIONS, RESPECTIVELY.
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The differences in magnitude of N are not visible in

the scale presented. A preliminary test case for q = 0 was

performed and our results matched perfectly with those of [13]

for a second order fluid with constant viscosity. Our overall

profile and order of magnitude for N matches with those of

other studies in the literature [3,21,22] as well. We realize that

experimental data on the stresses in the eyelid are hard to come

by and have not been able to find any appropriate literature to

this end.

We are instead attempting to do our own scaled up experi-

ments to measure stresses imposed on the walls under shearing

motions upon a viscoelastic fluid. This part of the project is

still in incipient stage and we do not yet have corroborative data

to show at this stage. The only relevant experimental paper

that we find in the literature is the recent work of Sharma and

Pandey ( [23]) who, in 2009, experimentally studied the pres-

sure distributions inside a pad thrust bearing for oil (both clean

and contaminated) which is a Newtonian liquid. We have been

unable to find any such work for viscoelastic, non-Newtonian

fluids so far. While the work of Sharma and Pandey cannot

be used as evidence for our own work we can certainly ex-

amine trends in their study to compare to ours. The primary

objective of this experimental study is to compare and contrast

shapes of pads in thrust bearings and measurements are made

with different pads where the height function h(x) is linear, con-

vex, concave and also a step function. The pressure distribution

in the pad is measured with respect to the horizontal distance.

The pressure profile measured is parabolic for the linear bearing

geometry as is also seen in our case which persists even in the

case of vanishing De.

TABLE 1. SOME SAMPLE VALUES OF C FOR DIFFERENT

VALUES OF SLOPE M AND DE FOR THE FIXED SHEAR-

THINNING CASE OF Q=−0.001.

m De c

0.1 0,0.25,0.5,0.75 2.84,3.07,3.38,3.73

0.0 0,0.25,0.5,0.75 2.99,3.00,3.0002,3.0004

-0.1 0,0.25,0.5,0.75 3.14,2.96,2.83,2.72

Particulate Matter in the Tear Film

Consider a particle embedded in the eye represented by a

sphere of radius ’a’. The motion of such a particle in the sur-

FIGURE 4. THE PLOT SHOWS THE VARIATION IN THE NOR-

MAL STRESS, N = TY Y , UPON THE BOTTOM PLATE AS A

FUNCTION OF X, SLOPE M AND DE. IN THE UPPER FRAME

WE FIX De= 0.25 AND Q=−0.001 AND WE SEE THE STRESS

VARIATION IN X WITH THE RESPECT TO THE SLOPE OF THE

PLATES. IN THE LOWER FRAME WE SHOW THE VARIATION

IN NORMAL STRESS WITH De.

rounding viscoelastic fluid medium can be approximated by the

considering the various forces upon it:

ρp
dvp
dt

= FAM +FB+FD+FL (13)

namely, force due to the added mass effect (FAM ), the Bas-

sett force(FB), drag (FD) and lift (FL) forces. The force due

to gravity can be ignored in this context. Such an empirical

equation has been effectively derived by Wiberg and Smith [27]

which is essentially a modified form of the Maxey-Riley equa-

tion and is given in non-dimensional form by:

S
dvp
dt

=
Dv

Dt
+
1

2
(
Dv

Dt
−
dvp
dt
)+

3

4

CD
D
|v−vp|(v−vp)
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+
3

4

CL
D
(|v−vp|

2
top−|v−vp|

2
bottom)n̂ (14)

where S = ρp/ρf , n̂ is the unit vector normal to the flow, vp
represents the particle velocity, D/Dt is the material derivative,

and CD and CL are the drag and lift coefficients, respectively,

v represents the fluid velocity and D is the particle diameter.

The drag coefficient is empirically chosen depending on particle

Reynolds number, Rep = (ρD|v−vp|)/µ where ρ and µ are the

density and viscosity of the fluid, respectively;

24

Rep
, if Rep < 1; (15)

CD =
24

Rep
(1+0.15Re0.687p ) if Rep > 1. (16)

An accurate determination of CD requires an evaluation of the

above formulae at every time step which is then fed back into

the equation (14). For our immediate purposes, we will ap-

proximate CD as a constant. Based on the work of [29], the

Re for the tear film is known to be in the range 10−7− 10−9.

Assuming a particle moving initially at about half the speed of

the flow 2gives us a particle Reynolds number, Rep of about

the same order of magnitude as the tear film. This gives us

CD ≈ 108− 1010. While the different terms on the right hand

side of equation (14) are quite clear, the final term regarding

the lift needs some explanation. The lift force is given obtained

from the following relation,

F̄L =
1

2
CLρp|vp−v|

2A

whereA is the reference area given by half the surface area of the

sphere. While the lift coefficient has a complicated dependence

upon the Re, we employ the tabulations of this relationship for

a freely rotating sphere due to [18] to obtain an average value of

CL3. Based on [18] we take CL ≈ 1 based on the fact that the

Rep is sufficiently small. Since the lift on a sphere is caused

by the local shear force experienced by the sphere, we further

approximate this term by (also see figure 5)

FL ≈
F̄L|top of sphere− F̄L|bottom of sphere

Vsph
. (17)

2It is reasonable to assume that the high viscosity of the mucus layer and its

protective nature does not allow for arbitrarily large speeds.
3The values of CD and CL are still based on their values in a Newtonian

fluid. For sake of higher accuracy their dependence upon the De would also

be essential.

FIGURE 5. A SCHEMATIC OF THE LOCAL SHEAR LAYER

IN THE NEIGHBORHOOD OF THE PARTICLE. THE RESULTING

SHEARING FORCE INDUCES A COUNTERCLOCKWISE ROTA-

TION THUS GIVING THE PARTICLE A LIFT FORCE.

The equation (14) along with initial conditions

xp(0) = x0, yp(0) = y0; (18)

x′p(0) = v
(0)
x , y

′

p(0) = v
(0)
y (19)

is solved using a Runge-Kutta method with variable time step.

We present results, namely the position of the particle in time

(xp(t),yp(t)) for varying slopes and De. The effect of the slope

and De and m are analyzed in figure 6. In the cases when m
is zero or negative, the downward vertical flow would induce a

downward motion to the particle, towards the moving plate. In

the case of the positively sloped plate the magnitude of the verti-

cal velocity is far greater than the downward lift force acting on

the particle, therefore the particle undergoes an upward motion

away from the moving plate. It is to be noted that even for the

parallel plate case, there is variation in the particle trajectory

due to De even though it is difficult to tell from this scale used

in this figure. Our calculations suggest that there are sufficient

reasons for exploring this model as one for the mechanics of the

eye even further. At this stage there is no experimental work to

compare our work with. We are in the process of conducting

our own experimental studies to verify our theoretical results.

CONCLUSIONS

This paper explores the mechanics of a viscoelastic (with

shear dependent viscosity) fluid in a slider bearing geometry

and the effect of such a flow on an immersed particle. The

problem derives inspiration from the physiological nature of the

eye with its multiple layering of the tear film. In particular we

want to investigate the trajectory of the embedded particle due

to the viscoelasticity in the fluid. In the context of the eye, the

central question of interest is whether the mucus layer which is

very viscous and elastic is strategically placed above the cornea

in order to both arrest the penetration of any foreign body and

6 Copyright c© 2010 by ASME



FIGURE 6. THE PLOT SHOWS PARTICLE TRAJECTORIES

OVER TIME FOR DIFFERENT M AND De. THE INITIAL VE-

LOCITY OF THE PARTICLE IS TAKEN TO BE HALF THE VE-

LOCITY OF THE FLUID AT TH EINITIAL POSITION, DIAME-

TER, D= 0.1, S = 1.1. THE LABELS MENTIONED ALONGSIDE

THE TRAJECTORIES INDICATE (M,De).

also to push it away from the cornea. Our preliminary results

are obtained under several approximations: a single fluid layer

is considered, the walls are taken to be rigid, the normal

stress coefficients are taken to be constants, the shear-rate

dependent viscosity is taken for sufficiently small values of q
of about -0.001 while the appropriate physiological values of

−1 < q < −0.6 [29] and we consider a simple approximation

of the lift force in equation (14). Finally, in addition to

the above mentioned considerations a more realistic blink-

ing motion must be replicated i.e. oscillatory motion of the plate.

The problem being addressed is a highly nonlinear system

of differential equations, representing the fluid and solid por-

tions under the eyelid. The approach being considered here is

definitely non-trivial. The particular novelty of this work is the

modeling of the particle by using the Wiberg-Smith equations

within a lubrication setting. Our computations shows tendency

for an immersed particle to drift to the bottom plate under most

circumstances. Since the bottom plate is moving, it represents

the eyelid, while the stationary upper plate would represent the

eyeball. Thus the motion towards the moving plate would in-

dicate the removal of the particle from the mucus layer of the

eye. The only case when the particle gets pushed away from

the eyelid is when we take a diverging plate geometry when the

vertical flow away from the eyelid dominates. The exact nature

of the particle motion is however, dependent on its initial con-

ditions and the material properties of the fluid which need to be

examined in greater detail. This is a first study in our eventual

goal of obtaining a better understanding the physics of the eye.

Our results defintiely show reason to explore the problem in

greater detail in the future, accounting for the above mentioned

shortcomings.
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