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ABSTRACT

When using a collocated grid for the discretization of the
unsteady Navier-Stokes equations special care has to be taken
in the evaluation of the cell face velocity as if it is not properly
calculated the resulting flow field may be dependent on the time
step. This dependency increases as the time step is reduced so
this problem can be of paramount importance in rapidly varying
flows. As an illustration of the problem in a flow of industrial
interest a synthetic jet has been chosen. Although the primary
goal of the paper is not to compare computational and experi-
mental results, the assessment with experimental data will high-
light the discrepancies in the computational results with different
time steps. For comparison purposes a well documented case
was chosen: the first test case of the synthetic jet workshop or-
ganized by NASA in 2004, but with the new 2006 data. This flow
is produced by a moving diaphragm at one of the sides of a cav-
ity connected to an otherwise stagnant air through a slot. Near
the slot exit the flow is almost bidimensional so in order to re-
duce computational time it has been modelled in a 2D domain
with a transpiration velocity at the bottom boundary of a simpli-
fied cavity. This velocity tries to reproduce the waveform of the
measurements at the slot exit with an appropriate combination of
Fourier modes.

∗Address all correspondence to this author.

NOMENCLATURE
Au

P|e,i Diagonal coefficient of the momentum equation at e or i
without the temporal contribution

Ãu
P|e,i Complete diagonal coefficient of the momentum equa-

tion at e or i
u∗ Velocity value at current iteration
ul Velocity value at previous iteration
un Velocity value at preceding time step

INTRODUCTION
There is considerable interest in the potential use of syn-

thetic jets to control the boundary layer separation under adverse
pressure gradients. This type of flow is intrinsically time de-
pendent and the interaction with the boundary layer is threedi-
mensional in nature. However there are simplified experimental
situations which possess the same features as the practical appli-
cations of synthetic jets while providing a very controlled flow
which is basically two dimensional, thus amenable to be numer-
ically explored with a reasonable number of turbulence models,
grids and schemes without being discouraged by the turnover
time. This relatively simple kind of flow is the one we have cho-
sen to model. In particular we have studied the case 1 in the
CFDVAL2004 workshop sponsored by NASA and other interna-
tional organizations in 2004. This case refers to an isolated syn-
thetic jet that issues into quiescent air. The flow is produced by a
moving diaphragm driven by a piezolectric material in a cavity.
The cavity is connected to open air through a slot with an aspect
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ratio large enough to consider the flow to be twodimensional, at
least in a region near the slot exit. The experimental setup and the
geometry of the flow are described in a web page of NASA Lan-
gley Research Center as well as rather extensive velocity field
data. Some time later a more documented (and seemingly more
precise) set of data were included in the same web page. We have
employed the latter in this study.

We specifically employed a collocated grid due to its cod-
ing simplicity. However, the ease of discretizing the equations,
with only one grid for all variables, is at the cost of reducing the
strength of the pressure velocity coupling. To couple the veloc-
ity and pressure fields in this type of grid a special interpolation
procedure put forward by Rhie and Chow [1] is required. Our
intention is to show that some adopted implementations of the
Rhie-Chow procedure in transient flows can give rise to solu-
tions dependent on the time step. This dependence has nothing
to do with the discretization errors in the temporal term, in fact it
is more pronounced when the time step is very small in relative
terms, something that will be explained later. The inconsistency
is due to the face velocity expression where some factors that
contain the time step appear in the wrong places. To explain
the link with the Rhie-Chow procedure that was originally put
forward for steady calculations, a derivation of the face veloc-
ity expression in a transient case will be briefly explained. More
details can be found in [2].

NUMERICAL BACKGROUND
In a collocated grid the face velocity does not satisfy a mo-

mentum equation, its field values are obtained with an appro-
priate average of some terms in the momentum equations at the
nodes. For illustration purposes let us consider a generic inter-
face e with two adjacent nodes E and P, all three along the x
coordinate. The way to obtain the face expression is to write a
fictitious discretized momentum equation at interface e formally
identical to that at the nodes. Following the usual notation the
equation both at nodes, i = E,P, and at face e is for a variable
density case

Au
P|i,eu∗i,e = ∑

j|i,e
Au

ju
∗
j +Su

i,e∆Vi,e −∆Vi,e
∂ p
∂x

∣∣∣∣l
i,e
+

+
1−αu

αu
Ãu

P|i,e(u
l
i,e −u∗i,e)+

ρi,e∆Vi,e

∆t
(un

i,e −u∗i,e) (1)

with

Ãu
P|i,e = Au

P|i,e +
ρi,e∆Vi,e

∆t
Au

P|i,e = ∑
j|i,e

Au
j (2)

Su
i,e is the source term for the x-momentum. ul

i,e is the value at
the previous inner iteration and un

i,e is the value at the preced-

ing time step. These expressions are written for a general case
where a transient calculation (real or pseudo) with a time step ∆t
is performed with underrelaxation (αu). When the steady state is
reached (if any) only the first line of Eqn. (1) remains. To derive
the computable ue expression a term in the fictitious e-equation
is reformulated as an average of its nodal counterparts. After
dividing Eqn. (1) by Au

P|i,e the original Rhie-Chow interpolation
assumes that

Hu
e =

∑ j|e Au
ju

∗
j +Su

e∆Ve

Au
P|e

=

(
∑ j|i Au

ju
∗
j +Su

i ∆Vi

Au
P|i

)e

= Hu
i

e (3)

This average term can be rewritten in terms of the average of the
rest of the terms in the nodal equations. By doing so we end
up with an expression for the face velocity that depends on the
velocity field in the neighbourhood of e (at this iteration, at the
previous one and at the preceding time step) and on the pressure
field. The expression, named elsewhere as PICTURE [2], reads

(1+δe)u∗e = (1+δi)u∗i
e
+αu∆t

[
δi

ρi

∂ p
∂x

∣∣∣∣l
i

e

− δe

ρe

∂ p
∂x

∣∣∣∣l
e

]
+

+ (1−αu)
[
(1+δe)ul

e − (1+δi)ul
i
e]
+

+ αu

[
δeun

e −δiun
i

e
]

(4)

with

δe,i =
ρe,i∆Ve,i

∆tAu
P|e,i

(5)

This expression is employed to estimate the new convecting ve-
locities at the faces right after solving the momentum equation
for the convected velocity. To obtain a field that satisfies conti-
nuity in each control volume a correction is derived following a
SIMPLEC approach [3]. The velocity correction at the nodes is
obtained as

(1+δi)u′i =−αu∆t
δi

ρi
(1+ k̃i)

∂ p
∂x

∣∣∣∣′
i

(6)

where k̃i is defined as

k̃i =
αu ∑ j|i Au

j

Ãu
P|i −αu ∑ j|i Au

j

=
αuri

1−αuri +δi
; ri =

∑ j|i Au
j

Au
P|i
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ri is equal to one over most part of the domain except at the
boundaries due to Dirichlet boundary conditions. The corre-
sponding expression at the face e is

(1+δe)u′e =−αu∆t

[
δi

ρi
k̃i

∂ p
∂x

∣∣∣∣′
i

e

+
δe

ρe

∂ p
∂x

∣∣∣∣′
e

]
(7)

Contrary to some previously employed SIMPLEC implementa-
tions this SIMPLEC procedure is consistent, that is, the correct-
ing expression at the faces is the same whatever path is taken to
calculate it, whether with the correction velocities at the nodes
or with the correcting pressure field. The interested reader is
referred to [3]. The SIMPLEC scheme applied to the pressure
velocity coupling produces a pentadiagonal matrix in each coor-
dinate that can be solved with a pentadiagonal matrix algorithm
(PDMA).

Choi’s suggestion on how to calculate the face velocity in a
collocated grid for a general transient flow is [4]

u∗e = u∗i
e
+αu ∆t

[
δi

ρi(1+δi)

∂ p
∂x

∣∣∣∣l
i

e

− δe

ρe(1+δe)

∂ p
∂x

∣∣∣∣l
e

]
+

+ (1−αu)
[
ul

e −ul
i
e]
+αu

[
δe

1+δe
un

e −
δi

1+δi
un

i

e]
(8)

The distinction with respect to PICTURE is that Choi considers
another term in the original momentum equation at e as that to
be computed with an average of its nodal counterparts. This dif-
ferent starting point leads naturally to Eqn. (8). Choi defined Hu

e
as

Hu
e =

∑ j|e Au
ju

∗
j +Su

e∆Ve

Ãu
P|e

=

(
∑ j|i Au

ju
∗
j +Su

i ∆Vi

Ãu
P|i

)e

= Hu
i

e (9)

Note that the denominator of this expression is different from
that of PICTURE. Here it is the complete diagonal term, Ãu

P|e,
whereas in the case of PICTURE it was the term without the time
factor, Au

P|e. At the end of the iterative process within a time step
PICTURE face velocity satisfies the transient discretized equa-
tion

(1+δe)u∗e = (1+δi)u∗i
e
+

∆Vi

Au
P|i

∂ p
∂x

∣∣∣∣l
i

e

− ∆Ve

Au
P|e

∂ p
∂x

∣∣∣∣l
e
+

+
[
δeun

e −δiun
i

e
]

(10)

and if there is any steady state the final expression is

u∗e = u∗i
e
+

∆Vi

Au
P|i

∂ p
∂x

∣∣∣∣l
i

e

− ∆Ve

Au
P|e

∂ p
∂x

∣∣∣∣l
e

Contrary to PICTURE, Choi suggestion produces

(1+δe)u∗e = Λi(1+δi)u∗i
e
+Λi

∆Vi

Au
P|i

∂ p
∂x

∣∣∣∣l
i

e

− ∆Ve

Au
P|e

∂ p
∂x

∣∣∣∣l
e
+

+
[
δeun

e −Λiδiun
i

e
]

(11)

and

u∗e = Λiu∗i
e
+Λi

∆Vi

Au
P|i

∂ p
∂x

∣∣∣∣l
i

e

− ∆Ve

Au
P|e

∂ p
∂x

∣∣∣∣l
e

where

Λi =
1+δe

1+δi
(12)

Note that Λi contains a delta time factor and so makes both the
transient and/or the steady solution dependent on the time step.

TURBULENCE MODELS
The k-ε model with Durbin’s correction [5] to circumvent

the problem of large kinetic energy values in regions of stag-
nating flow has ben used as the standard model in all computa-
tions. We also wanted to check the behavior of the Scale Adap-
tive Simulation (SAS) [6] but under the framework of the k-ε
model, that is, we tried to verify if the SAS source term as pro-
posed by Menter had the same scale adaptivity behavior in the
k-ε model that in the Shear Stress Transport (SST) model. We
used Menter’s idea by setting up a model named k-ε-SAS in un-
steady mode which includes in the ε equation a new term similar
to that proposed by Menter for the SST-SAS model. This term
contains the ratio between the turbulent length scale and the von
Karman lenght scale. Especifically, this is

PSAS = ξ Pk
ε
k

L
Lνk

(13)

ξ is a model constant and Pk is the production term of kinetic
energy. The lenghts involved are

L =
k3/2

ε
; Lνk =

S
U ′′ ; U ′′ =

√
∂ 2ui

∂x j∂x j

∂ 2ui

∂xk∂xk
(14)
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S being the second invariant of the mean rate-of-strain tensor.
The effect of this term is to increase the levels of the dissipation
rate of kinetic energy and hence to reduce the turbulent viscos-
ity. By doing so when the equations are run in unsteady mode
flow structures of smaller size can be observed as the turbulent
Reynolds number is also reduced. When including SAS new
term the time step acts as a kind of average factor in such a way
that when moving to large time steps k-epsilon standard results
are recovered. The results obtained with this model were indis-
tinguishable from those of Durbin’s k-ε for all cases tested. We
must note that no perturbation of the transpiration velocity was
introduced because we deemed that the shear layer at the slot exit
would act as the trigger mechanism to develop the SAS-related
turbulent structures [7]. As the flow strongly contracts at the slot
and the particular turbulent details of the flow inside the cavity
seem to be of minor importance there is no point in perturbing
the boundary condition wave.

RESULTS
In Fig.1 the domain utilized in the computational experi-

ments is presented. The grid was 68x490 with 14 nodes inside
the slot and an expansion ratio of 1.2 towards the lateral bound-
aries. The domain size was 40dx40d, d=1.27 mm being the slot
width. In all the open flow boundaries a zero gradient bound-
ary condition was employed for all variables. The cavity where
the piezoelectric device was located was simulated with a sim-
ple rectangular domain. A combination of 5 Fourier modes was
neccesary for matching the computational velocity and the ex-
perimental profile at y = 0, the slot exit, along one cycle. This
velocity wave was imposed at the bottom boundary of the cavity,
downscaled by the slot-to-cavity width ratio. At every time step
some relaxed subiterations were carried out, stopping when the
residual was below 10−4 for both momentum equations and 10−3

for the continuity equation at each time step.
The residual for the u-velocity is defined as

resu =

(
∑i

∣∣∣Ãu
P|iui −∑ j|i Au

ju j −Su
i ∆Vi +∆Vi

∂ p
∂x

∣∣∣
i
− ρi∆Vi

∆t un
i

∣∣∣2)1/2

(
∑i

∣∣∣Ãu
P|iui

∣∣∣2)1/2

(15)

Likewise, a residual for the υ-velocity can be defined, resυ . The
mass imbalance is calculated as

resm =
(∑i |(ρeu∗e −ρwu∗w)∆y+(ρnυ∗

n −ρsυ∗
s )∆x|)

(∑i in f lowi)
(16)

in f lowi refers to the mass flow coming into a cell.

FIGURE 1. Computational domain with specified boundary
conditions

The time step employed is 1.510−6. Being 445Hz the fre-
quency of the piezoelectric device used in the experiments that
time interval means approximately 1500 time steps per cycle or
a time step every 0.25o of phase angle. The run was started from
scratch to obtain a preliminary solution at 90o phase angle, then
ten complete cycles were run and the results of the eleventh cy-
cle were stored. An a posteriori check was carried out to ensure
that there was no significant change in the field variables in sub-
sequent cycles.

Figures 2 and 3 show the comparison between measured and
computed flow fields at 90o and 270o phase angles with PIC-
TURE. The first one is a bit ahead of the point of maximum ejec-
tion velocity and the second one is also close to the point of max-
imum suction velocity. As can be seen in Fig. 2 the flow pattern
is very well reproduced by the computations, although the peak
velocity and the region where υ velocity attains large values is
less wide. The prediction at 270o phase angle is somehow bet-
ter and the distribution of relative values is very similar in both
graphs. All results presented are independent of the time step.
There have been some previous researchers who have calculated
the same flow. Our results are comparable to those of Vatsa and
Turkel [8] which are the ones that showed the best performance.

The main finding of this work relates to the bad use of cell
face velocity calculation in collocated grids in transient cases.
We performed several test cases with different time steps in or-
der to vary δi and produce significant changes in Λi when using
Choi’s approach in Eqn. 11.

In Fig. 4 a direct comparison between the computed re-
sults with Choi’s approach obtained with the baseline time step
(1.510−6) and another time step two orders of magnitude smaller
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FIGURE 2. Comparison of measured and computed υ velocity at 90o

phase angle.
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FIGURE 3. Comparison of measured and computed υ velocity at
270o phase angle.

is depicted. The solution with the smaller time step was obtained
as follows: we started with the baseline solution, ran the program
for three cycles and stored the solution of the fourth one. The a
posteriori check was also performed.

An image is worth one thousand words. The effect of an
incorrect calculation of the face velocity is to make the solution
dependent on the time step as the pictures unmistakably show.

FIGURE 4. Comparison of computed υ velocities at 90o phase angle
with two different time steps.

FIGURE 5. Comparison of computed υ velocities at 270o phase angle
with two different time steps.

CONCLUSIONS
In this paper a comparison of the results obtained in a tran-

sient flow with inconsistent treatment of the face velocity has
been presented. The approach proposed by Choi, that has been
profusely utilized in the literature, can produce substantial differ-
ences in the flow pattern depending on the adopted time step. If
a consistent approximation is employed all results are the same,
irrespective of the time step.
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