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ABSTRACT have now reached a high level of maturity (see [2] for a recen

The LS-STAG method is an immersed boundary method for review). They rely on cost-effective Cartesian grid methods tha
viscous incompressible flows based on the staggered MAC ar- alleviate the generation of body fitted meshes and the need
rangement for Cartesian grids, where the irregular boundary is frequent remeshing in the case of problems with moving bound
sharply represented by its level-set function. The level-set func- aries. 1B methods have found numerous applications in turbu
tion enables us to compute efficiently all relevant geometry pa- lent flows, fluid-structure interaction, biological and biomedical
rameters of the so-called “cut-cells’,e. the cells that are cut flows, etc. .. To our knowledge, 1B methods have not yet beer
by the immersed boundary, reducing thus the bookkeeping asso-applied to viscoelastic flows.
ciated to the handling of complex geometries. One of the main For modelling the rheology of viscoelastic fluids, the var-
features of the LS-STAG method is the use of a consistent andious constitutive equations that have been devised (upper col
unified discretization of the flow equations in both Cartesian and vected Maxwell, Oldroyd-B, Phan-Thien/Tannetg. .., see [3]
cut-cells, which has been obtained by enforcing the strict con- for a review) have common features : a set of nonlinear hyper
servation of global invariants of the flow such as total mass, mo- polic transport equations for the elastic part of the stress tensc
mentum and kinetic energy in the whole fluid domain. After a that has to be coupled to the incompressible Navier-Stokes equ
short discussion on the salient features of the LS-STAG method,tions. The numerical solution of these coupled problems share
we will present one of its most recent application : The computa- the same difficulties, the most severe being the breakdown of tr
tion of viscoelastic flows governed by the Oldroyd-B constitutive numerical algorithms for highly elastic flows : the so-caltégh
equation. Weissenberg number problem, named after the dimensionless

rameter We that measures the level of elasticity of the flow [1, 3]
To overcome this major numerical challenge, we have identifie
INTRODUCTION two issues concerning the spatial and temporal discretizations «
This communication presents an Immersed Boundary (IB) / the flow equations :
Finite Volume (FV) method for the computation of incompress-
ible flows in 2D irregular geometries, with an emphasis on vis- e As for the velocity and pressure coupling for Newtonian

coelastic flows [1]. Lately, FV methods have drawn a renewed flows, the discretization of the velocity and stress has to b
interest for viscoelastic computations, motivated by their inher- compatible for preventing unphysical node-to-node oscilla-
ent low computational costs compared to Finite Element formu- tions of the stress variables. For a FV method, this is usuall
lations. For Newtonian flows in irregular geometries, IB methods achieved by an adequate staggering of the normal and she
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stress unknowns on the computational grid [4, 5]. GOVERNING EQUATIONS
e In addition, for preventing the breakdown of the solution The equations that govern the motion of a viscoelastic
caused by the loss of positive-definiteness of the elastic Oldroyd-B fluid are [1, 3] :
stress tensor during the time integration, a time-stepping
strategy that preserves this property at the discrete level must
o

7}
be devised (see [6] and references therein). i +0(v® v)) =—0p+ns0- (Ov)+ 0 Te, (1a)

ot

T+ A Te= 21D, (1b)

d-v=0, (1c)
This communication presents a progress report on viscoelas-

tic flow computations performed with a well established 1B ) ) ) _ )
method, the LS-STAG method (see Refs. [7, 8]), that would yvherep is the fImq densityy)s andne are respecnvglythe viscos-
eventually address all the fundamental numerical issues men-ity of the Newtonian solvant and of the polymeric solution that
tioned above. We recall that for Newtonian flows, the LS-STAG contributes to the fluid elasticity} is the elastic characteristic
method is based on the staggered MAC method of Verstappen & time,=V = (u,v) is the velocity vector in 2Dp is the pressure,
Veldman [9], where the IB boundary is represented by its level- @ndTeis the viscoelastic tensor :
set function [10]. The discretization in the cut-celi(, the
computational cells which are cut by the irregular boundary) is > Y
achieved by requiring that the global conservation properties of fe= (Texy 1;eyy> : (@)
the Navier-Stokes equations are satisfied at the discrete level, re-
sulting in a stable and accurate method and, thanks to the level-
set representation of the IB boundary, at low computational costs. Ve also denoteb = 3 (Ov+Dv") therate-of-strain tensor, and
We mention that for constructing this discretization up to the cut- (?)
cells, we had to accurately take into account the boundary con-
ditions at the immersed boundaries. To our knowledge, these

denotes the upper-convected derivative of a tensor :

bc_)undary terms_ have always been neglected in previous studies, X: oA +(v-O)A—A-OV — Ov-A. 3)
with the exception of the recent work by Jameson [11]. For our ot

viscoelastic computations, we have used the Oldroyd-B model

with constant viscosities as the constitutive equation. For build- Thus, in 2D we have 6 scalar variables : in addition to the

ing our IB method, we believed that a key ingredient lies in the flow velocity and pressure, we have to consider the extra-stres
discretization of the stress equations in the cut-cells, where the components*, B” andd”. When we nondimensionalize Sys-
viscous effects are prominent. Hence, on the grounds of our dis- tem (1) withL andU as the reference length and velocity of the
cretization of the Newtonian stresses in the cut-cells, we have flow, and use(ns+ ne)U /L as the reference value for pressure
achieved a fully staggered discretization of the Oldroyd-B equa- and stress, we obtain a set of 3 nondimensional numbers :
tions that ensures a strong coupling of all flow variables, and such

that the Cartesian staggered arrangement of Refs. [4, 5] is recov-

ered away from the immersed boundary. The time advancement B= , , = .
is based on a fully segregated fractional-step scheme. Ns+ e L Ms+ e

Ns AU R pUL @)

In Refs. [7,8], the accuracy and robustness of our method has The first nondimensional number is the viscosity ratio, that mea
been assessed on canonical flows at low to moderate Reynoldssure the amount of solvant in the fluid, and the last two are chal
number : Taylor Couette flow, flows past a circular cylinder, acteristics of the flow : the Weissenberg number We measures tf
including the case where the cylinder has forced oscillatory ro- level of elasticity of the flow, and the Reynolds number Re mea:
tations. We also have extended the LS-STAG method to flows sures the convective effects. In the limit where there is no solvar
with moving immersed boundaries without the need for domain in the fluid (7s = 0), Egs. (1) recovers the equations for the upper
remeshing at each time-step, which is one of the most appeal- convected Maxwell fluid (UCM), and when there is no elasticity
ing features of IB methods. In the present communication, we in the flow @ = 0), Eq. (1b) gives explicitly the extra-stress as
will focus on presenting some unpublished results taken from the
thesis of Y. Cheny [12] : the computations of a popular bench-

mark for viscoelastic flows in complex geometriés, the four- Te = 21eD. ®)
to-one abrupt planar contraction with rounded re-entrant cor-
ners [13-15] for a wide range of Weissenberg numbers. Thus, we can substitute (5) in the momentum equation (1a) fo
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recovering the case of the incompressible Navier-Stokes equa-Cartesian grids. The discretization of the momentum and con
tionsfor Newtonian fluids : tinuity Egs. (1a),(1c) is based on common grounds and will be
summarized in the next section. The transport equations (7) fc
ov the elastic stresses give additional difficulties that form the cor:
p <dt +0- (V®V)) =—Up+n0-Dv, (62) of the present paper. Firstly, we will have to define the con-
trol volumes for the normal and shear stresses on the LS-STA(
0-v=0, (6b) ) . o
mesh, and then we will have to develop novel discretization:s
the volumic integrals in Egs. (8), which were absent from the
wheren = ns+ ne denotes the total viscosity. discretization of the Newtonian equations. In contrast, the con
For solving the Oldroyd-B system (1) by a finite-volume IB  vective terms in the LHS of Egs. (7), that involves surface inte-
method, we have to formulate its integral form on a square do- grals, will be discretized with similar techniques for the convec-
main Q and use the divergence theorem to recover integrals on tive terms of the momentum equations.
the surfacd™ of the domain. The integral form of the Navier-
Stokes equations (1a),(1c) is well known and will not be repeated
here. The mtegral form of the tensorial equation (1b) for the nor- gasICS OF THE LS-STAG METHOD FOR NEWTONIAN
mal stresseg®, &, and the shear stres¥’ is respectively : FLOWS IN IRREGULAR GEOMETRIES
In this section, we summarize the LS-STAG discretiza-

a XX o) XX Q) QXX tion for the Navier-Stokes equations (6) originally presented ir
A (dt /Q e Vv +/r(v n% dS) =% (72) Refs. [7, 8], whose chief property is to preserves the conserve
d tion properties (for total mass, momentum and kinetic energy
Il PO MYdS) = Y - o . o9
A (dt /Q E dV+/r(v n)gYds) = <, (7b) of the original MAC method when it is applied to complex im-
d r xy g Xy y mersed boundaries. We will give an emphasis to to the definitiol
A (a./QTe d\/+'/r(v-n)re ds) = &, (70) of the LS-STAG mesh and the discretization of the Newtoniar

stresses, which will be invaluable for discretizing the Oldroyd-B

where¥, &Y andSY are volumic terms which steam from the consitutive equation (7) in the next section.

definition of the upper-convected derivative (3), and that respec-

tively read : The LS-STAG Mesh for Immersed Complex Geometries
We consider an irregular solid doma which is embed-
< [ «0u 40U du ded in a rectangular computational dom&n such thatQ" =
§= / T +2A (Te ax T e’ ) + Zneax} (82) Q\ QP represents the fluid domain where the flow equations art
d ov to be discretized. To keep track of the irregular bounddtywe
= / _reW+ 2A (Y + rxy ) +2Ne— } (8b) employ a signed distance functigiix) (i.e., the level-set func-
L jy d ou s tion [10]) such thatp(x) is negbative in the fluid regiof', (p()ﬂ(})}
_ Xy XX yy u ov is positive in the solid regio®@"™, and such that the bounddr
&= /Q L —E A (Te ox tE ay) +e (dy * dx)] v corresponds to the zero level-set of this function.

(8c) This leads to the extension of the well known MAC mesh
(seee.g. [9]) that is described in Fig. 1, and that will be subse-

Suitable initial and boundary conditions have to be specified for duently referred to as theS-STAG mesh. In each cut-c@ll; of
the Oldroyd-B system (1) and (7). The usual boundary con- Siz€AX x Ayj, the immersed boundary is represented by a line
ditions for Newtonian flows applies for the velocity and pres- Segment whose extremities are defined by linear mterpolatpn C
sure, while for the extra-stregs it is important to note that the ~ the variableq j, which takes the value of the level-set function
transport equations for the extra-stress compongritee hyper-  @(Xi,¥j) at the upper right comer of the cell. The faces of the
bolic [1,5], and thus only stress values at inflow boundaries have trapezoidal cut-cel; j are denoted in Fig. 1 with the usual com-
to be specified. In contrast, stress values at solid boundaries argP@ss notations :
not given and thus have to be computed. At outflow boundaries,
Ne;:Jmann boundary conditions are usually prescribed numeri- Mij= rw Ul'e UFS Ur:b]’ (9)
cally.

In Refs. [7, 8], we have introduced the LS-STAG method,
an IB method that discretizes the Navier-Stokes equations (6) for where F}f’j represents the solid north face of the cut-cell. The
Newtonian fluids, which is based on the finite volume discretiza- velocity unknowns are exactly located in the middle of the fluid
tion of Verstappen & Veldman [9] on a staggered non-uniform part of the faces, and the discrete presguias positioned inside
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Summary of the LS-STAG Discretization for Newtonian

Flows
(a) West Trapezoidal Cell
Yj vj Vi,
Jb Lt t”
T /I ‘
4 Ui, j Uij
t {
—_ 0 — [ ] ) —_— e |'Ui,j—1 | v -1
= I - I { u t v (b) Northeast Pentagonal Cell v
FIGURE 1. STAGGERED ARRANGEMENT OF THE VARI- |\\
ABLES NEAR THE TRAPEZOIDAL CUT-CELLQ; j ON THE LS- Ui—15 ) Ui—1,5 1 Ui j
STAG MESH. THE CONTROL VOLUME FORy; j IS SHOWN IN T f b ., T T -1
RED, AND NON-HOMOGENEOUS VELOCITY BOUNDARY CON- ¢ -
DITIONS ARE DISCRETIZED AT THE VERTICES §) OF THE |U”_l i1
CUT-CELLS. ’

(c) North Trapezoial Cell

the cut-cell : as itis shown in Refs. [7, 8] the discrete pressure is
piecewise constant in each cut-cell, and thus does not need to be
located precisely. The discretization of the elastic tensor that is wi-1,; <
compatible with this velocity-pressure stencil will be presented -1 1
in the next section. |
In Figure 1, we observe that there are three basic types of
cut-cells : trapezoidal cellssuch asQ;j or Qi1 j, triangular
cells (i.e., Qj_1j+1) andpentagonal cell{i.e., Qj_1j). For

Ui j Wi—1,5 Uij

\
|
‘ hd
|
!
I
.

—— ) —

Vij—1

(d) Northwest Triangle

v

each basic type of cut-cells, the level-set function will prove to
be a very efficient tool for calculating their geometric parameters,
such as their volume or the projected areas of their faces. A quan-
tity that will be extensively used for calculating these parameters

|

I Vi, j—1

U j

| Vii-1

—— - — —
I
!

Ui j

is the fluid portion of the faces of cel); j. For example in Fig-
ure 1, by using one-dimensional linear interpolationpdk;,y)
in [yj—1, Yjl, we calculate the Iengtyjb —Yj-1 of the portion of
facere that belongs to the fluid domaln as:

FIGURE 2. FOUR GENERIC TYPES OF CUT-CELLSY; j (AT
LEFT) AND THEIR CORRESPONDING LIMIT CASE (AT RIGHT)
FOR CARTESIAN GEOMETRIES. WE HAVE REPRESENTED IN
DASHED RED LINE THE HALF-CONTROL VOLUME FOR THE
VELOCITY u;j.

Q-1

with 8 = ————,
’ @j-1—@,j

Y0 —yj-1= 6" Ayj,
In this part, we will give a summary of the LS-STAG dis-
since(x;,y) = 0. The scalar quantitie§’, and 6|, which cretization of the incompressible Navier-Stokes equations dis
tak | g 01 il sub tv b lled tkieellf cussed in [7, 8]. The discretization of based on the finite volume
axe vajues m[ ’ ] will subsequently be calle -lace method, where the continuity equation (6b) is discretizediin

22?&'\0; égg?es ;—nh degnrefersessgtt,\fgf flt#gepox:ﬁnbgfetsé r?;igf‘ nd and the momentum equation (6a) is discretized in staggered co
3| j P Y- y Y trol volumesQ“J andQ; for each component of the velocity,

used for detecting |fthe discrete velocities and elastic stress com- whose shapes have to be adapted to each type of cut-cells. F

ponents belong to the fluid domain, and for discretizing the sur- | Fig. 1
) . .1, the f f th trol volufg. f
face and volume integrals in the Oldroyd-B system (7). The cell- reg;;n.p e in Fig e faces of the control volufag; for ui

face fraction ratios also appear in the analytic expression of the
volumeV j of cell Q; j, whose analytic expression is given in [8]

for each basic type of cut-cells. M =r oo (refursy ) u (F'b curPy ),

i+1,]j i+1,]j (10)
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ibe ib,w

Ul ; are formed with two halves of ~ discrete momentum equation as :
the solid face of the nelghbormg trapezoidal cut—cé,'i’§ cry

T 1 T
andr2Y; c I, . For the other type of cut-cells, these control dEg _ gt LI+ prgry T+
volumes will be constructed from the six halves of generic con-  dt 2
12)
trol volumes that we represent in Figure 2 (left). In this figure, the : . L - -
. o andif we require that this discrete budget mimics the dissipa-
irregular shape of the staggered control volumes is given for rep-
. . . tion of energy in the whole fluid domain by the viscous forces,
resentation purpose only, and their geometric parameters, such
ue the following conditions have to be enforced on the numerica
as their actual volume or shape of the vertical fa?:l‘ig‘g andr; scheme -
are never used by the LS-STAG discretization : instead, we will '
employ arguments based on the strict conservation of total mass, e The discretization of the convective terms should lead to ¢

where the solid facel§

momentum and kinetic energy for discretizing the momentum skew-symmetric matrix :
equations in each of the half-control volume of Figure 2, such
that any combination of half CVs yields a consistent discretiza- ¢[0] = —¢[0]", (13)

tion with the aforementioned global conservation properties. In
the limiting case of Cartesian cells (see Fig. 2 (right)), the LS-
STAG method recovers the case of the usual MAC discretization
of Harlow & Welch [16] for uniform grids and the method of
Verstappen & Veldman [9] for non-uniform grids.

e thepressure gradient should be dual to the divergence ope
ator :

G=-9, (14)

Globally Conservative Discretization on the LS-STAG ) ) - o
Mesh e the viscous matrix# T +.# should be positive definite.

It is now widely recognized (see.g. [9,11,17,18]) that  As observed in Ref. [9], the skew-symmetry condition (13)
higher stability and accuracy is obtained with numerical methods amounts to using a centered scheme for the convective term
that conserve the global invariants of the flow such as total mass |n Ref. [8], we have developed a skew-symmetric discretizatior
Jor O-vaV, total momentunP(t) = p [or vdV and total kinetic in the cut-cells of Fig. 2 such as non-homogeneous conditions
energy E(t) = 1 [or[v[? dV whenviscosity becomes negligible.  the immersed boundary are naturally embedded. Condition (12
A numerical method is called “globally conservative” if the dis-  and the discrete continuity equation (11b) leads to the followinc
crete equivalent of the transport equations of these quantities arediscretization of the pressure gradient on the LS-STAG mesh :
verified. It is well known the original staggered grid method of
Harlow & Welch [16] on uniform Cartesian meshes with central o "
differencing of the convective term is “globally conservative”. - pe&-ndS= [F7P] ; = 6 Ay, (Pissj —pij)- (15)

On the other hand, for more general grid systems or higher-order b

methods the construction of “globally conservative” methods is
not a trivial task, and one needs to enforce the conservation prop-
erties to the discretization scheme [9, 17, 18]. For example, let
us consider the discretization of the Navier-Stokes equations (6
such as its semi-discrete matrix representation reads :

This formula is valid for any type of fluid cells, and in the partic-
ular case of Cartesian fluid cells (such that the cell-face fractiol
) ratios are equal to 1), one recovers the finite-difference gradier
of the MAC method.

d . Discretization of the Newtonian Stresses
Pa(///U)Jr(f[U]U +9P-nxU =0, (11a) Now, we summarize the discretization of the Newtonian
U =0 (11b) viscous stresses, because it has a great importance for the ¢

tension of the LS-STAG method to viscoelastic flows. For the

X—momentum equation, the Newtonian viscous terms written ir
where the diagonal mass matri® is built from the volume control Vo|umeQin reads :

of the fluid cells, matrix¢’[U] represents the discretization of

the convective fluxes¥ is the discrete pressure gradient;

represents the Newtonian stresses, anis the discrete diver- / Ou-ndS= / 7e5( nds +/ q, nds (16)

gence. For simplicity, we have discarded here the influence of the

boundary conditions, but the complete discussion can be found

in Ref. [8]. In Refs [7,8], we have proposed an accurate discretization ¢
The budget for the discrete energy(H is obtained from the these terms in the cut-cells such that the simplicity of the 5-poin
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where the quotient is computed by differentiating the interpola-

’Ui, j . . . . . .

. t tion polynomial ofu(x;,-) in the vertical direction. 18" =0

Uik | [ ! ; e i, ,
[ thenQ; j,1 is a solid cell as in Fig. 4, and we use the one-sidec

Ui,g quotient :
—f— () —f—
° ib
0 UuXi,Y;5j) — Uij
Y. { our - _ ( I1Y:u]) |,J7 (17b)
« R Wiy 385y

i

FIGURE 3. STAGGERED ARRANGEMENT OF VELOCITY, whereu(x; ,y:b]) is the velocity prescribed at the immersed bound-
PRESSURE AND STRESS IN THE CARTESIAN CEL®; ;. ary (see Fig. 1 for notations). In Ref. [8], this discretization is
completed by defining the integration areas on each generic cu
cell such that discrete conservation of global momentum holds
An analogous discretization is derived fav/0x|; ;.

To discretize the normal stresses, we argued in Refs [7, €
that pressure and normal stress have the same mathematical ¢
rphysical origin (diagonal part of the stress tensor), and should b

structure of the MAC method be preserved. This has proved to
be the most intricate part of the LS-STAG method, and in order
to achieve this discretization we had to consider separately the
discretization of the shear stresses and the normal stresses. | X . ) .
discretized with the same formulae. Thus, we discretize the nol
the MAC mesh of Harlow & Welch [16], the normal stresses are mal stress flux; due . ndSwith an expression similar to the
naturally located at the center of a Cartesian cell, while the shear T ox . P ) )
stress is located at its upper right corner (see Fig. 3). Hence on Pressure gradient (15), which leads to the following expression

the LS-STAG mesh, it is very natural to locate the shear stresses
) . (18)
i,

at the vertices of the cut-cells as shown on Fig 4. Note that for the du 0l Av: ( Ju
1,j =Y
The discretization has to be completed with a differential quo-

case of pentagonal cellu/dyl; ; and dv/dx|; ; are computed ry, ox & nds= ax
at distinct vertices.
tient for du/0x|i7j. In Refs [7, 8], this quotient has been con-
(a) Northeast Pentagonal Cell structed by requiring that Green’s theorem be valid at the discret
o level in a cut-cell, since it is trivially verified by tHd AC method
in a Cartesian cell. After a straightforward discretization of the
integrals and comparison with the continuity equation, one gets

du

it1j 9%

ou| 65U — 6 jui-1j+ (6 — eifjj)ui,bj (19)
oXJ; j Vi, /Ay 7

LA andan analogous discretization holds f@v/dy|; ..
Finally, we note that formulas (17) and (19) are valid for any
type of cut-cells, with the boundary conditions naturally imbed-
ded. They reduce to the standard finite-difference quotients i
the case of a Cartesian fluid cell. Furthermore, we mention the
FIGURE 4. LOCATION OF THE NORMAL AND SHEAR pressure and normal stresses take piecewise constant values
STRESSES IN THE 3 GENERIC CUT-CELLS; ;. the cut-cells, so they can be located anywhere inside the cell fc
the sake of interpolation.

Vij—1

The shear stresses are discretized as in the Ghost FIUIdTHE LS-STAG DISCRETIZATION FOR VISCOELASTIC

Method for elliptic equations [19] : if?if‘j > 0 then North cell FLOWS
Qi j+1 is afluid cell and thus we write : The first step of the discretization of the Oldroyd-B sys-
tem (7) is the positioning of the extra-stress unknowris, T,X}'
dul : Ui,j+1— Ui j (17a)

ayli;~ 16uny;+36Y .,y
o 28T 2 B Y INotethat for the sake of clarity, the underscript 'e’ is dropped in the defini-
tion of the discrete components of the extra-stress tersor
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and lejy in the LS-STAG mesh. In effect, the earliest simulations starting point is the discretization of the normal stress equation:
of viscoelastic flows proved that it was extremely difficult to ob- and then it will be adapted to the shear stress equations such tt
tain stable numerical solutions when the Weissenberg number global conservation holds for all transport equations.

We was moderately large, even for steady problems [1]. Theloss  For discretizing the transport equation (7a) ¥, it is nat-

of convergence of the solution procedure has been subsequentlyural to considerQ; ; as the control volume. We first start the
attributed to several causes, and one of the first that has beengiscretization of the volumic terms in the RHS of (828, :
identified is related to the spurious oscillations of the extra-stress

tensorte. It was then acknowledged that the discretization of

the extra-stress componeng¥, &~ and” must be compatible S = 2%V 22 / Txx@ Ry

with the velocity and pressure, as much as the pressure and ve- Qi | Qi ¢ ox

locity discretizations has to be compatible for Newtonian compu-
tations to avoid pressure checkerboarding. Thus for the finite ele- 0 O

ment method, velocity-pressure-stress discretizations that follow +2A / Iéxy@ av +2”e/ du av.
a LBB condition have been developed (see the review by Baai- Qi 0y Q0

jens [20]). For finite volume discretizations, the discrete stress
unknowns have to be adequately staggered in the well known
MAC mesh for Newtonian flows [16], shown in Fig. 3. The ve-
locity unknowns are set at the middle of the cell faces and the For the underlined terms, 0 and(J, the quadrature is straight-
pressure at the center of the ceéle. the normal stresseg} and forward since the integrands are considered constant in each ct
177 are at the center of the cefl; and the shear stress) at cell : for example midpoint rule applied to Terhgives simply :

its upper right corner. In this way, when the level of elasticity

becomes negligibleA(= 0), the discretization of the Oldroyd-B

system (1) recovers the case of Newtonian fluids, see Egs. (5) / XX@d\/ ~ T ou
and (6). Joy; © OX "ox|j,

This staggered arrangement was first introduced by Darwish
& Whiteman [4], and later used by [5,21,22]. In the cut-cells, the where\; j is the area of the cell andu/dx|; ; is given by
discretization of the Newtonian stresses presented above enticesEq. (19)’_ Analogous quadrature holds for teris] and the
us to position the extra-stresses as shown in Fig. 4. Note that, tjme-derivative term;it Jo XAV
1]

in this figure, we conveniently | X andt”’ at the centroi . . . . .
this figure, we conveniently ocam—;\_‘J a dT'J atthe centroid The discretization of Terml is totally different since both

of the cut-cells but, as stated in the previoué section, the normal terms of the intearand are defined at the vertices of the flui
stresses take constant values in the cut-cells. For the case of pen- 9

agona ol (s Fig. (). wher he Newtonian shar sessed 1% 3191 7T f ese vriees cepent o e e
du/dyl; j and dv/dx|; ; are calculated at different vertices of the ; S . _

. ’ : _ steps. First, midpoint quadrature yields :

immersed boundary, we consider thﬁLtakes the same value

at both vertices. Finally, we mention that this discretization has

much in common with the finite element method for viscoelas- xOU o [ xyOU1c
tic flows of Saramito [23], which uses a mixed Raviart-Thomas /Qi.j k EN; = { ?y]
element where pressure and normal stresses are discretized with '

piecewise constant polynomials with a degree of freedom at the
element centroid, while the shear stress is discretized with a lin-
ear continuous polynomial with degrees of freedom at the ele-
ment vertices.

(20)

0] 0]

Vij; (21)
j

ijVi,ja (22)

Cc
where[rexyg—;] _refers to the mean value of the integrand in cut-
I

cell Q; ;. This mean value is calculated differently depending
on the type of the cell. For the case of the Cartesian cell o

In the context of a finite-volume method, the use of this g 3 pentagonal cut-cell of Fig. 4(a), and trapezoidal cut-cel
staggered arrangement introduces a different control volume for ¢ Fig. 4(b), we define this mean value as :

each transport equation of the Oldroyd-B system (7). Thus, the
new difficulty encountered compared to the Newtonian method

of Refs. [7, 8] lies in the quadrature of the volumic terms in the xwoupe 1y du 1, Odu

RHS (8) of the transport equations, that have to be adapted to the {Te ﬁiy:|i’j =30 ay ij+ 201 ay i1

case of normal and shear stresses. To develop these quadrature, 1 d ’ (23a)
Xy u 1, Odu

we will use conservation properties of the transport equations 20511 5y
in the spirit of the LS-STAG method for Newtonian flows. The 4oy

2Ti-1 30 )
ii1j-1 4 =t gy ij—1
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and for the triangular cell of Fig. 4(c) we define the 3-point mean yomain -

value :
Area(q)) =~ Vo= 1T.221. 26
B LT .. O sotina, T 0
oylij 3" oyl 3oyl
1, du (23b) Analogously, thanks to the property of local conservation of the
+ éTi,j—l Fy g n fluxes at fluid faces, the convective discretization verifies the fol-

lowing conservation properties :

For both definitions of the mean value, the Newtonian shear S —
stressdu/&y\iﬁj is calculated as (17a) or (17b) according to its 174"V} =0. (27)
position on the LS-STAG mesh, and thus the boundary condi-
tions are naturally implemented in these terms.

The discretization of the convective termlj (v-n)*dSin
the LHS of Eq. (8a) follows the lines of the Newtonian discretiza-
tion in Refs [7, 8], except that we shall not use skew-symmetric -
(i.e., central) discretization for an hyperbolic equation such as
Eq. (7a). Instead, the first-order upwind discretization will be
employed in this work (see Ref. [12] for details). Upwind inter-
polation has the merits to give a monotone discretization of the -
convective terms, even if its accuracy is limited to first-order and
is very diffusive when the flow direction is not aligned with the
mesh. But we mention that higher-order monotone discretization . ! .

can be easily adapted to the LS-STAG discretization, and is left ﬁ ﬁ t t
e 0 B e n
- oo Mo
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for future work. o )
In summary, the LS-STAG discretization of the transport /./- B
&

=
J

. ;1* /;n/' ;
equation (7a) for* can be written in matrix form as the semi- ¢ T /~° - 1—»; TT
discrete equation : . | I . ' '

FIGURE 5. GENERIC TYPES OF CONTROL VOLUMES()LJ

L
A (///é(xﬁe + %gX[U}TgX) = —MOT+SXT.U], (29 FOR THE SHEAR STRES%? IN THE LS-STAG MESH.

£} I
0.

— e

whereTg¥ s the vector containing the extra-stress unknowftis

X ; . . _ : The semi-discretization of the transport equation (7c) for
" is the diagonal mass matrix whose entries correspond to the 2 is now performed in the staggered control volurs that

cell areas/, j, the matrixzg*[U | corresponds to the discretization 56 gepicted in Fig. 5. The main difficulty for discretizing the
of the convective terms/Zg*Tg corresponds to the discretiza-  gpeqr stress equation lies in the precise definitio@gf from
tion of TermUJ in the RHS (20) and&*[T,U] is the discretiza- ¢ pejghboring cells, the calculation of its geometric parame
tion of the remaining terms. An equation analogous t0 (24) IS 0b- (a5 - and the fact that building a discretization for each of the
tained for the transport equation @, with .#¢” = .4 since special cases of Fig. 5 can be a demanding task. Instead, v
both discretizations are performed on the same pontrol volume.. will use an effective strategy that has been defined in [7, 8] fol
If we want to state the conservation properties of the Semi- e momentum equations : the discretization will be performec

discrete transport equation (24) in the fashion of our previous jnqependently for each quarter of cell, such that any combina
works [7,8], we would say that this equation is conservatives in o of four quarters of cell yields a consistent discretization tha

the sense that the mass matefg™ yields a consistent quadrature  ¢q10\ys a conservation property analogous to (25). We refer tc
in the whole fluid domaif®; when it is summed on all fluid cells Ref. [12] for the complete description of the discretization.

(Cartesian an cut-cellsje. : The time-integration of the semi-discrete Oldroyd-B sys-

X tem (11), (24) is performed with the extension of our well es-

/ ¥V = Z Vi ri{‘}(: ]1T,///,§XTQ<X, (25) tablished time-stepping algorithm of Ref. [8] (ie, an AB/BDF2

af Fluid CellsQ; j ' semi-implicit fractional-step scheme) to viscoelastic problems

except that we have tentatively implemented a first-order ver

wherel is the constant vector. In particular, if the normal stress sion only. This fractional-step algorithm is defined by the fol-

is constant (T*=1) then one recovers the area of the whole fluid lowing three steps : Firstly, a prediction of the velocity at time

8 Copyright © 2010 by ASME



thr1 = (n+ 1)At, denotedJ, is computed by means of the fol-
lowing Euler scheme :

u-un

pt At

+ U= 2TP"—ne#U — 2T =0, (28)

where Z.Te corresponds to the extra-stress contribution in
Eq. (1a). Then, the provisional velocity is corrected to get a
solenoidal velocity and the corresponding pressure field :

Un+l_0

pt At

— 9T (P -P") =0, (29a)

U™l =0, (29b)

Now thatU"*! is determined, we can employ it to time-advance
the extra-stress equations :

Tn+1_Tn 1 1 1
A.ﬂeeTte +Cge[u L ]Ten = —<%eTen+ +&[Ten,un+ ],

(30)
wherethe vectorT]' contains both normal and shear stresses un-
knowns.

NUMERICAL APPLICATION : FLOW OF VISCOELAS-
TIC OLDROYD-B IN A PLANAR CONTRACTION

FIGURE 6. SKETCHOF THE 4:1 PLANAR CONTRACTION.

In this section, we have selected some results from the un-
published thesis of Y. Cheny [12]. These computations concern
a popular benchmark for viscoelastic flows in complex geome-
tries : the creeping flow of an Oldroyd-B fluid in a 4:1 planar con-
traction with rounded re-entrant corners [13-15], see Fig. 6. The

9

characteristic length and velocity of the flow are set equal to the
heightH and the bulk velocity in the downstream half-channel.
A steady Poiseuille profile is imposed at the intet —16H, an
outflow condition is imposed at = 16H, and a slip condition

is imposed at the symmetry plage= 0. The results reported

FIGURE 7. CLOSE-UPS OF THE CARTESIAN 9& 50 GRID
NEAR THE CONTRACTION AND THE RE-ENTRANT CORNER.

here have been obtained on the mesh shown in Fig. 7, for whic
grid-independent results were reached. Fig. 8 shows that the L
STAG method predicts accurately the decrease of the intensity ¢
the salient vortex when the level of elasticity increases. As ob
served in Fig. 9, the stress contours are free from any spuriot
oscillations thanks to the fully staggered arrangement of the flov
variables. In particular, we have checked that the stress bounda
layer along the downstream wall is well resolved at all elasticity
levels, in contrary to the body-conformal results of Ref. [15].
Table 1 reports some quantitative results of the flow for increas
ing values of the elasticity level. They are compared to bench
mark results obtained with body-conformal methods [14,15] and
where they are available, a good agreement is met with the litel
ature.

CONCLUSION

In this communication, we have presented the salient fea
tures of the LS-STAG discretization of viscoelastic flow equa-
tions. In particular, we have achieved in the cut-cells a compat
ible velocity-pressure-stress discretization that prevents node-t
node oscillations of the stress variables. It is also very interestin
to note that when the fluid domain is Cartesian, the LS-STAG dis
cretization actually computes the shear stress at solid walls and
salient or reentrant corners, in contrast to previous staggered gr
methods that usad hocinterpolations at solid boundaries [4] or
at salient corners [21].

A further improvement of the LS-STAG method for vis-
coelastic flows concerns the development of a time-stepping a
gorithm that would preserve the positive-definiteness of the elas
tic stress tensor, in order to mitigate the breakdown of the nume
ical algorithms when the flow becomes highly elastic [1, 6].
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We=8

FIGURE 8. STREAMLINES CONTOURS FOR INCREASING
VALUES OF THE WEISSENBERG NUMBER We.
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