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ABSTRACT
An immersed boundary method, similar to the one used by

Kim et al. [1] was developed to implement a varying wall topog-
raphy into an existing DNS code for pipe flow. Validation using
a semi-analytical solution and numerical results showed that the
method yields accurate results for laminar flow. Four simula-
tions for turbulent flow where performed, each with a different
wall geometry. Wall topographies varying in the axial direction
and topographies varying in the azimuthal direction have been
considered. Time-averaged as well as instantaneous results are
presented for the different geometries. The results for turbulent
flow are consistent with the expected physical behaviour. They
confirm the hypothesis that flow in the outer layer is largely un-
affected by the wall topography.

NOMENCLATURE
D Diameter of the entire computational domain, consisting of

the pipe and the immersed boundary.
U Indicates a generic velocity component (can be in any direc-

tion).
−→U Velocity vector.
p Pressure.

r Radial coordinate.
u Radial velocity component
v Angular velocity component
w Axial velocity component
z Axial coordinate
θ Azimuthal coordinate
ν Kinematic viscosity
ρ Fluid density
φ Pressure correction
DNS Direct numerical simulation
LES Large eddy simulation
rms root-mean-square

INTRODUCTION
Turbulent flow with rough walls are important in many sit-

uations, in particular in industrial pipe flow. Many experimental
results have been obtained for rough walls, resulting in a large
amount of empirical data. A good example is the Moody di-
agram [2], which contains the friction at the wall at different
Reynolds numbers for different roughness heights. This data is
used to make an empirical model for the influence of the rough-
ness on the flow used in engineering simulations. However, the
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only information of the roughness incorporated into such an em-
pirical model is the roughness height. More recently, LES/DNS
simulations have been done for turbulent flow bounded by rough-
ness with a regular topography (e.g. sinusoidal walls, a regular
array of transverse bars or egg carton shape [3–5]). These simu-
lations have shown that the flow near the wall in the inner layer of
the pipe is dramatically affected by the topography of the rough-
ness. However, there is no consensus about the influence of the
roughness on the flow near the centre of the pipe. Tradition-
ally, it is assumed that the flow in the outer layer is not affected
by the roughness and has the same properties as the flow over a
smooth wall, albeit with a lower Reynolds number for the same
pressure gradient. This is also known as Townsends Reynolds
hypothesis [6]. However, some results found in the literature (for
instance [7, 8]) challenge this answer [4].

To be able to investigate the influence of the roughness in
both the inner and the outer layer of turbulent pipe flow, a tool
was developed with which the flow can be studied numerically in
great detail. Using this tool pipe flow with arbitrary wall topog-
raphy can be studied: i.e. not only rough pipes, but also pipes
with much more dramatic variations in diameter can be studied.
The distance from the centre of the pipe to the wall is a function
of both the angular and the axial coordinate, allowing for a broad
range of wall topographies to be examined. To this end an ex-
isting DNS code for turbulent pipe flow developed by Eggels [9]
was extended with an immersed boundary method to include the
rough boundary. This code uses a fractional step method to solve
the flow, where an FFT-solver is used to solve the Poisson equa-
tion for the pressure. Note that this means that the flow, and
therefore the wall topography, must be periodic in both the an-
gular and axial direction. In this paper the implementation of
this immersed boundary method is discussed, followed by a val-
idation for laminar flow, using both a semi-analytical solution
and results from an axisymmetric simulation of laminar flow in
a converging-diverging pipe. A further section is devoted to the
evaluation of the results for turbulent flow, where numerical is-
sues are addressed and the influence of the grid resolution on the
statistics of the flow is discussed. Finally, the results for turbu-
lent flow in several roughness topologies is presented in detail.
Attention will be given to both time-averaged and instantaneous
quantities.

MODELLING OF THE ROUGH BOUNDARY USING AN
IMMERSED BOUNDARY METHOD

This work concerns incompressible flow in a three dimen-
sional domain (a pipe with a rough wall). The governing equa-
tions for this type of flow are:

∇ ·−→U = 0 (1)
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FIGURE 1. LINEAR INTERPOLATIONS: THE BLACK DOTS
ARE GRIDPOINTS WHERE THE VELOCITY IS SPECIFIED, THE
GRAY DOTS ARE GHOSTPOINTS USED IN THE INTERPOLA-
TION SCHEME

∂
−→U

∂ t
+−→U ·∇−→U =− 1

ρ
∇p+ν∇

2−→U (2)

where −→U is the fluid velocity, which consists of a radial compo-
nent u, an angular component v and an axial component w. These
equations are solved in the entire domain, in this case a pipe. To
this end the equation is discretised and solved on a computa-
tional grid. However, when the topography of the domain-wall
becomes complex, grid generation of a body-conformal grid will
become difficult and fast solvers can no longer be used. The im-
mersed boundary method is a technique to solve flows in com-
plex geometries, while keeping the fast solvers and the regular
computational grid. When a fluid flows over a boundary, a force
is exerted by the fluid on the wall. This force consists of a shear
force parallel to the wall and a pressure force perpendicular to
the wall. Applying Newton’s third law, it can also be stated
that a boundary exerts certain shear and pressure forces on the
fluid. By introducing the correct force into the Navier-Stokes
equations, the fluid will act as if it flows past a boundary [10].
This is the essence of the immersed boundary method. The force−→f is represented in the following equation:

~un+1−~un

∆t
+Ah (~un) =− 1

ρ
∇h p+νDh (~un)+ fn+1

b (3)

This is the discretised Navier-Stokes equation [11], where Ah
is the discretised advection term, Dh is the discretised diffusion
term and fn+1

b is the discretised force. The superscripts n and
n + 1 indicate the time step. The force in this equation can be
used to adjust the velocity ~un+1 in the next timestep. If the value
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(a) Trilinear interpolation
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FIGURE 2. DIFFERENT TYPES OF INTERPOLATION

of ~un+1 is known, the force is given by:

fn+1
b =

~un+1−~un

∆t
+Ah (~un)+

1
ρ

∇h p−νDh (~un) (4)

The velocity ~un+1 is found using interpolations. A simple exam-
ple of such an interpolation is given in figure 1(a). On the wall a
no-slip condition is assumed. Velocity U2 should be set in such a
way that the velocity at the immersed boundary is equal to zero.
This is done using the following formula:

U2 =− h
yA

U1 (5)

where U1 is the velocity outside the boundary, which is already
solved for the current timestep. This is only a simple linear in-
terpolation, but in the method implemented in this paper more
complicated interpolations using multiple velocities outside the
wall are also used, to increase the accuracy of the method. These
interpolations are discussed in more detail in the coming sub-
section. Note that the interpolation of the velocities follows the
predictor step. In the predictor step only the average pressure
gradient ∇p, constant throughout the pipe, is considered. The
corrector step is used to find ∇φ such that:

∇p = ∇p+∇φ (6)

∇φ is an adjustment of the pressure to satisfy continuity. This
adjustment changes the velocity field, possibly leading to an in-
or outflow through the wall. In order to repair this, mass sources
are used. These will be explained in a different subsection. Note
that each time-step gives rise to only a small correction in the ve-
locity field. The correction due to the pressure correction is even
smaller, thus making it unnecessary to incorporate the pressure
fluctuations of the previous timestep into the predictor step of the
current timestep.

Interpolations to satisfy a no-slip boundary condition
on the immersed boundary

In this immersed boundary method three different interpola-
tions are used. These are drawn schematically in figure 2. The
first of these interpolations, a trilinear interpolation, is drawn in
figure 2(a). Note that the cell drawn here (the large cube) is not
a gridcell, but a cell where at each corner a velocity in a certain
direction is defined. Because a staggered grid is used, these cells
are different for each velocity component. The point indicated by
the grey triangle is the point inside the wall where the velocity is
calculated. The black circle indicates the point at the wall where
the no slip boundary condition is enforced. It is the point on the
wall closest to the grey triangle. Grey squares indicate velocities
used in the interpolation. Note that all these velocities must lie
outside the boundary for the interpolation to be possible. The ve-
locity at the gray triangle is set in such a way that the interpolated
velocity at the black circle is equal to zero. This is done using a
normal trilinear interpolation.

In some cases one or more of the points used in the trilinear
interpolation lie inside the wall, making a different kind of inter-
polation necessary. An example of this is drawn in figure 2(b). In
this figure, the front face of the cube is suitable for a bilinear in-
terpolation, as only one vertex of this face lies inside the wall. At
the point inside the wall, again indicated by a gray triangle, the
velocity will be calculated in order to enforce a no-slip boundary
condition at the black circle. Used in the interpolation are the
velocities at vertices indicated by a grey square. The face is also
drawn schematically in figure 3(a). Here the velocity U1 is cal-
culated using the velocities U2, U3 and U4 to make the velocity
at point P equal to zero using the following formula:

U1 =−U4(z2− z)(r2− r)+U3(z− z1)(r2− r)+U2(z− z1)(r− r1)
(z2− z)(r− r1)

(7)
The point G is a ghostpoint, which lies just as far from the wall
as the point (z1,r2). At this point the velocity is equal to −U1.
The relevance of this ghostpoint will be made clear in the coming
subsection.

If a bilinear interpolation is not possible either, it is neces-

3 Copyright c© 2010 by ASME



U
1 U

2

U
3U

4

P

G

r
int

r
1

r
2

z
1

z
2

z

r

r
0

z
int

(a) Trilinear interpolation
. U

1

U
2

U
3

U
4

P

G r
int

r
1

r
2

z
1

z
2

U
5

z

r

z
int

(b) Bilinear interpolation

FIGURE 3. DIFFERENT TYPES OF INTERPOLATION

sary to use a linear interpolation. Such an occurrence is displayed
in figure 2(c). Here the velocity on the point indicated by the gray
triangle is calculated using only one other velocity: that indicated
by the square. This kind of interpolation was used as an example
in the previous subsection and is drawn in figure 1(a). After the
predictor step, the velocity inside the wall is given by equation 5.

Now all the basic interpolations used in the implementation
of the immersed boundary method are given. However, as Kim
et al. [1] showed, these interpolations can lead to numerical in-
stabilities. The problem is shown in figure 1(a). If the wall lies
very close to the gridnode for the velocity just outside the wall
at r = r1, i.e. h� yA, the interpolation of the velocity compo-
nent will yield a very large value of the velocity just inside the
wall at r = r2. This will lead to numerical instabilities, especially
where turbulent flow is considered. The solution to this problem
is given in the next section.

Problems with the interpolations and their solution
In the paper by Kim et al. a solution for the problem with

the linear interpolation discussed at the end of the previous sec-
tion was already stated. It involves using an additional velocity
outside the wall at r = r0 in the interpolation. This is displayed
in figure 1(b). If h > yA the velocity inside the wall after the
interpolation is thus given by:

U2 =− (yB−h)U1 +(h− yA)U0

yB− yA
(8)

The interpolation uses a ghostpoint (indicated by a gray dot at
rg). This ghostpoint and the first gridpoint inside the wall lie at
equal distances, but on different sides of the wall, i.e.:

r2− rw = rw− rg (9)

The interpolation works by finding the velocity at the ghostpoint
using velocities U0 and U1, given by −U2 in the figure. The
velocity at the wall is just this velocity mirrored in the wall and
is therefore equal to U2.

When turbulent flow is simulated, the influence of large ve-
locities inside the wall becomes larger, and velocities obtained
using trilinear and bilinear interpolations might incite numerical
instabilities. These occur when the wall lies closer to a velocity
point outside the wall then to the velocity point inside the wall
(this is drawn in figure 3(b), where the point P lies closer to U5
than to U1). A similar solution is found for these interpolations,
as described by Tseng and Ferziger [12]. For each point near
the wall a ghostpoint is determined, indicated by the points G in
figure 3. If the ghostpoint lies in the same cell as the point just
inside the wall, like in figure 3(a), the bilinear interpolation given
in equation 7 will be carried out. If the ghostpoint lies in another
cell, as in figure 3(b), the velocity in the ghostpoint will be de-
termined using the velocities U2, U3, U4 and U5. If this velocity
is found to be Ug, the velocity U1 inside the wall will be equal
to −Ug. A similar technique can also be applied to a trilinear
interpolation.

In the simulations performed for this paper, the gridcells are
elongated and the wall might shift more than one grid spacing in
the r-direction while shifting one gridspacing in the z-direction.
This is represented in figure 4. The ghostpoints of two velocity-
locations inside the wall are also shown. For the velocity Uw1 the
normal bilinear interpolation from equation 7 is possible. How-
ever, for Uw2 a bilinear interpolation like in figure 3(b) requires
the velocity Uw1 to be set at the correct value. Using the method
of Kim et al. [1] a linear interpolation would be employed (also
displayed in figure 4). The linear and bilinear interpolations sug-
gested in figure 4 to set velocity Uw2 differ a lot. This leads to
irregularities in the interpolations near the wall. As a solution,
first all momentum sources not requiring velocities inside the
wall for the interpolation (like Uw1) are interpolated, next the in-
terpolations which require one velocity inside the wall (like Uw2)
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are performed using the velocities interpolated earlier and so on.
This means that for convex boundaries, linear interpolations are
no longer required. For concave boundaries however, it is possi-
ble that two ghostpoints end up in the same cell. This is shown
in figure 5. Here it is not possible to determine the velocities Uw3
and Uw4 inside the boundary one by one. In a sinusoidal wall this
occurs at points where the diameter reaches its maximum value.
It is possible to solve these two equations using a system of two
linear equations. However, for a sinusoidal wall at a maximum
diameter the function varies little in the radial direction, meaning
that at those points the linear and bilinear interpolations are very
similar. This is also visible in figure 5. Therefore, instead of us-
ing bilinear interpolations, linear interpolations are used at these
locations.

Satisfying mass-conservation near the immersed
boundary

In the corrector step, the Poisson equation for the pressure-
correction φ is solved. This is done to satisfy the continuity equa-
tion, stating that the divergence of the velocity field of an incom-
pressible fluid should be equal to zero. The Poisson equation
reads:

1
ρ

∇
2
hφ

n+1 =
1
∆t

∇h ·~U∗ (10)

where ~U∗ is the velocity calculated in the predictor step. The
divergence of the velocity in a gridcell is equal to zero if the
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FIGURE 6. EXPLANATION OF A MASS SOURCE

inflow into and the outflow from the gridcell are equal. In the
example in figure 6 this is true if:

u1∆z−u2∆z+w1∆r−w2∆r = 0 (11)

Note that for simplicity the above equation is written in two di-
mensions and in Cartesian coordinates. In reality 3 dimensional
cylindrical coordinates are used. In the figure, the boundary
crosses the gridcell and only outside the boundary the mass needs
to be conserved. Therefore only the velocities outside the wall
will contribute to the divergence. For the current example this
means that:

w1∆r +u1∆z = 0 (12)

Note that each side of a gridcell is treated as either lying com-
pletely inside or completely outside the boundary. This is an ap-
proximation used to avoid the ’cut cell complication’, requiring
complex surfaces in three dimensions to be calculated in order
to compute the divergence for a given gridcell cut randomly by
the boundary. If the calculation of the divergence is not adapted
in this way, a large divergence may often be found near the wall
due to the velocities just inside the wall. This will cause a large
pressure correction near the wall, necessitating large velocity ad-
justments. After these adjustments the no-slip boundary condi-
tion on the immersed boundary will no longer be satisfied, as has
been shown by Kim et al. [1], discussing the calculation of the
divergence in detail in their paper. Changing the calculation of
the divergence is equivalent to introducing a mass source such
that:

u1∆z−u2∆z+w1∆r−w2∆r +Q∆r∆z = 0 (13)

where in this case the mass source Q is given by:

Q∆r∆z = w2∆r +u2∆z (14)
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FIGURE 7. DOMAIN FOR VALIDATION USING THE SOLU-
TION FROM MANTON

to make equations 12 and 13 equal. This mass source will be
introduced in the right hand side of the Poisson equation:

1
ρ

∇
2
hφ

n+1 =
1
∆t

(
∇h ·~U∗+Q

)
(15)

VALIDATION OF THE IMMERSED BOUNDARY
METHOD

In this section the immersed boundary method is validated
using results for laminar flow. For the simulations in this sec-
tion, 64 gridnodes in the radial direction and 128 gridnodes in
both the azimuthal and axial directions are used. The grid in the
two latter directions is uniform, while arctangent-gridstretching
is used in the radial-direction to improve the resolution near the
immersed boundary. In all simulations throughout the paper, pe-
riodic boundary conditions are implemented in both the angular
and axial direction.

Validation using semi-analytical solution
Manton [13] formulated a semi-analytical solution for low

Reynolds-number axisymmetric flow in pipes of varying cross-
section. This solution is used in the validation of the immersed
boundary method. As the expression found by Manton is only
valid for pipes with a slowly-varying cross-section, the pipe in
figure 7 was selected for the validation. The wall is a sine func-
tion with one period in the length of the pipe and an amplitude
of about 2.7 % of the average diameter of the pipe. Note that D
in this picture is not the average diameter of the pipe, but the di-
ameter of the pipe plus the immersed boundary. The result of the
semi-analytical model is given in figure 8, showing the stream-
lines. Due to the low Reynolds number (Re ≈ 47 based on the
average diameter and the bulk velocity) there is no detachment
of the flow from the wall. The streamfunction used to plot these
streamlines was also used to calculate the radial and axial veloc-
ities. They are compared with velocities from the simulations
using the immersed boundary method in figure 9. The two dif-
ferent approaches yield similar results, showing that the method
currently used works properly for low-Reynolds-numbers and
slowly varying pipe cross-sections.
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FIGURE 8. STREAMLINES FOR THE SEMI-ANALYTICAL
MODEL BY MANTON

Validation using axisymmetric simulation
Next, the method is validated using results for higher

Reynolds-numbers (Re = 300, again based on the average di-
ameter and the bulk velocity) from axisymmetric simulations by
Mahmud et al. [14]. In contrast to the previous validation, the
amplitude of the sine function shaping the boundary is much
larger (the diameter varies by more than 70%) so that detach-
ment takes place. Because inertia is also more important in these
circumstances, it is no longer possible to calculate the flow using
a perturbation of Stokes flow in a straight pipe, as was possible
in the previous validation. The pipe is drawn schematically in
figure 10. The normalised stream function found by Mahmud et
al. is drawn in figure 11(a). In figure 11(b) the result obtained
using the immersed boundary method is shown. Comparing the
two results of figure 11 shows large similarity of the normalised
stream function. The only notable difference being the centre of
the recirculation area, which lies at a slightly higher axial coor-
dinate in the current simulation. Overall, it seems that the imple-
mented immersed boundary method works properly for laminar
flow even with large differences in pipe diameter.

EVALUATION OF THE RESULTS FOR TURBULENT
FLOW

In this section the results for turbulent flow are examined.
Because no results for turbulent flow in wavy pipes at suitable
Reynolds numbers have been found in the literature, validation
of the results is not possible. In this section the influence of the
gridspacing on the results is considered. These results have been
used to determine the required grid resolution. All results in this
section are simulated on the computational domain given in fig-
ure 12(b). In the coming simulations, 64 gridnodes in the ra-
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FIGURE 9. VALIDATION USING SOLUTION BY MANTON

FIGURE 10. DOMAIN FOR VALIDATION USING RESULTS FROM MAHMUD ET AL.

dial direction and 128 gridnodes in the azimuthal direction are
used, with grid-stretching in the radial direction. The amount of
gridnodes in the axial direction is varied.

The results are all made dimensionless using u∇, as given
by:

u∇ =

√
− 1

4ρ
D

∂ p
∂ z

(16)

where ∂ p
∂ z is the average pressure gradient in the pipe and ρ is the

density of the fluid. This means that the dimensionless velocity
and wall-shear are represented by:

U∗ =
U
u∇

and τ
∗ =

τ

ρu2
∇

(17)

These are called outer-units, denoted by a ∗ superscript. The
density of the fluid is chosen equal to one. The simulations
where all performed at a wall-Reynolds number of 360. The wall
Reynolds-number is defined as:

Reτ =
u∇D

ν
(18)

where D is the total diameter of the computational pipe, consist-
ing of the pipe itself and the immersed boundary. This is indi-
cated in figure 12. For convenience the ∗-sign will be dropped
in the coming sections, however, all quantities given are in outer
units.

In the simulations of the laminar flow from the previous sec-
tion, 128 gridnodes where used in the axial direction. However,
when using the same amount of gridnodes for turbulent flow, os-
cillations appear. To show this, the average radial velocity along
the line drawn in figure 12(b) is shown in figure 13. The os-
cillations are clearly visible when a grid-resolution of only 128
points is used. When the resolution is doubled, the oscillations
are almost completely gone. Increasing the resolution to 360
gridpoints in the axial direction does not change the outcome of
the simulation significantly, making it plausible that this gridres-
olution is sufficiently large to yield accurate results. This is the
grid-resolution used in the results section. The oscillations are
caused by a very large change in velocity within one gridspacing
at the immersed boundary. The wavelength of the oscillations is
equal to two gridspacings. Increasing the resolution decreases
the difference in velocity within one gridspacing, reducing the
size of the oscillations. To show how the number of gridnodes
affects quantities averaged over the entire pipe, in figure 14 the
average axial velocity and the average velocity fluctuations in all
directions are drawn, for 128, 256 and 360 gridnodes in the axial
direction. Clearly, the results are almost identical for the three
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FIGURE 11. VALIDATION USING RESULTS BY MAHMUD ET AL. VALUES ON THE AXIS ARE SCALED USING THE WAVELENGTH
OF THE SINE FUNCTION SHAPING THE BOUNDARY

(a) Computational domain with one period of the sine function.
.

(b) Computational domain with five periods of the sine function.

(c) Computational domain with a superposition of one and five pe-
riods of the sine function.

FIGURE 12. DIFFERENT WALL TOPOGRAPHIES USED IN THE
SIMULATIONS

different resolutions. This means that when only these average
quantities are needed, it is sufficient to use 128 grid-points in the
axial direction. When more information about the flowfield is
required, the resolution must be increased to get a sufficiently
accurate result.
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FIGURE 13. AVERAGE RADIAL VELOCITY ALONG THE
SMALL LINE DRAWN IN FIGURE 12(b). TOTAL NUMBER OF
GRIDPOINTS IN THE Z-DIRECTION: SOLID LINE: 128 GRID-
CELLS, DOTTED LINE: 256 GRIDCELLS, DASHED LINE: 360
GRIDCELLS

RESULTS

In this section the results of the simulations of turbulent flow
using the immersed boundary method are given. First, three dif-
ferent wall topographies varying in the axial direction are con-
sidered. Subsequently a wall geometry varying in the circumfer-
ential direction is discussed.
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FIGURE 14. STATISTICAL RESULTS FOR SEVERAL GRID RESOLUTIONS. TRIANGLES: 128 GRIDPOINTS, CIRCLES: 256 GRID-
POINTS, PLUS-SIGNS: 360 GRIDPOINTS

Wall geometries varying in the axial direction
The three different wall topographies varying in the stream-

wise direction are shown in figure 12. In the first domain the wall
consists of a sine-function with one period in the entire length of
the pipe. This means that the topography does not resemble true
roughness, as the wall is only slightly curved. Due to this small
curvature the average streamlines, as drawn in figure 15, follow
the wall as there is no recirculation zone. The average stream-
lines resemble the result of Manton [13], given in figure 8. A
notable difference is the smaller spacing between the streamlines
near the wall in the turbulent flow. This occurs where the flow
is squeezed because the pipe diameter decreases. When looking
at the results for the instantaneous streamlines in figure 16, the
difference with laminar flow is much clearer, because the influ-
ence of turbulent velocity fluctuations on these streamlines be-
comes visible. Note that some streamlines penetrate the wall,

indicating that the no-slip boundary condition is not exactly sat-
isfied at the location where the streamline crosses the wall. The
interpolations discussed earlier only make the velocity equal to
zero in one point on the wall in every gridcell. If the stream-
line reaches the wall at a different location, the velocity might
be slightly larger than zero and the streamline passes through the
wall. This is a disadvantage of the crude linear interpolations
near the immersed boundary. Because only one cross-section of
the pipe for a certain azimuthal coordinate is shown, the diver-
gence is not necessarily equal to zero, causing some streamlines
to begin or end suddenly.

The second simulation is of a pipe with a wall topography
consisting of a sine function with 5 periods in the length of the
pipe, as drawn in figure 12(b). The average streamlines in the rz-
plane are drawn in figure 17. The streamlines no longer follow
the wall, but recirculation area’s appear between the protrusions

9 Copyright c© 2010 by ASME
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FIGURE 15. AVERAGE STREAMLINES FOR ONE PERIOD

FIGURE 16. INSTANTANEOUS STREAMLINES FOR ONE PE-
RIOD

in the wall topography. The result resembles the streamlines
by Mahmud [14], where the diameter also varied significantly
over relatively short distances. The flow detaches from the wall
when the period of the sine-function decreases or the amplitude
increases. In figure 18 the instantaneous streamlines are plotted.

In the third simulation, the wall topography consists of a su-
perposition of the two sine functions used before: a sine-function
with one period in the length of the pipe and one with five periods
within this distance. The amplitude of both sine functions is half
the amplitude used in the previous two cases, obtaining equal dif-
ferences in pipe diameter in each simulation. A schematic of this
third pipe is given in figure 12(c). The average streamlines in this
domain are drawn in figure 19. Note that the result contains some
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FIGURE 17. AVERAGE STREAMLINES FOR FIVE PERIODS

FIGURE 18. INSTANTANEOUS STREAMLINES FOR FIVE PE-
RIODS

recirculation areas, e.g. at z = 0.3, but elsewhere the pipe diam-
eter increases, yet no recirculation area is present. This occurs at
z = 1.1 where the pipe diameter is largest. For completeness, a
snapshot of the instantaneous streamlines can be found in figure
20.

The effect of the wall topography on the flow statistics is de-
picted in figure 21, where various quantities averaged over the
angular and axial directions are shown as a function of the radial
coordinate. The three wall geometries given in figure 12 along
with a straight pipe with a diameter of 0.90D are featured in the
graphs. The average velocity, plotted in figure 21(a) is largest for
the straight pipe. The different curved wall topographies increase
the drag of the wall on the fluid. Note that a higher number of
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FIGURE 19. AVERAGE STREAMLINES FOR SUPERPOSITION

FIGURE 20. INSTANTANEOUS STREAMLINES FOR SUPER-
POSITION

periods of the sine function leads to a larger drag. The superpo-
sition of the two sine functions yields a result close to that of a
single period sine. The streamlines, showing few recirculation
areas in the superposition, also show a similar behaviour for the
superposition and the one period case.

In figure 21(b) the root-mean-square (rms) fluctuations of
the radial velocity are displayed. Note that all fluctuations men-
tioned in the paper are rms fluctuations. The immersed boundary
is confined to the interval between r = 0.405D (indicated by the
dotted line in the figures) and r = 0.495D. When r≤ 0.405D, the
radial velocity fluctuations are very similar for the three rough-
ness topographies. Although the magnitude of these fluctuations
is slightly different in the outer layer, the qualitative behaviour is

the same. This also holds for the rms fluctuations in the axial di-
rection. This is a clear argument for the hypothesis that the flow
in the outer layer remains largely unaffected by the roughness.
In the inner layer, just outside the roughness, the axial velocity
fluctuations in pipes with curved walls differ significantly from
fluctuations in the axial direction in a straight pipe. This is not
true for the velocity fluctuations in the other directions. This is
consistent with results previously obtained for rough walls, e.g.
by Flack et al. [15].

In a smooth pipe, the velocity and its rms fluctuations do
not vary as a function of the axial coordinate. This is different
for pipes with a z-dependant wall topography. In figure 22 the
axial velocity and the axial velocity fluctuations are drawn at dif-
ferent z-positions along the pipe. Note that the rms fluctuations
are only averaged in the azimuthal direction in this figure. For
one period, the average velocity shown in figure 22(a) is positive
everywhere. This is also shown by the streamlines in figure 15,
where recirculation is absent. Negative velocities do occur when
the wall topography consists of five periods: where the diameter
is largest the velocity near the wall is negative, which appears as
a recirculation area in the streamline plot (figure 17). The ve-
locity fluctuations in the one period results (figure 22(b)) show
that their magnitude is larger when the pipe diverges than when
it converges. The largest turbulence intensity occurs where the
diameter is largest. As seen in figure 21(d), axial velocity fluctu-
ations in the inner layer are larger in the pipe with a one-period
wall geometry than in the other pipes.

In the superposition, elements of both its components are
present. The average velocity (figure 22(e)) is very close to zero
at z = 1.1, where the diameter is largest. This explains the lack of
streamlines at this location in figure 19. The three other velocity
profiles drawn in this figure look much like their counterparts
in the five diameter case. Considering the velocity fluctuations,
the influence of the one period sine is clear: where this sine is
diverging the fluctuations are larger than where it is converging.

In figure 24 the average wall shear for the different rough-
ness topographies is plotted. The calculation of the shear is il-
lustrated in figure 23. The shear can not be calculated inside the
wall, because the velocities inside the wall that are not bordering
the boundary directly (like at the cross in figure 23) do not have
a physical value. Therefore the velocity is obtained using a tri-
linear interpolation at a distance δ , equal to 0.5 grid-diagonals,
from the wall and once more at a distance δ + ε from the wall.
Because the shear stress is always directed parallel to the wall,
the velocity is decomposed into three orthogonal directions, one
perpendicular to the wall, one parallel to the wall in the rz-plane
(seen in figure 23 ) and one parallel to the wall in the rθ -plane.
In the figure the time-averaged wall shear stress in the rz-plane
is given (the average wall shear in the rθ -plane is equal to zero).
The velocity parallel to the wall is obtained using the following
relation:
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(d) Axial velocity fluctuations

FIGURE 21. RESULTS FOR THE THREE DIFFERENT WALL TOPOGRAPHIES IN FIGURE 12 AND FOR A STRAIGHT PIPE. LINE:
STRAIGHT PIPE, TRIANGLES: ONE PERIOD, CIRCLES: FIVE PERIODS, PLUSSES: SUPERPOSITION OF ONE AND FIVE PERIODS THE
DOTTED LINE INDICATES THE TOP OF THE WALL TOPOGRAPHY

Uw1 = uw1 sinφ +ww1 cosφ (19)

where φ is the angle between the wall and the horizontal at the
location where the shear is calculated. Uw1 is the velocity parallel
to the wall in the rz-plane. In a similar way Uw2 can be found.
The shear stress in this plane is now calculated as follows:

τw,θz = µ
∂
−→U

∂ n̂
· r̂ ≈ µ

Uw2−Uw1

ε
(20)

where n̂ is the unit normal of the wall and r̂ the unit normal along
the shear component. Figure 24 shows the time-averaged wall
shear stress for the three simulations. The average wall shear
stress for the one period wall is higher than for the five period

wall, while at the five period wall more momentum is lost due
to pressure exerted on the wall. This happens when the fluid
flows against the boundary where the pipe diameter decreases.
At these points there is a large gradient in the velocity compo-
nent perpendicular to the wall resulting in a pressure force ex-
erted on the wall. The streamline plot (figure 17) shows that
just before the pipe reaches its minimal diameter the streamlines
quickly change direction, indicating a significant force exerted
on the wall. When the wall topography consists of a sine function
with only one period, the flow follows the boundary and there
are no abrupt changes in the direction of the average streamlines.
This indicates that no large pressure forces are exerted on the
wall and a larger fraction of the momentum loss is due to shear.
The superposition yields a result that looks like a superposition
of the two previous results: the five periods are clearly visible in
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for one period
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(b) Average fluctuations in the axial velocity on several axial
locations along the pipe for one period
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(c) Average velocity on several axial locations along the pipe
for five periods
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(d) Average fluctuations in the axial velocity on several axial
locations along the pipe for five periods
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(e) Average velocity on several axial locations along the pipe
for the superposition

.
0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z/D

r/
D

ol
d

(f) Average fluctuations in the axial velocity on several axial
locations along the pipe for the superposition

FIGURE 22. RESULTS FOR THE AVERAGE VELOCITY AND THE VELOCITY FLUCTUATIONS FOR THE THREE SIMULATED CASES
FROM FIGURE 12 AT SEVERAL LOCATIONS ALONG THE PIPE
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FIGURE 23. THE SHEAR IS FOUND USING VELOCITIES AT
DISTANCES δ AND δ + ε FROM THE IMMERSED BOUNDARY

the result, but they are imposed upon a one-period function. Note
that the amplitude of the five period component of the wall shear
stress becomes larger when the wall lies closer to the centre of
the pipe (at z = 3.3, where the one period sine is near its min-
imum). In all results of the wall-shear oscillations are present.
Very close to the wall the influence of the crude interpolations is
large, yielding these oscillations in the velocity field.

In figure 25 the sum of the shear stresses in the rz-plane and
the viscous term (u′w′+ν

∂w
∂ r ) is drawn for the three wall geome-

tries. In a straight pipe, the result is a straight line. If the pipe
diameter is equal to D, the result at the pipe wall is equal to unity,
whilst being equal to zero at the centre of the pipe. For the three
cases drawn in the figure, the curves are almost straight outside
the wall region (r < 0.405). The most notable deviation is for
the one period case: here the flow does not seem to behave like
a normal pipe flow over a rough boundary, but more like a flow
in a pipe with varying diameter, yielding a different result near
the boundary. The superposition yields a very straight line, indi-
cating that the resultant flow is much like pipe flow over a rough
boundary. Inside the roughness (at r > 0.405D), the result is no
longer given by a straight line. In this region the situation is so
different from normal pipe flow, that no constructive comparison
can be made.

In figure 26 the contourplot of the magnitude of the instan-
taneous shear stress is drawn for the one period wall geometry.
Superimposed on top of this contour are the streamlines of this
shear stress, which indicate the flow near the wall. In this fig-
ure the wall was projected upon a flat plane. The darker areas
indicate a larger shear stress. At the beginning of the pipe, the
diameter increases and the shear stress is small, some streamlines
ending on places where the shear stress is equal to zero. Because
the shear in the z and θ directions is of the same order of magni-
tude, the streamlines are curved. When the diameter decreases,
the shear in the z-direction becomes much larger and the stream-
lines will follow a streaky pattern, mostly in the z-direction. This
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FIGURE 24. AVERAGE SHEAR AT THE WALL FOR ONE PE-
RIOD (DOTTED LINE), FIVE PERIODS (LINE) AND THE SUPER-
POSITION (DASHED LINE)

picture is consistent with figure 22(a), where the velocity gradi-
ent near the wall is small when the diameter is large and vice
versa.

For the superposition, a similar plot was made (figure 27).
At the beginning of the pipe, where the one period sine is caus-
ing the wall to diverge and the five period-sine has a maximum,
the shear is also very small. Around z = 0.3 many streamlines
end on a position where the shear stress is equal to zero. To a
somewhat lesser extend, this also happens one fifth of the pipe
further downstream, where the higher frequency sine function
has its second maximum. After this point the low frequency
sine starts converging, and the shear in the z-direction becomes
larger, leading to a streaky pattern of the streamlines. Note that
the streamlines tend to cluster more than in the previous case.

Wall geometry varying in the circumferential direction
Using the immersed boundary method, many different wall

geometries can be created. As an example of this, in figure 28
the streamlines are given in a cross-section of a pipe with a wall
geometry varying in the θ -direction. These variations of the
boundary in the azimuthal direction are called ribblets. In the
z-direction the cross-section is constant. The statistics for this
pipe are given in figure 29 where they are compared to a straight
pipe.

The average velocity fluctuations confirm the hypothesis that
the flow in the centre of the pipe is little affected by roughness.
Due to the ribblets, eddies have more difficulty reaching the wall
of the pipe and as a result the velocity fluctuations near the wall
are smaller than for the straight pipe. This leads to a decrease
of the average wall shear. However, because the surface area of
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FIGURE 25. VALUES FOR u′w′+ ν
∂w
∂ r TRIANGLES: ONE PE-

RIOD, CIRCLES: FIVE PERIODS, PLUSSES: SUPERPOSITION

FIGURE 26. CONTOURPLOT OF THE MAGNITUDE OF THE
INSTANTANEOUS SHEAR-STRESS ALONG WITH STREAM-
LINES FOR SUPERPOSITION. DARKER COLOURS INDICATE A
LARGER SHEAR STRESS

the wall is larger when ribblets are present, the total wall shear is
still slightly larger than for a normal pipe resulting in a slightly
lower average velocity.

To illustrate the difference in drag of the several roughness
topographies considered in this paper, the Darcy-Weisbach fric-
tion factor (4 f ) of each of the wall geometries is given in the
table below. The friction factor is calculated using the following

FIGURE 27. CONTOURPLOT OF THE MAGNITUDE OF THE
INSTANTANEOUS SHEAR-STRESS ALONG WITH STREAM-
LINES FOR ONE PERIOD. DARKER COLOURS INDICATE A
LARGER SHEAR STRESS

FIGURE 28. INSTANTANEOUS STREAMLINES FOR WALLS
VARYING IN THE AZIMUTHAL DIRECTION

equation determined using a balance of forces in the pipe:

4 f
ρu2

2
=−D∇p (21)

As a comparison, the friction factor calculated using the Cole-
brook equation [16] is also given in table 1.

CONCLUSION
An immersed boundary method, based on the paper by Kim

et al. [1] is developed to implement a varying wall topography
into an existing DNS code for pipe flow. This method is validated
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(d) Axial velocity fluctuations

FIGURE 29. RESULTS OF THE WALL VARYING IN THETA. LINE: RESULTS FOR A SMOOTH WALL, TRIANGLES: RESULTS FOR WALL
VARYING IN THE AZIMUTHAL DIRECTION.

for laminar flow using results from a semi-analytical solution and
numerical simulations. From this validation it is concluded that
the method yields accurate results for laminar flow even when
the diameter of the pipe varies dramatically. Four simulations
for turbulent flow where performed, each with a different wall
geometry. For three of these geometries, the wall varied in the
axial direction, in the fourth geometry, it varied in the azimuthal
direction. The results presented for turbulent flow are consistent
with the expected physical behaviour. They confirm the hypoth-
esis that flow in the outer layer is largely unaffected by the wall
topography. Some inaccuracies in the flowfield occur near the
wall, yielding oscillations in the inner layer when the grid reso-
lution is to small. When higher grid resolutions are used these
oscillations are confined very close to the wall, but show up in
the plots of the shear stress. However, these disadvantages of the
immersed boundary method are minor. The big advantages such

as the absence of complicated body conformal grids and the pos-
sibility to use fast solvers far outweigh these shortcomings. For
future research, this code can be used to simulate roughness ge-
ometries varying in both the axial and the azimuthal directions.
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