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ABSTRACT
The LS-STAG method is an immersed boundary method for

viscous incompressible flows based on the staggered MAC ar-
rangement for Cartesian grids, where the irregular boundary is
sharply represented by its level-set function. The level-set func-
tion enables us to compute efficiently all relevant geometry pa-
rameters of the so-called “cut-cells”,i.e. the cells that are cut
by the immersed boundary, reducing thus the bookkeeping asso-
ciated to the handling of complex geometries. One of the main
features of the LS-STAG method is the use of a consistent and
unified discretization of the flow equations in both Cartesian and
cut-cells, which has been obtained by enforcing the strict con-
servation of global invariants of the flow such as total mass, mo-
mentum and kinetic energy in the whole fluid domain. After a
short discussion on the salient features of the LS-STAG method,
we will present one of its most recent application : The computa-
tion of viscoelastic flows governed by the Oldroyd-B constitutive
equation.

INTRODUCTION
This communication presents an Immersed Boundary (IB) /

Finite Volume (FV) method for the computation of incompress-
ible flows in 2D irregular geometries, with an emphasis on vis-
coelastic flows [1]. Lately, FV methods have drawn a renewed
interest for viscoelastic computations, motivated by their inher-
ent low computational costs compared to Finite Element formu-
lations. For Newtonian flows in irregular geometries, IB methods

have now reached a high level of maturity (see [2] for a recent
review). They rely on cost-effective Cartesian grid methods that
alleviate the generation of body fitted meshes and the need of
frequent remeshing in the case of problems with moving bound-
aries. IB methods have found numerous applications in turbu-
lent flows, fluid-structure interaction, biological and biomedical
flows, etc. . . To our knowledge, IB methods have not yet been
applied to viscoelastic flows.

For modelling the rheology of viscoelastic fluids, the var-
ious constitutive equations that have been devised (upper con-
vected Maxwell, Oldroyd-B, Phan-Thien/Tanner,etc. . . , see [3]
for a review) have common features : a set of nonlinear hyper-
bolic transport equations for the elastic part of the stress tensor,
that has to be coupled to the incompressible Navier-Stokes equa-
tions. The numerical solution of these coupled problems shares
the same difficulties, the most severe being the breakdown of the
numerical algorithms for highly elastic flows : the so-calledhigh
Weissenberg number problem, named after the dimensionless pa-
rameter We that measures the level of elasticity of the flow [1,3].
To overcome this major numerical challenge, we have identified
two issues concerning the spatial and temporal discretizations of
the flow equations :

• As for the velocity and pressure coupling for Newtonian
flows, the discretization of the velocity and stress has to be
compatible for preventing unphysical node-to-node oscilla-
tions of the stress variables. For a FV method, this is usually
achieved by an adequate staggering of the normal and shear

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30964 
 



stress unknowns on the computational grid [4,5].
• In addition, for preventing the breakdown of the solution

caused by the loss of positive-definiteness of the elastic
stress tensor during the time integration, a time-stepping
strategy that preserves this property at the discrete level must
be devised (see [6] and references therein).

This communication presents a progress report on viscoelas-
tic flow computations performed with a well established IB
method, the LS-STAG method (see Refs. [7, 8]), that would
eventually address all the fundamental numerical issues men-
tioned above. We recall that for Newtonian flows, the LS-STAG
method is based on the staggered MAC method of Verstappen &
Veldman [9], where the IB boundary is represented by its level-
set function [10]. The discretization in the cut-cells (i.e., the
computational cells which are cut by the irregular boundary) is
achieved by requiring that the global conservation properties of
the Navier-Stokes equations are satisfied at the discrete level, re-
sulting in a stable and accurate method and, thanks to the level-
set representation of the IB boundary, at low computational costs.
We mention that for constructing this discretization up to the cut-
cells, we had to accurately take into account the boundary con-
ditions at the immersed boundaries. To our knowledge, these
boundary terms have always been neglected in previous studies,
with the exception of the recent work by Jameson [11]. For our
viscoelastic computations, we have used the Oldroyd-B model
with constant viscosities as the constitutive equation. For build-
ing our IB method, we believed that a key ingredient lies in the
discretization of the stress equations in the cut-cells, where the
viscous effects are prominent. Hence, on the grounds of our dis-
cretization of the Newtonian stresses in the cut-cells, we have
achieved a fully staggered discretization of the Oldroyd-B equa-
tions that ensures a strong coupling of all flow variables, and such
that the Cartesian staggered arrangement of Refs. [4,5] is recov-
ered away from the immersed boundary. The time advancement
is based on a fully segregated fractional-step scheme.

In Refs. [7,8], the accuracy and robustness of our method has
been assessed on canonical flows at low to moderate Reynolds
number : Taylor Couette flow, flows past a circular cylinder,
including the case where the cylinder has forced oscillatory ro-
tations. We also have extended the LS-STAG method to flows
with moving immersed boundaries without the need for domain
remeshing at each time-step, which is one of the most appeal-
ing features of IB methods. In the present communication, we
will focus on presenting some unpublished results taken from the
thesis of Y. Cheny [12] : the computations of a popular bench-
mark for viscoelastic flows in complex geometries,i.e. the four-
to-one abrupt planar contraction with rounded re-entrant cor-
ners [13–15] for a wide range of Weissenberg numbers.

GOVERNING EQUATIONS
The equations that govern the motion of a viscoelastic

Oldroyd-B fluid are [1,3] :

ρ
(

∂v
∂ t

+∇ · (v⊗v)

)
= −∇p+ηs∇ · (∇v)+∇ · τe, (1a)

τe+λ
▽
τe= 2ηeD, (1b)

∇ ·v = 0, (1c)

whereρ is the fluid density,ηs andηe are respectively the viscos-
ity of the Newtonian solvant and of the polymeric solution that
contributes to the fluid elasticity,λ is the elastic characteristic
time,= v = (u,v) is the velocity vector in 2D,p is the pressure,
andτe is the viscoelastic tensor :

τe =

(
τxx
e τxy

e

τxy
e τyy

e

)
. (2)

We also denotesD = 1
2

(
∇v+∇vT

)
therate-of-strain tensor, and

▽

(·) denotes the upper-convected derivative of a tensor :

▽

A=
∂A
∂ t

+(v·∇)A−A·∇vT −∇v·A. (3)

Thus, in 2D we have 6 scalar variables : in addition to the
flow velocity and pressure, we have to consider the extra-stress
componentsτxx

e , τxy
e andτyy

e . When we nondimensionalize Sys-
tem (1) withL andU as the reference length and velocity of the
flow, and use(ηs + ηe)U/L as the reference value for pressure
and stress, we obtain a set of 3 nondimensional numbers :

β =
ηs

ηs+ηe
, We=

λU
L

, Re=
ρUL

ηs+ηe
. (4)

The first nondimensional number is the viscosity ratio, that mea-
sure the amount of solvant in the fluid, and the last two are char-
acteristics of the flow : the Weissenberg number We measures the
level of elasticity of the flow, and the Reynolds number Re mea-
sures the convective effects. In the limit where there is no solvant
in the fluid (ηs = 0), Eqs. (1) recovers the equations for the upper
convected Maxwell fluid (UCM), and when there is no elasticity
in the flow (λ = 0), Eq. (1b) gives explicitly the extra-stress as

τe = 2ηeD. (5)

Thus, we can substitute (5) in the momentum equation (1a) for
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recovering the case of the incompressible Navier-Stokes equa-
tionsfor Newtonian fluids :

ρ
(

∂v
∂ t

+∇ · (v⊗v)

)
= −∇p+η∇ ·∇v, (6a)

∇ ·v = 0, (6b)

whereη = ηs+ηe denotes the total viscosity.
For solving the Oldroyd-B system (1) by a finite-volume IB

method, we have to formulate its integral form on a square do-
main Ω and use the divergence theorem to recover integrals on
the surfaceΓ of the domain. The integral form of the Navier-
Stokes equations (1a),(1c) is well known and will not be repeated
here. The integral form of the tensorial equation (1b) for the nor-
mal stressesτxx

e , τyy
e , and the shear stressτxy

e is respectively :

λ
( d

dt

∫

Ω
τxx
e dV +

∫

Γ
(v·n)τxx

e dS
)

= Sxx
e , (7a)

λ
( d

dt

∫

Ω
τyy
e dV +

∫

Γ
(v·n)τyy

e dS
)

= Syy
e , (7b)

λ
( d

dt

∫

Ω
τxy
e dV +

∫

Γ
(v·n)τxy

e dS
)

= Sxy
e , (7c)

whereSxx
e , Syy

e andSxy
e are volumic terms which steam from the

definition of the upper-convected derivative (3), and that respec-
tively read :

Sxx
e =

∫

Ω

[
−τxx

e +2λ
(
τxx
e

∂u
∂x

+ τxy
e

∂u
∂y

)
+2ηe

∂u
∂x

]
dV, (8a)

Syy
e =

∫

Ω

[
−τyy

e +2λ
(
τyy
e

∂v
∂y

+ τxy
e

∂v
∂x

)
+2ηe

∂v
∂y

]
dV, (8b)

Sxy
e =

∫

Ω

[
−τxy

e +λ
(
τxx
e

∂v
∂x

+ τyy
e

∂u
∂y

)
+ηe

(∂u
∂y

+
∂v
∂x

)]
dV

(8c)

Suitable initial and boundary conditions have to be specified for
the Oldroyd-B system (1) and (7). The usual boundary con-
ditions for Newtonian flows applies for the velocity and pres-
sure, while for the extra-stressτe it is important to note that the
transport equations for the extra-stress componentsτe are hyper-
bolic [1,5], and thus only stress values at inflow boundaries have
to be specified. In contrast, stress values at solid boundaries are
not given and thus have to be computed. At outflow boundaries,
Neumann boundary conditions are usually prescribed numeri-
cally.

In Refs. [7, 8], we have introduced the LS-STAG method,
an IB method that discretizes the Navier-Stokes equations (6) for
Newtonian fluids, which is based on the finite volume discretiza-
tion of Verstappen & Veldman [9] on a staggered non-uniform

Cartesian grids. The discretization of the momentum and con-
tinuity Eqs. (1a),(1c) is based on common grounds and will be
summarized in the next section. The transport equations (7) for
the elastic stresses give additional difficulties that form the core
of the present paper. Firstly, we will have to define the con-
trol volumes for the normal and shear stresses on the LS-STAG
mesh, and then we will have to develop novel discretizations
the volumic integrals in Eqs. (8), which were absent from the
discretization of the Newtonian equations. In contrast, the con-
vective terms in the LHS of Eqs. (7), that involves surface inte-
grals, will be discretized with similar techniques for the convec-
tive terms of the momentum equations.

BASICS OF THE LS-STAG METHOD FOR NEWTONIAN
FLOWS IN IRREGULAR GEOMETRIES

In this section, we summarize the LS-STAG discretiza-
tion for the Navier-Stokes equations (6) originally presented in
Refs. [7, 8], whose chief property is to preserves the conserva-
tion properties (for total mass, momentum and kinetic energy)
of the original MAC method when it is applied to complex im-
mersed boundaries. We will give an emphasis to to the definition
of the LS-STAG mesh and the discretization of the Newtonian
stresses, which will be invaluable for discretizing the Oldroyd-B
constitutive equation (7) in the next section.

The LS-STAG Mesh for Immersed Complex Geometries
We consider an irregular solid domainΩib which is embed-

ded in a rectangular computational domainΩ, such thatΩf =
Ω\Ωib represents the fluid domain where the flow equations are
to be discretized. To keep track of the irregular boundaryΓib, we
employ a signed distance functionφ(x) (i.e. , the level-set func-
tion [10]) such thatφ(x) is negative in the fluid regionΩf , φ(x)
is positive in the solid regionΩib, and such that the boundaryΓib

corresponds to the zero level-set of this function.
This leads to the extension of the well known MAC mesh

(seee.g. [9]) that is described in Fig. 1, and that will be subse-
quently referred to as theLS-STAG mesh. In each cut-cellΩi, j of
size∆xi ×∆y j , the immersed boundary is represented by a line
segment whose extremities are defined by linear interpolation of
the variableφi, j , which takes the value of the level-set function
φ(xi ,y j) at the upper right corner of the cell. The faces of the
trapezoidal cut-cellΩi, j are denoted in Fig. 1 with the usual com-
pass notations :

Γi, j = Γw
i, j ∪Γe

i, j ∪Γs
i, j ∪Γib

i, j , (9)

whereΓib
i, j represents the solid north face of the cut-cell. The

velocity unknowns are exactly located in the middle of the fluid
part of the faces, and the discrete pressurepi, j is positioned inside
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FIGURE 1. STAGGERED ARRANGEMENT OF THE VARI-
ABLES NEAR THE TRAPEZOIDAL CUT-CELLΩi, j ON THE LS-
STAG MESH. THE CONTROL VOLUME FORui, j IS SHOWN IN
RED, AND NON-HOMOGENEOUS VELOCITY BOUNDARY CON-
DITIONS ARE DISCRETIZED AT THE VERTICES (�) OF THE
CUT-CELLS.

the cut-cell : as it is shown in Refs. [7,8] the discrete pressure is
piecewise constant in each cut-cell, and thus does not need to be
located precisely. The discretization of the elastic tensor that is
compatible with this velocity-pressure stencil will be presented
in the next section.

In Figure 1, we observe that there are three basic types of
cut-cells : trapezoidal cellssuch asΩi, j or Ωi+1, j , triangular
cells (i.e. , Ωi−1, j+1) andpentagonal cells(i.e. , Ωi−1, j ). For
each basic type of cut-cells, the level-set function will prove to
be a very efficient tool for calculating their geometric parameters,
such as their volume or the projected areas of their faces. A quan-
tity that will be extensively used for calculating these parameters
is the fluid portion of the faces of cellΩi, j . For example in Fig-
ure 1, by using one-dimensional linear interpolation ofφ(xi ,y)
in [y j−1, y j ], we calculate the lengthyib

i, j −y j−1 of the portion of
faceΓe

i, j that belongs to the fluid domain as :

yib
i, j −y j−1 = θ u

i, j ∆y j , with θ u
i, j =

φi, j−1

φi, j−1−φi, j
,

sinceφ(xi ,yib
i, j) = 0. The scalar quantitiesθ u

i, j and θ v
i, j , which

take values in
[
0,1
]
, will subsequently be called thecell-face

fraction ratios. They represent the fluid portion of the east and
north facesΓe

i, j andΓn
i, j respectively. They will be extensively

used for detecting if the discrete velocities and elastic stress com-
ponents belong to the fluid domain, and for discretizing the sur-
face and volume integrals in the Oldroyd-B system (7). The cell-
face fraction ratios also appear in the analytic expression of the
volumeVi, j of cell Ωi, j , whose analytic expression is given in [8]
for each basic type of cut-cells.

Summary of the LS-STAG Discretization for Newtonian
Flows

FIGURE 2. FOUR GENERIC TYPES OF CUT-CELLSΩi, j (AT
LEFT) AND THEIR CORRESPONDING LIMIT CASE (AT RIGHT)
FOR CARTESIAN GEOMETRIES. WE HAVE REPRESENTED IN
DASHED RED LINE THE HALF-CONTROL VOLUME FOR THE
VELOCITY ui, j .

In this part, we will give a summary of the LS-STAG dis-
cretization of the incompressible Navier-Stokes equations dis-
cussed in [7,8]. The discretization of based on the finite volume
method, where the continuity equation (6b) is discretized inΩi, j ,
and the momentum equation (6a) is discretized in staggered con-
trol volumesΩu

i, j andΩv
i, j for each component of the velocity,

whose shapes have to be adapted to each type of cut-cells. For
example in Fig. 1, the faces of the control volumeΩu

i, j for ui, j

read :

Γu
i, j = Γu,w

i, j ∪Γu,e
i, j ∪

(
Γs,e

i, j ∪Γs,w
i+1, j

)
∪
(
Γib,e

i, j ∪Γib,w
i+1, j

)
, (10)
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where the solid facesΓib,e
i, j ∪Γib,w

i+1, j are formed with two halves of

the solid face of the neighboring trapezoidal cut-cellsΓib,e
i, j ⊂ Γib

i, j

andΓib,w
i+1, j ⊂ Γib

i+1, j . For the other type of cut-cells, these control
volumes will be constructed from the six halves of generic con-
trol volumes that we represent in Figure 2 (left). In this figure, the
irregular shape of the staggered control volumes is given for rep-
resentation purpose only, and their geometric parameters, such
as their actual volume or shape of the vertical facesΓu,w

i, j andΓu,e
i, j

are never used by the LS-STAG discretization : instead, we will
employ arguments based on the strict conservation of total mass,
momentum and kinetic energy for discretizing the momentum
equations in each of the half-control volume of Figure 2, such
that any combination of half CVs yields a consistent discretiza-
tion with the aforementioned global conservation properties. In
the limiting case of Cartesian cells (see Fig. 2 (right)), the LS-
STAG method recovers the case of the usual MAC discretization
of Harlow & Welch [16] for uniform grids and the method of
Verstappen & Veldman [9] for non-uniform grids.

Globally Conservative Discretization on the LS-STAG
Mesh

It is now widely recognized (seee.g. [9, 11, 17, 18]) that
higher stability and accuracy is obtained with numerical methods
that conserve the global invariants of the flow such as total mass∫

Ωf ∇ · vdV, total momentumP(t) = ρ
∫

Ωf vdV and total kinetic
energy Ec(t) = 1

2

∫
Ωf |v|2 dV whenviscosity becomes negligible.

A numerical method is called “globally conservative” if the dis-
crete equivalent of the transport equations of these quantities are
verified. It is well known the original staggered grid method of
Harlow & Welch [16] on uniform Cartesian meshes with central
differencing of the convective term is “globally conservative”.
On the other hand, for more general grid systems or higher-order
methods the construction of “globally conservative” methods is
not a trivial task, and one needs to enforce the conservation prop-
erties to the discretization scheme [9, 17, 18]. For example, let
us consider the discretization of the Navier-Stokes equations (6)
such as its semi-discrete matrix representation reads :

ρ
d
dt

(MU)+C [U ]U +G P−ηK U = 0, (11a)

DU = 0, (11b)

where the diagonal mass matrixM is built from the volume
of the fluid cells, matrixC [U ] represents the discretization of
the convective fluxes,G is the discrete pressure gradient,K

represents the Newtonian stresses, andD is the discrete diver-
gence. For simplicity, we have discarded here the influence of the
boundary conditions, but the complete discussion can be found
in Ref. [8].

The budget for the discrete energy Eh
c(t) is obtained from the

discrete momentum equation as :

dEh
c

dt
= −UT C [U ]T +C [U ]

2
U −PT

G
TU −UT η(K T +K )

2
U,

(12)
and if we require that this discrete budget mimics the dissipa-
tion of energy in the whole fluid domain by the viscous forces,
the following conditions have to be enforced on the numerical
scheme :

• The discretization of the convective terms should lead to a
skew-symmetric matrix :

C [U ] = −C [U ]T, (13)

• thepressure gradient should be dual to the divergence oper-
ator :

G = −D
T, (14)

• the viscous matrixK T +K should be positive definite.

As observed in Ref. [9], the skew-symmetry condition (13)
amounts to using a centered scheme for the convective terms.
In Ref. [8], we have developed a skew-symmetric discretization
in the cut-cells of Fig. 2 such as non-homogeneous conditions at
the immersed boundary are naturally embedded. Condition (14)
and the discrete continuity equation (11b) leads to the following
discretization of the pressure gradient on the LS-STAG mesh :

∫

Γu
i, j

pex ·ndS∼= [G xP]i, j = θ u
i, j ∆y j

(
pi+1, j − pi, j

)
. (15)

This formula is valid for any type of fluid cells, and in the partic-
ular case of Cartesian fluid cells (such that the cell-face fraction
ratios are equal to 1), one recovers the finite-difference gradient
of the MAC method.

Discretization of the Newtonian Stresses
Now, we summarize the discretization of the Newtonian

viscous stresses, because it has a great importance for the ex-
tension of the LS-STAG method to viscoelastic flows. For the
x−momentum equation, the Newtonian viscous terms written in
control volumeΩu

i, j reads :

∫

Γu
i, j

∇u·ndS=
∫

Γu
i, j

∂u
∂x

ex ·ndS+
∫

Γu
i, j

∂u
∂y

ey ·ndS. (16)

In Refs [7,8], we have proposed an accurate discretization of
these terms in the cut-cells such that the simplicity of the 5-point
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FIGURE 3. STAGGERED ARRANGEMENT OF VELOCITY,
PRESSURE AND STRESS IN THE CARTESIAN CELLΩi, j .

structure of the MAC method be preserved. This has proved to
be the most intricate part of the LS-STAG method, and in order
to achieve this discretization we had to consider separately the
discretization of the shear stresses and the normal stresses. In
the MAC mesh of Harlow & Welch [16], the normal stresses are
naturally located at the center of a Cartesian cell, while the shear
stress is located at its upper right corner (see Fig. 3). Hence on
the LS-STAG mesh, it is very natural to locate the shear stresses
at the vertices of the cut-cells as shown on Fig 4. Note that for the
case of pentagonal cells,∂u/∂y|i, j and ∂v/∂x|i, j are computed
at distinct vertices.

FIGURE 4. LOCATION OF THE NORMAL AND SHEAR
STRESSES IN THE 3 GENERIC CUT-CELLSΩi, j .

The shear stresses are discretized as in the Ghost Fluid
Method for elliptic equations [19] : ifθ u

i, j > 0 then North cell
Ωi, j+1 is a fluid cell and thus we write :

∂u
∂y

∣∣∣∣
i, j

=
ui, j+1−ui, j

1
2 θ u

i, j ∆y j +
1
2 θ u

i, j+1 ∆y j+1
, (17a)

where the quotient is computed by differentiating the interpola-
tion polynomial ofu(xi , ·) in the vertical direction. Ifθ u

i, j = 0
thenΩi, j+1 is a solid cell as in Fig. 4, and we use the one-sided
quotient :

∂u
∂y

∣∣∣∣
i, j

=
u(xi ,yib

i, j)−ui, j

1
2 θ u

i, j ∆y j
, (17b)

whereu(xi ,yib
i, j) is the velocity prescribed at the immersed bound-

ary (see Fig. 1 for notations). In Ref. [8], this discretization is
completed by defining the integration areas on each generic cut-
cell such that discrete conservation of global momentum holds.
An analogous discretization is derived for∂v/∂x|i, j .

To discretize the normal stresses, we argued in Refs [7, 8]
that pressure and normal stress have the same mathematical and
physical origin (diagonal part of the stress tensor), and should be
discretized with the same formulae. Thus, we discretize the nor-
mal stress flux

∫
Γu

i, j

∂u
∂x ex ·ndSwith an expression similar to the

pressure gradient (15), which leads to the following expression :

∫

Γu
i, j

∂u
∂x

ex ·ndS∼= θ u
i, j ∆y j

(
∂u
∂x

∣∣∣∣
i+1, j

−
∂u
∂x

∣∣∣∣
i, j

)
. (18)

The discretization has to be completed with a differential quo-
tient for ∂u/∂x|i, j . In Refs [7, 8], this quotient has been con-
structed by requiring that Green’s theorem be valid at the discrete
level in a cut-cell, since it is trivially verified by theMACmethod
in a Cartesian cell. After a straightforward discretization of the
integrals and comparison with the continuity equation, one gets :

∂u
∂x

∣∣∣∣
i, j

∼=
θ u

i, j ui, j − θ u
i−1, j ui−1, j +(θ u

i−1, j − θ u
i, j )uib

i, j

Vi, j/∆y j
, (19)

andan analogous discretization holds for∂v/∂y|i, j .
Finally, we note that formulas (17) and (19) are valid for any

type of cut-cells, with the boundary conditions naturally imbed-
ded. They reduce to the standard finite-difference quotients in
the case of a Cartesian fluid cell. Furthermore, we mention that
pressure and normal stresses take piecewise constant values in
the cut-cells, so they can be located anywhere inside the cell for
the sake of interpolation.

THE LS-STAG DISCRETIZATION FOR VISCOELASTIC
FLOWS

The first step of the discretization of the Oldroyd-B sys-
tem (7) is the positioning of the extra-stress unknowns1 τxx

i, j , τxy
i, j ,

1Notethat for the sake of clarity, the underscript ’e’ is dropped in the defini-
tion of the discrete components of the extra-stress tensorτe.
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andτyy
i, j in the LS-STAG mesh. In effect, the earliest simulations

of viscoelastic flows proved that it was extremely difficult to ob-
tain stable numerical solutions when the Weissenberg number
We was moderately large, even for steady problems [1]. The loss
of convergence of the solution procedure has been subsequently
attributed to several causes, and one of the first that has been
identified is related to the spurious oscillations of the extra-stress
tensorτe. It was then acknowledged that the discretization of
the extra-stress componentsτxx

e , τxy
e andτyy

e must be compatible
with the velocity and pressure, as much as the pressure and ve-
locity discretizations has to be compatible for Newtonian compu-
tations to avoid pressure checkerboarding. Thus for the finite ele-
ment method, velocity-pressure-stress discretizations that follow
a LBB condition have been developed (see the review by Baai-
jens [20]). For finite volume discretizations, the discrete stress
unknowns have to be adequately staggered in the well known
MAC mesh for Newtonian flows [16], shown in Fig. 3. The ve-
locity unknowns are set at the middle of the cell faces and the
pressure at the center of the cell.i.e. the normal stressesτxx

i, j and
τyy

i, j are at the center of the cellΩi, j and the shear stressτxy
i, j at

its upper right corner. In this way, when the level of elasticity
becomes negligible (λ = 0), the discretization of the Oldroyd-B
system (1) recovers the case of Newtonian fluids, see Eqs. (5)
and (6).

This staggered arrangement was first introduced by Darwish
& Whiteman [4], and later used by [5,21,22]. In the cut-cells, the
discretization of the Newtonian stresses presented above entices
us to position the extra-stresses as shown in Fig. 4. Note that,
in this figure, we conveniently locateτxx

i, j andτyy
i, j at the centroid

of the cut-cells but, as stated in the previous section, the normal
stresses take constant values in the cut-cells. For the case of pen-
tagonal cells (see Fig. 4(a)), where the Newtonian shear stresses
∂u/∂y|i, j and∂v/∂x|i, j are calculated at different vertices of the
immersed boundary, we consider thatτxy

i, j takes the same value
at both vertices. Finally, we mention that this discretization has
much in common with the finite element method for viscoelas-
tic flows of Saramito [23], which uses a mixed Raviart-Thomas
element where pressure and normal stresses are discretized with
piecewise constant polynomials with a degree of freedom at the
element centroid, while the shear stress is discretized with a lin-
ear continuous polynomial with degrees of freedom at the ele-
ment vertices.

In the context of a finite-volume method, the use of this
staggered arrangement introduces a different control volume for
each transport equation of the Oldroyd-B system (7). Thus, the
new difficulty encountered compared to the Newtonian method
of Refs. [7, 8] lies in the quadrature of the volumic terms in the
RHS (8) of the transport equations, that have to be adapted to the
case of normal and shear stresses. To develop these quadrature,
we will use conservation properties of the transport equations
in the spirit of the LS-STAG method for Newtonian flows. The

starting point is the discretization of the normal stress equations,
and then it will be adapted to the shear stress equations such that
global conservation holds for all transport equations.

For discretizing the transport equation (7a) forτxx
e , it is nat-

ural to considerΩi, j as the control volume. We first start the
discretization of the volumic terms in the RHS of (8a),i.e. :

Sxx
i, j =−

∫

Ωi, j

τxx
e dV

︸ ︷︷ ︸
①

+2λ
∫

Ωi, j

τxx
e

∂u
∂x

dV

︸ ︷︷ ︸
②

+2λ
∫

Ωi, j

τxy
e

∂u
∂y

dV

︸ ︷︷ ︸
③

+2ηe

∫

Ωi, j

∂u
∂x

dV

︸ ︷︷ ︸
④

.

(20)

For the underlined terms①, ② and④, the quadrature is straight-
forward since the integrands are considered constant in each cut-
cell : for example midpoint rule applied to Term② gives simply :

∫

Ωi, j

τxx
e

∂u
∂x

dV ≃ τxx
i, j

∂u
∂x

∣∣∣∣
i, j

Vi, j , (21)

where Vi, j is the area of the cell and∂u/∂x|i, j is given by
Eq. (19). Analogous quadrature holds for terms①, ④ and the
time-derivative termd

dt

∫
Ωi, j

τxx
e dV.

The discretization of Term③ is totally different since both
terms of the integrand are defined at the vertices of the fluid
cells, and the number of these vertices depends on the type of
the cells. Hence, we will discretize this term in two consecutive
steps. First, midpoint quadrature yields :

∫

Ωi, j

τxy
e

∂u
∂y

dV ∼=
[
τxy
e

∂u
∂y

]c

i, j
Vi, j , (22)

where
[
τxy
e

∂u
∂y

]c

i, j
refers to the mean value of the integrand in cut-

cell Ωi, j . This mean value is calculated differently depending
on the type of the cell. For the case of the Cartesian cell of
Fig. 3, pentagonal cut-cell of Fig. 4(a), and trapezoidal cut-cell
of Fig. 4(b), we define this mean value as :

[
τxy
e

∂u
∂y

]c

i, j
=

1
4

τxy
i, j

∂u
∂y

∣∣∣∣
i, j

+
1
4

τxy
i−1, j

∂u
∂y

∣∣∣∣
i−1, j

+
1
4

τxy
i−1, j−1

∂u
∂y

∣∣∣∣
i−1, j−1

+
1
4

τxy
i, j−1

∂u
∂y

∣∣∣∣
i, j−1

,

(23a)
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and for the triangular cell of Fig. 4(c) we define the 3-point mean
value :

[
τxy
e

∂u
∂y

]c

i, j
=

1
3

τxy
i, j

∂u
∂y

∣∣∣∣
i, j

+
1
3

τxy
i−1, j−1

∂u
∂y

∣∣∣∣
i−1, j−1

+
1
3

τxy
i, j−1

∂u
∂y

∣∣∣∣
i, j−1

.

(23b)

For both definitions of the mean value, the Newtonian shear
stress∂u/∂y|i, j is calculated as (17a) or (17b) according to its
position on the LS-STAG mesh, and thus the boundary condi-
tions are naturally implemented in these terms.

The discretization of the convective term
∫

Γi, j
(v ·n)τxx

e dSin
the LHS of Eq. (8a) follows the lines of the Newtonian discretiza-
tion in Refs [7, 8], except that we shall not use skew-symmetric
(i.e., central) discretization for an hyperbolic equation such as
Eq. (7a). Instead, the first-order upwind discretization will be
employed in this work (see Ref. [12] for details). Upwind inter-
polation has the merits to give a monotone discretization of the
convective terms, even if its accuracy is limited to first-order and
is very diffusive when the flow direction is not aligned with the
mesh. But we mention that higher-order monotone discretization
can be easily adapted to the LS-STAG discretization, and is left
for future work.

In summary, the LS-STAG discretization of the transport
equation (7a) forτxx

e can be written in matrix form as the semi-
discrete equation :

λ
(
M

xx
e

dTe

dt

xx

+ C
xx
e [U ]Txx

e

)
= −M

xx
e Txx

e +Sxx
e [T,U ], (24)

whereTxx
e is the vector containing the extra-stress unknownsτxx

i, j ,
M xx

e is the diagonal mass matrix whose entries correspond to the
cell areasVi, j , the matrixC xx

e [U ] corresponds to the discretization
of the convective terms,M xx

e Txx
e corresponds to the discretiza-

tion of Term① in the RHS (20) andSxx
e [T,U ] is the discretiza-

tion of the remaining terms. An equation analogous to (24) is ob-
tained for the transport equation ofτyy

e , with M
yy
e = M xx

e since
both discretizations are performed on the same control volume.

If we want to state the conservation properties of the semi-
discrete transport equation (24) in the fashion of our previous
works [7, 8], we would say that this equation is conservatives in
the sense that the mass matrixM xx

e yields a consistent quadrature
in the whole fluid domainΩf when it is summed on all fluid cells
(Cartesian an cut-cells),i.e. :

∫

Ωf
τxx
e dV ∼= ∑

Fluid cellsΩi, j

Vi, j τxx
i, j = 1

T
M

xx
e Txx

e , (25)

where1 is the constant vector. In particular, if the normal stress
is constant (Txx =1) then one recovers the area of the whole fluid

domain :

Area(Ωf) ∼= ∑
Fluid cellsΩi, j

Vi, j = 1
T
M

xx
e 1. (26)

Analogously, thanks to the property of local conservation of the
fluxes at fluid faces, the convective discretization verifies the fol-
lowing conservation properties :

1
T
C

xx
e [U ] = 0. (27)

FIGURE 5. GENERIC TYPES OF CONTROL VOLUMESΩ̃i, j

FOR THE SHEAR STRESSτxy
i, j IN THE LS-STAG MESH.

The semi-discretization of the transport equation (7c) for
τxy
e is now performed in the staggered control volumesΩ̃i, j that

are depicted in Fig. 5. The main difficulty for discretizing the
shear stress equation lies in the precise definition ofΩ̃i, j from
the neighboring cells, the calculation of its geometric parame-
ters, and the fact that building a discretization for each of the
special cases of Fig. 5 can be a demanding task. Instead, we
will use an effective strategy that has been defined in [7, 8] for
the momentum equations : the discretization will be performed
independently for each quarter of cell, such that any combina-
tion of four quarters of cell yields a consistent discretization that
follows a conservation property analogous to (25). We refer to
Ref. [12] for the complete description of the discretization.

The time-integration of the semi-discrete Oldroyd-B sys-
tem (11), (24) is performed with the extension of our well es-
tablished time-stepping algorithm of Ref. [8] (ie, an AB/BDF2
semi-implicit fractional-step scheme) to viscoelastic problems,
except that we have tentatively implemented a first-order ver-
sion only. This fractional-step algorithm is defined by the fol-
lowing three steps : Firstly, a prediction of the velocity at time
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tn+1 = (n+ 1)∆t, denotedŨ , is computed by means of the fol-
lowing Euler scheme :

ρM
Ũ −Un

∆t
+C [Un]Un−D

TPn−ηsK Ũ −DeT
n
e = 0, (28)

where DeTe corresponds to the extra-stress contribution in
Eq. (1a). Then, the provisional velocity is corrected to get a
solenoidal velocity and the corresponding pressure field :

ρM
Un+1−Ũ

∆t
−D

T(Pn+1−Pn)= 0, (29a)

DUn+1 = 0. (29b)

Now thatUn+1 is determined, we can employ it to time-advance
the extra-stress equations :

λMe
Tn+1

e −Tn
e

∆t
+Ce[U

n+1]Tn
e = −MeT

n+1
e +Se[T

n
e ,Un+1],

(30)
wherethe vectorTn

e contains both normal and shear stresses un-
knowns.

NUMERICAL APPLICATION : FLOW OF VISCOELAS-
TIC OLDROYD-B IN A PLANAR CONTRACTION

FIGURE 6. SKETCHOF THE 4:1 PLANAR CONTRACTION.

In this section, we have selected some results from the un-
published thesis of Y. Cheny [12]. These computations concern
a popular benchmark for viscoelastic flows in complex geome-
tries : the creeping flow of an Oldroyd-B fluid in a 4:1 planar con-
traction with rounded re-entrant corners [13–15], see Fig. 6. The

characteristic length and velocity of the flow are set equal to the
heightH and the bulk velocity in the downstream half-channel.
A steady Poiseuille profile is imposed at the inletx = −16H, an
outflow condition is imposed atx = 16H, and a slip condition
is imposed at the symmetry planey = 0. The results reported

FIGURE 7. CLOSE-UPS OF THE CARTESIAN 96× 50 GRID
NEAR THE CONTRACTION AND THE RE-ENTRANT CORNER.

here have been obtained on the mesh shown in Fig. 7, for which
grid-independent results were reached. Fig. 8 shows that the LS-
STAG method predicts accurately the decrease of the intensity of
the salient vortex when the level of elasticity increases. As ob-
served in Fig. 9, the stress contours are free from any spurious
oscillations thanks to the fully staggered arrangement of the flow
variables. In particular, we have checked that the stress boundary
layer along the downstream wall is well resolved at all elasticity
levels, in contrary to the body-conformal results of Ref. [15].
Table 1 reports some quantitative results of the flow for increas-
ing values of the elasticity level. They are compared to bench-
mark results obtained with body-conformal methods [14,15] and,
where they are available, a good agreement is met with the liter-
ature.

CONCLUSION
In this communication, we have presented the salient fea-

tures of the LS-STAG discretization of viscoelastic flow equa-
tions. In particular, we have achieved in the cut-cells a compat-
ible velocity-pressure-stress discretization that prevents node-to-
node oscillations of the stress variables. It is also very interesting
to note that when the fluid domain is Cartesian, the LS-STAG dis-
cretization actually computes the shear stress at solid walls and at
salient or reentrant corners, in contrast to previous staggered grid
methods that usead hocinterpolations at solid boundaries [4] or
at salient corners [21].

A further improvement of the LS-STAG method for vis-
coelastic flows concerns the development of a time-stepping al-
gorithm that would preserve the positive-definiteness of the elas-
tic stress tensor, in order to mitigate the breakdown of the numer-
ical algorithms when the flow becomes highly elastic [1,6].
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