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ABSTRACT 
For moving boundary problems, previous body-conformal 

grid methods require frequent re-meshing as the boundary 

moves, thus increasing computational cost. An immersed 

boundary method (IBM) is an attractive method to resolve the 

problem since it is based on the fixed, non-body-conformal 

grids. In the IBM, force density terms are used so that no-slip 

boundary condition is satisfied on the boundary. On the other 

hand, lattice Boltzmann methods (LBMs) have been used as an 

alternative of Navier-Stokes equation method due to their 

efficiency to parallelize and simplicity to implement. The 

common feature of the IBM and the LBM of using non-body-

conformal grids motivated the use of the IBM in the lattice 

Boltzmann method frame, which is usually called an immersed 

boundary-lattice Boltzmann method (IB-LBM). Besides, a split-

forcing property in the LBM, due to its kinetic nature, facilitates 

the use of direct-forcing IBM. For the evaluation of boundary 

force density term, we need to adopt an interpolation scheme 

because the boundary, in general, does not match computational 

nodes. The interpolation schemes can be classified into diffuse 

and sharp interface schemes. The former usually uses the 

discrete delta function to evaluate the boundary force on the 

prescribed boundary points, while the latter uses interpolation 

from neighboring fluid nodes to evaluate the boundary force on 

the computation node either inside or outside closest to the 

boundary. In the diffuse scheme, the boundary force density 

terms evaluated on the boundary points should be distributed 

onto neighboring computational nodes using the discrete delta 

functions so that the boundary effect may exert on 

computational process.  

The objective of this study is to compare two interface 

schemes simultaneously for a moving boundary problem under 

the IB-LBM and to understand advantages and disadvantages of 

each scheme. We considered a problem of flow induced by 

inline oscillation of a circular cylinder since both experimental 

and body-conformal grid method results are available for this 

problem. Velocity results from both schemes showed overall 

good agreement with experimental data. However, the sharp 

interface scheme showed spurious oscillations in the surface 

force coefficient and pressure fields, although after filtering or 

smoothing, the force coefficients showed good agreement with 

the body-fitted results. In contrast, the diffuse interface scheme 

produced smooth variations in the surface force coefficient but 

over-predicted the absolute values especially at phase angles 

with the high magnitude of accelerations. These results can be 

attributed to the use of discrete delta functions. We could reduce 

the over-prediction by considering the effect of the diffuse area. 

 
INTRODUCTION 

The suitable treatment of complex, moving boundary 

problems is one of challenging issues in the computational fluid 

dynamics (CFD) field. Various methods, such as the arbitrary 

Lagrangian Eulerian (ALE) method (Hu et al., 2001), the 

Chimera method, Lagrange multiplier method (Glowinsky et al., 

1999; Glowinsky et al., 2001), and the immersed boundary 

method (IBM), have been developed for these problems. 

Among the numerical methods, much attention has been paid on 

the IBM mainly because of its efficiency and accuracy. 

The immersed boundary method (IBM) can be defined as a 

non-body conformal grid method, which adds a force density 

(or acceleration) term either explicitly or implicitly to the flow 

governing equation in order to satisfy the no-slip conditions on 

the boundary (Kang and Hassan, 2010). The use of the fixed, 

structured non-body-conformal grid (usually the Cartesian grid) 
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relieves the burden of meshing and frequent re-meshing and 

reduces computational cost compared to unstructured body-

fitted grid and other methods, and the accurate evaluation of the 

force density term maintains a high accuracy. 

Since Peksin (1972) pioneered the IBM, many variants of 

the IBM have been developed. Two key factors characterizing 

the IBMs are (i) the methods to evaluate the boundary force and 

(ii) the interface schemes to resolve the non-matching problem 

between boundaries and non-conformal computational nodes. 

For the methods to evaluate the boundary force, the 

feedback forcing methods and direct-forcing methods are 

usually considered. In the feedback forcing method, force 

density term (or acceleration term) is determined by straight 

feedback of velocity information, i.e. time integration of the 

velocity difference between calculated velocity and desired 

velocity (production) and the velocity difference itself 

(damping) as follows (Goldstein et al. 1993): 

0
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t
d dd     F u U u U    (1) 

where Ud is the desired velocity and α and β are two free 

parameters to be tuned depending on the flow conditions, which 

is a disadvantage of the feedback forcing method. Furthermore, 

it is known that for unsteady flows this can cause a time step 

limitation that reduces the efficiency. In contrast, in the direct 

forcing method, the force density (or acceleration) term is 

naturally determined in the calculation process. In other words, 

Navier-Stokes equation can be expressed as: 
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where RHS
n
 includes convective, viscous and pressure terms. If 

the desired velocity at next timestep is given, then Eq.(2) 

becomes: 
d n
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Eq.(3) can be rewritten in terms of the next timestep velocity 

without being forced, u
noF

 (which is originally calculated 

regardless of existence of the forcing term), as 
d noF n t  U u F     (4)  

with  
noF n n t  u u RHS .    (5) 

From Eqs. (3) and (5), the force density (or acceleration) term 

can be directly expressed as: 
d noF

n

t
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For the evaluation of boundary force density term for 

complex geometries, we have to adopt an interpolation scheme 

because the boundary, in general, does not match computational 

nodes. The interpolation schemes can be classified into diffuse 

and sharp interface schemes. The former usually uses the 

discrete delta function to evaluate the boundary force on the 

prescribed boundary points, while the latter uses interpolation 

from neighboring fluid nodes to evaluate the boundary force on 

the computational node either inside or outside closest to the 

boundary. In the diffuse scheme, the boundary force density 

terms evaluated on the boundary points should also be 

distributed onto neighboring computational nodes using the 

discrete delta functions so that the boundary effect may exert on 

computational process.  

On the other hand, the IBM can be coupled with the lattice 

Boltzmann equation (LBE), which is often called the immersed 

boundary-lattice Boltzmann method (IB-LBM), instead of 

Navier-Stokes equations (NSE), because the lattice Boltzmann 

method (LBM) is also based on the structured non-body-

conformal grids and is easy to implement and efficient 

especially in the parallel computation. Furthermore, the split-

forcing concept based on kinetic nature of the LBE allows the 

simple and direct implementation of the direct-forcing IBM 

(Kang and Hassan, 2010). 

Under the direct-forcing IB-LBM based on split-forcing 

LBE, several interface schemes have been applied. Kang and 

Hassan (2008) considered explicit diffuse interface scheme for 

stationary and moving boundary problems. Wu and Shu (2009) 

applied implicit diffuse interface scheme to stationary and 

moving boundary problems. Also, Kang and Hassan (2010) 

investigated various interface schemes (exterior sharp, explicit 

diffuse and multi-direct forcing implicit diffuse interface 

schemes) for stationary boundary problems. The results from 

Kang and Hassan (2010) revealed that the sharp interface 

scheme produces more accurate results than the diffuse 

interface schemes for complex, stationary boundary problems. 

However, no direct comparison between sharp and diffuse 

interface schemes for a moving boundary problem was not 

performed.  

Thus, in this paper, we try to compare both sharp and 

diffuse interface schemes simultaneously for a moving 

boundary problem under the direct forcing IB-LBM base on the 

split-forcing LBE and to understand advantages and 

disadvantages of each scheme. We considered the problem of 

flow induced by the inline-oscillation of a circular cylinder with 

Re=100 and KC=5 since both experimental and body-

conformal grid method results are available in this case. 

NUMERICAL METHODS 

Lattice Boltzmann Method 
The split-forcing lattice Boltzmann equation (LBE) with an 

unsteady, non-uniform body force term can be expressed as 

(Guo et al., 2002): 

( )

( , )

1
( , ) ( , ) ( , )eq

f t t t
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where fα(x,t) is the density distribution function for the discrete 

velocity eα in the α-th direction at position x and time t and τ is 

dimensionless relaxation time. The equilibrium distribution 

function ( )eqf  is given as 
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where the lattice speed c=Δx/Δt and Δx and Δt are the grid size 

and the timestep size, respectively, and weighting coefficient wα 

depends on the discrete velocity set {eα}. The discrete forcing 

term ( , )F x t is expressed as (Guo et al., 2002): 
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where fluid velocity u is determined by 
1

2

noF t   u u F     (10) 

with  
noF f 



 u e      (11) 

where u
noF

 indicates the unforced velocity at the next time step.  

   Using the Chapman-Enskog multi-scale analysis, we can 

show that the LBE recovers the Navier-Stokes equation with 

second-order accuracy. 

Immersed boundary-lattice Boltzmann Method 
Based on the split-forcing LBE given above, we can derive 

the following direct-forcing formula (Kang and Hassan, 2010): 
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( , ) 2 ( , )

d noF t t
t t t t

t
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where U
d
 is the desired velocity for satisfying the no-slip 

condition at the next time step and u
noF

 is the velocity at the 

next time step without forcing, which can be evaluated using 

Eq.(11). 

Interface Schemes 
The IBM requires interface schemes additionally because 

the boundary, in general, does not match the computational 

nodes. The interface scheme can be subdivided into diffuse and 

sharp interfaces schemes. In the sharp interface scheme forcing 

points are placed on computational nodes closest to the 

boundary (forcing nodes), while in the diffuse interface scheme, 

forcing points, on which the boundary force is evaluated, are 

located on the boundary.  

In the sharp interface scheme, to evaluate the boundary 

force using Eq.(12), U
d
 on forcing nodes should be determined 

so that the closest, corresponding boundary point satisfies the 

no-slip condition, while u
noF

 is naturally calculated in the LBM 

calculation process by using Eq.(11). For the evaluation of U
d
, 

interpolation procedures should be involved. In this study, we 

consider the exterior sharp interface schemes (Kim et al., 2001) 

where forcing nodes are located inside solid and closest to the 

boundary and to evaluate the U
d
 linear and bilinear 

interpolations are used. 

In contrast, for diffuse interface schemes, Eq.(12) can be 

rewritten as: 
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where xb is the forcing point distributed on the boundary. Here, 

U
d
 can be easily evaluated because the velocity on the boundary 

is prescribed in general whereas u
noF

 on the boundary should be 

evaluated from u
noF

’s on neighboring computational nodes by 

interpolation. Furthermore, since the resulting boundary force 

evaluated is on the boundary, the effects (distributions) on 

neighboring computational nodes should also be considered. 

For the interpolation and the force distribution, discrete delta 

functions can be used in general. In this study, we consider the 

4-point discrete delta function, which is defined by (Peskin, 

2002): 

2

1
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We consider the ‘implicit’ multi-direct-forcing method (Luo 

et al., 2007; Wang et al., 2008) instead of explicit methods in 

this study. In the diffuse direct-forcing procedure, velocities on 

computational nodes (used to evaluate the U
d
 on the boundary 

point and thus the boundary force) are also influenced (updated 

or forced) by the boundary force. Hence, U
d
 obtained from the 

interpolation using the updated velocities may not satisfy the 

no-slip condition. Thus, an iterative process is required until 

such U
d
 differences become very small. It should be pointed out 

that the number of direct-forcing (iterations) (NF) required is 

known to be relatively small (Kang and Hassan, 2010). In this 

study, NF=10 is used. 

These two schemes based on split-forcing LBE were 

validated for flows past a stationary circular cylinder in Kang 

and Hassan (2010).  

Surface Force Evaluation 
In the IBM, the surface force can be easily evaluated. As 

depicted in Figure 1, we can consider two control surfaces (Ss 

and Sf), which can vary with time, and the resulting control 

volumes surrounded by the two control surfaces (V, Vs, and Vf) 

in the fluid field.  

 
Figure 1 Two time-varying control surfaces (Ss and Sf) and 

corresponding control volumes (V, Vs, and Vf) in fluid domain. 
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For the control surface Ss, the force from fluid outside the 

surface (Vf) to the surface (Ss) can be expressed as: 

[ ( )] ]
s

f s s s
S

dS     F u u u σ n    (15) 

where su is a boundary velocity of the control surface Ss, σ is the 

viscous stress tensor, and ns is its outward surface vector. If the 

Ss is an impermeable surface, i.e. no flow passes through the 

surface, then su u , so that Eq.(15) becomes 

s
f s s

S
dS   F σ n .     (16)  

For the control volume Vf surrounded by the control surfaces Ss 

and Sf, from the Cauchy’s stress principle, the linear momentum 

balance can be written as: 

[ ( ) ]

[ ( ) ] ( )

f f
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f f
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t
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where nf is the outward surface vector of Sf. Using Eq.(16), we 

can rewritten Eq.(17) as: 

[ ( ) ]
f f

f s f f
V S

dV dS
t
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For the control volume V covering both Vf and Vs, when 

boundary forces exist, the linear momentum balance can be 

expressed as: 

[ ( ) ]
f s f

f s

f f
V V S

V V

dV dS
t

dV

 


    




 



u u u u σ n

F

 (19) 

Subtracting Eq.(18) from Eq. (19), we can obtain the following 

surface force formula: 

s f s
f s

V V V
dV dV

t



 
  F u F    (20) 

where the first term in the left-hand side indicates the added 

mass effect. If the volume Vs is a rigid solid body with a center-

of-mass velocity of Uc, the first term in Eq.(20) can be replaced 

by /s cV t  U  (Uhlmann, 2005; Feng and Michaelides, 2008; 

Liao et al., 2010) and thus Eq.(20) becomes 

f s

c
f s s

V V
V dV

t



 

 
U

F F ,    (21) 

which will be used for the surface force evaluation of the 

oscillating cylinder in this paper. For reference, if the rigid solid 

body is fixed or moving with a constant velocity, Eq.(21) 

simply becomes 

f s
f s

V V
dV  F F .     (22) 

From Eqs. (20), (21), and (22), we can find that if the immersed 

boundary force is exact, the surface force on solid body can be 

directly calculated by integrating (or summing in a discrete 

sense) the boundary force terms regardless of the positions 

(inside or outside the boundary). This is one of advantages of 

use of the IBM. Specifically, for sharp interface schemes, since 

dV directly matches with cell volume (surface in 2D), 

2

,

,f s
i j

V V
i j

dV x  F F .     (23) 

In contrast, for diffuse interface schemes, the term can be 

calculated by 

f s
b b

V V
b

dV S x   F F     (24) 

where ΔSb is the arc length of the surface boundary at a forcing 

point b. 

PROBLEM DESCRIPTION 
In this study, we investigate the flow induced by an inline-

oscillating cylinder in the fluid initially at rest as depicted in 

Figure 2. The inline-oscillation of the cylinder is governed by 

the following harmonic oscillation 

sin(2 )cX A f t      (25) 

where Xc is the position of the cylinder center and A and f are 

the amplitude and the frequency of the oscillation, respectively. 

This flow is characterized by Reynolds (Re) and Keulegan-

Carpenter (KC) numbers, which are defined as: 

,max
Re

cU D


  and    (26) 

,max
KC

cU

f D
      (27) 

respectively. Here, Uc,max is the maximum velocity of the 

cylinder during oscillation, D is the cylinder diameter, and ν is 

kinematic viscosity. In this study, the computation is 

implemented at Re=100 and KC=5 at which the experimental 

(LDV) and numerical (body-fitted method) data by Dütsch et al. 

(1998) are available. Hence, we can quantitatively compare 

sharp and diffuse interface schemes with them in this problem. 

 
Figure 2 Geometry, computational domain, coordinates, and 

boundary conditions of the problem. 

COMPUTATIONAL CONDITIONS 
The computational domain size is 30D×20D (which results 

from the grid sensitivity study discussed below) and Neumann 

boundary conditions are imposed on four outer sides of the 

domain as shown in Figure 2. For the cylinder surface boundary 

treatments, the IBM with sharp and implicit diffuse interface 
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schemes are used. In the implicit diffuse interface scheme, 

forcing points are uniformly distributed on the cylinder 

boundary with spacing of ΔS=Δx/1.5, which is small enough to 

enable us to obtain size-independent solutions (Kang and 

Hassna, 2010).  

Before comparing the vorticity fields, velocities, and the 

streamwise force coefficients between interface schemes, we 

performed the sensitivity study on sizes of computational 

domain, timestep, and grid. The implicit diffuse interface 

schemes were used for the sensitivity study. As a target variable, 

we considered the streamwise force coefficient, which is 

defined as: 

21
,max2

x
x

c

F
C

U D
         (28) 

where Fx is the streamwise surface force and directly obtained 

from the immersed boundary method using Eq.(21) with 

Eqs.(23) or (24) depending on the interface schemes.  

First, we investigated the effect of domain size by 

considering three domains of 20D×20D, 30D×20D, and 

40D×30D. Figure 3 presents variations of the streamwise force 

coefficients under the grid of Δx=D/20 and timestep of 

Δt=T/1500 where T is a period of the oscillation. Three results 

showed very good agreements, so that the domain size of 

30D×20D is large enough not to affect the results. 

 
Figure 3 The effect of computational domain size on the 

streamwise force coefficient. 

 

Next, for the sensitivity of timestep size, in the domain of 

30D×20D with D=40Δx, we considered Δt=T/2000, T/3000, 

and T/4000. Figure 4 shows the resulting streamwise force 

coefficients. At Δt=T/2000, it shows a slight discrepancy, but at 

Δt=T/3000 and T/4000, they have almost similar results. Thus, 

we take Δt=T/3000 in the later calculations. 

For the sensitivity of the grid size, we considered D=20, 

30, 40, 50, and 60Δx. Figure 5 presents the resulting streamwise 

force coefficients. It is observed that almost converged results 

are reached from D=40Δx. 

 

 
Figure 4 The Effect of timestep size on the streamwise force 

coefficient. 

  

 
Figure 5 The effect of grid size on the streamwise force 

coefficient. 

RESULTS AND DISCUSSIONS 
Figure 6 presents the vorticity fields at four phase angles of 

0, 96, 192, and 288
o
. Both sharp and implicit diffuse interface 

schemes show qualitatively similar vorticity fields observed by 

body-fitted grid methods in Dütsch et al. (1998). However, the 

pressure field (not given here) from the sharp interface scheme 

haves some wiggles, which may be due to the spurious 

oscillation. This oscillation is more clearly shown in the 

variation of streamwise force coefficients in Figure 9(a). 

Next, to quantitatively assess two schemes, we compare the 

velocity data at locations of x = -0.6, 0, 0.6, and 1.2D in phase 

angles of 180, 210, and 330
o
 because Dütsch et al. (1998)’s data 

are available for these cases. Figures 7 and 8 present the 

horizontal and the vertical velocities at a phase angle of 330
o
 

obtained from the sharp interface scheme and the implicit 

diffuse interface scheme, respectively. Both figures include 

experimental and numerical data of Dütsch et al. (1998). We 

can observe that both schemes have good agreements with 

Dütsch et al.’s results. In other phases (180 and 210
o
), in spite 
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of not being presented in this paper, good agreements between 

both schemes and Dütsch et al. are observed. 

 

 
Figure 6 Vorticity fields obtained from (a) the sharp interface 

scheme and (b) the implicit diffuse interface scheme. 

 

 
Figure 7 Comparison of (a) horizontal and (b) vertical velocities 

at a phase angle of 330
o
 at x = -0.6, 0, 0.6, and 1.2D between 

the sharp interface scheme and Dütsch et al. (1998). 

 
Figure 8 Comparison of (a) horizontal and (b) vertical velocities 

at a phase angle of 330
o
 at x = -0.6, 0, 0.6, and 1.2D between 

the implicit diffuse interface scheme and Dütsch et al. (1998). 

 

Figure 9 presents the streamwise force coefficient variation 

obtained from the exterior sharp interface scheme with 

D=40Δx. As mentioned above, it shows spurious oscillations 

due to discontinuous change of nodes used in the interpolation 

as shown in Figure 9(a). However, if we adopt the filtering (for 

example, low pass FFT filtering) or smoothing as Miller and 

Peskin (2004) and Shen et al. (2009) recommended, it shows 

the good agreement with Dütsch et al. (1998)’s data as 

presented in Figure 9(b). It should be pointed out that we also 

tested sharp interface schemes which had been developed for 

reducing such spurious oscillations by Yang and Balaras (2006) 

and Liao et al. (2010), but only minor improvements were 

obtained under the IB-LBM based on split-forcing LBE. This 

may be due to the difference between the Navier-Stokes 

equations and the lattice Boltzmann equations. 

According to the grid sensitivity study using other 

resolutions (D=20, 30, 40, 50, and 60Δx), despite not being 

given here, the results almost converges from D=30Δx. In 

contrast, as presented in Figure 5, when adopting the diffuse 

interface schemes, the streamwise force coefficients show 

bigger discrepancy. Especially, the largest discrepancies 

occurred near phase angles of 90 and 270
o
 (where the 

magnitude of acceleration is the maximum) and the least 

discrepancies occurred at angle phases of 0 and 180
o
 (where the 

magnitude of acceleration is zero). In other words, the larger 
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magnitude of acceleration the cylinder has, the larger 

discrepancy the surface force coefficient has. It should also be 

noted that to the authors’ knowledge, no direct-forcing IBM 

with diffuse interface schemes except Wang et al. (2009) was 

documented for this problem. In Wang et al. (2009), the multi-

direct-forcing IBM with a diffuse interface scheme was used but 

the governing equations were based on vorticity equations, not 

pressure equations. In their calculation results of the force 

coefficient, for the comparison, they also provided those from 

the direct-forcing IBM with diffuse interface schemes based on 

the pressure equation, which showed large discrepancies near 

phase angles of 90 and 270
o
 as in this study. On the other hand, 

from the results of flow past a stationary circular cylinder in 

Kang and Hassan (2008), we can observe that the diffuse 

interface schemes can have the maximum 5% larger drag 

coefficients than body-fitted methods at D=40Δx. However, the 

largest discrepancy for the moving cylinder in this study is 

about 8.0% under D=40Δx.  

 

 
Figure 9 Streamwise force coefficients (a) before and (b) after 

low pass FFT filtering. 

 

In order to mitigate the over-prediction, we can adopt the 

concept of the effective radius (Höfler and Schwarzer, 2000), 

which corrects over-estimation of the drag coefficient due to the 

effect of diffuse boundary. From the stationary results in Kang 

and Hassan (2010), we can approximate the effective radius 

(reff) as 

0.5eff sr r x   .     (29) 

Thus, we retract the surface on which the forcing points are 

distributed by an amount of 0.5∆x from the geometric surface. 

The resulting surface coefficient variation at D=40∆x is given 

in Figure 10, which shows a good agreement with Dütsch et al. 

(1998)’s data. Here, the corrected radius of 19.5∆x was used for 

the distribution of forcing points. It should be noted that the 

radius for the evaluation of Vs in the added mass term (the first 

term in RHS of Eq.(21)) is the geometric radius (rs), not the 

corrected radius. 

 

 
Figure 10 The streamwise force coefficients with and without 

considering the diffuse boundary effect. 

CONCLUSIONS 
In this study, we investigated the effects of interface 

schemes on results of the moving boundary problem. The 

evaluation method of the boundary force was the direct-forcing 

method based on the split-forcing lattice Boltzmann equations 

(Kang and Hassan, 2008, 2010), i.e. direct-forcing IB-LBM. 

The interface schemes considered were the exterior sharp 

interface scheme (Kim et al., 2001) and the implicit diffuse 

scheme (Luo et al., 2007). For the test problem, the flow 

induced by an inline-oscillating cylinder at quiescent fluid with 

Re=100 and KC=5 was considered because the test case has 

both the experimental data measured by LDV and the numerical 

results based on the body-fitted methods by Dütsch et al. 

(1998). 

Velocity results (vorticity, horizontal and vertical 

velocities) from both schemes showed overall good agreements 

with experimental and body-fitted calculation data of Dütsch et 

al. (1998). However, the sharp interface scheme showed 

spurious oscillations in the streamwise surface force coefficient, 

although after filtering or smoothing it showed good agreement 

with experiment. However, it still showed wiggles in pressure 

field. 

In contrast, the diffuse interface scheme produced smooth 

variations in the surface force coefficient and the pressure fields 

due to the use of discrete delta function, which involves the 

information of interior nodes inside the solid boundary, thus 

smoothing the discontinuous change of nodes. However, such a 

property of the discrete delta function reduced the accuracy. 

Especially, the reduction of accuracy was larger in the 

oscillating cylinder in this study than in the fixed cylinder 
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(Kang and Hassan, 2010). This discrepancy could be mitigated 

or removed by the considering the effective radius.  

Thus, it is expected that that the diffuse interface scheme 

with the corrected radius for the forcing point distribution can 

be effectively applied to fluid-surface interaction problems, 

such as fluid-induced vibration, and moving particle problems.   
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